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Abstract

We consider a size structured cell population model where a mother cell gives birth to two
daughter cells. We know that the asymptotic behavior of the density of cells is given by the
solution to an eigenproblem. The eigenvector gives the asymptotic shape and the eigenvalue gives
the exponential growth rate and so the Maltusian parameter. The Maltusian parameter depends
on the division rule for the mother cell, i.e., symmetric (the two daughter cells have the same size)
or asymmetric. We use a min-max principle and a differentiation principle to find the variation
of the first eigenvalue with respect to a parameter of asymmetry of the cell division. We prove
that the symmetrical division is not always the best fitted division, i.e., the Maltusian parameter
may be not optimal.
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1 Introduction

General models of cell division are known for a long time. Although the most classical case is division
into two equal new cells, it is now well established that this is not always the case (see [29, 17, 25, 1, 24,
28]). In particular in hematopoiesis (see [6, 14] or [30] for thymic lymphoblasts), in the large class of
budding yeasts (see[16, 19, 2, 27]), E.Coli or for some other bacteria [8] like Physcomitrella protoplast,
division is not always symmetric and a mother cell can give birth to a bigger and a smaller cells. The
goal of the present paper is to propose a possible explaination for the existence of different way of
cell division (symmetric or asymmetric) based on adaptive dynamic. In some cases, the symmetric
division is not the best fitted. The natural model to study it is a cell division model (see [9, 20]) in
which the density of cells n(t, y) is structured by their size y and the evolution is described by the
master equation

∂

∂t
n(t, y) +

∂

∂y
n(t, y) + B(y)n(t, y) =

1
σ

B(
y

σ
)n(t,

y

σ
) +

1
1− σ

B(
y

1− σ
)n(t,

y

1− σ
), (1.1)

where a cell of size y gives birth to a cell of size yσ and another one of size (1− σ)y, with σ ∈]0, 1[. A
similar model also arises to describe fragmentation in physics [12, 18] and the growth term ∂yn arises
after rescalling [5, 10]. The division part of this equation can be understood as follows. The cells
of size y are produced from the cells of size y/σ (resp. y/(1 − σ)). The number of cells which size
belongs to [y, y + δy] that appear after the division are δy

σ B( y
σ )n(t, y

σ ) (resp. δy
1−σ B( y

1−σ )n(t, y
1−σ )).

We have then the population balance equation (1.1). We know from the general theory (see [22, 21])
that the asymptotic behavior of such an evolution equation is given by the rate λ, the eigenvalue of
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the following eigenproblem

∂

∂y
N(y) + [λ + B(y)]N(y) =

1
σ

B(
y

σ
)N(

y

σ
) +

1
1− σ

B(
y

1− σ
)N(

y

1− σ
),

− ∂

∂y
φ(y) + λφ(y) = B(y)

[
φ(σy) + φ((1− σ)y)− φ(y)

]
,

N(y = 0) = 0, N, φ ≥ 0,

∫ ∞

0

N(y)φ(y)dy = 1, φ(0) = 1.

(1.2)

More precisely, we know from general relative entropy method [21, 26], that there exists a constant C
only depending on the initial condition n(0, .) such that :
- CN(.)eλt is a solution to (1.1),
- φe−λt is a solution to the backward equation of (1.1), or similarly, φ is a solution to the dual
eigenproblem,
- finally, we have the convergence in the weighted space L1([0,∞[, φdy) with the norm ‖ f ‖:=

∫
|

f(y) | φ(y)dy,
lim

t→∞
n(t, .)e−λt = C N(.) in L1([0,∞[, φdy).

Consequently, the dynamics of the density n(t, y) is strongly related to the eigenvalue in (1.2) that
gives an invasive parameter of the population (and thus the fitness of the population). We use a
min-max method [3, 4, 13] and a differentiation method to study the variation of the first eigenvalue
λ with respect to the asymmetry parameter σ. We prove that when a cell divides early then the
asymmetric division gives a better growth, i.e., a larger first eigenvalue. On the contrary, for late
division, asymmetric division is better.

This paper is organized as follows. Firstly, in Section 2, we give the main results on the varia-
tion of the invasive parameter (first eigenvalue in (1.2)) with respect to the asymmetry of the division.
We show that the convexity of the dual eigenfunction φ is related to this problem of variation. Then,
in Section 3, we show that a min-max method and a differentiation method can be used to study
the variation of the invasive parameter (first eigenvalue) with respect to the parameter of cell division
asymmetry σ in (1.1). In Section 4, we consider birth rate B such that we obtain directly the convexity
of the dual eigenfunction. In Section 5, we extend the results found in Section 2 to more general cell
division models. Finally, in the last section, we give some simple applications of the main methods.

2 Main results

The purpose of this section is to show that the symmetric division is not necessarily the best fitted
division. We study two different cases, when the birth rate B has a compact support separated from
y = 0,

Supp B ⊂ [a, b], a > b/2, (2.1)

or Supp B contains y = 0. In this case we suppose that

Supp B = [0, b],
λ(σ)

(
λ(σ)−B(0)

)
B(0)

<
B′(y)
B(y)

≤ 0, ∀y ∈]0, bσ0[, ∀σ ∈ [1/2, σ0[, (2.2)

with σ0 ∈ [1/2, 1[, λ(σ) the first eigenvalue λ in (1.2) where σ is the asymmetric parameter. We notice
that B(y) = 1[0,b] satisfies assumption (2.2). This condition means that the cells begin to divide early
(at size y = 0) and the birth rate decreases.
Theorem 2.1 Assume that Supp B is compact and (2.1) holds. Then

d

dσ
λ(σ) ≤ 0, ∀σ ∈ [1/2, a/b[. (2.3)

Moreover, we have
sup

σ∈]1−a/b,a/b[

λ(σ) = λ(1− a/b).
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Theorem 2.2 Assume that b > 0, σ0 ∈ [1/2, 1[ and (2.2) holds. Then

d

dσ
λ(σ) ≥ 0, ∀σ ∈ [1/2, σ0[. (2.4)

Moreover, we have
sup

σ∈]1−σ0,σ0[

λ(σ) = λ(1/2).

Proof of Theorems 2.1-2.2 First, we will recall some results on the existence of a solution to
the eigenproblem. Then, we differentiate the first eigenvalue λ(σ) with respect to the parameter σ
to study the variation of λ(σ). We notice that the variation of the first eigenvalue is directly linked
to the properties of the dual eigenfunction φσ to be concave or convex. Finally, we prove that under
the assumptions of Theorems 2.1-2.2, we can directly prove the convexity or concavity of the dual
eigenfunction.

Step 1. Existence and uniqueness of the solution to eigenproblem (1.2) The eigenproblem
(1.2) associated to the cell division model can be written with more compact notations

L∗σ(φσ) = λ(σ)φσ, Lσ(Nσ) = λ(σ)Nσ,

∫ ∞

0

Nσ(y)φσ(y)dy = 1, (2.5)

where L1
w([0,∞[) := L1([0,∞[, (1 + B(y))(1 + y)dy),

Lσ(f) := −∂f

∂y
(.)−B(.)f(t, .) +

1
σ

B(
.

σ
)f(

.

σ
) +

1
1− σ

B(
.

1− σ
)f(

.

1− σ
), f ∈ L1

w([0,∞[), (2.6)

and the dual operator,

L∗σ(g) :=
∂g

∂y
(.)−B(.)g(t, .) + B(.)

(
g(.σ) + g

(
.(1− σ)

))
, g ∈ L1

w([0,∞[)∗. (2.7)

Remark. We notice that it is enough to consider σ ∈ [1/2, 1[, since, using the symmetry of (1.2), we
have λ(σ) = λ(1− σ).

Here, we cannot expect to find an exact solution as in the McKendrick-VonFoerster model for
instance. Nevertheless, we have the following lemma.
Lemma 2.3 Under the assumption (2.1) (resp. (2.2)), there exists a solution (Nσ, λ(σ), φσ) to (2.5)-
(2.7). Moreover, we have

∀σ ∈]0, 1[, ∃Cσ < ∞ :


Nσ(y) ≤ Cσe−λ(σ)y,

φσ(y) ≤ Cσ(1 + y),

| ∂
∂y φσ(y) |≤ Cσ(B(y) + 1)(1 + y).

(2.8)

We refer to [22] for the proof of this result.

Step 2. The differentiation method.
Lemma 2.4 The function σ 7→ λ(σ) is well defined on ]0, 1[ and is differentiable. Moreover, we have

∂

∂σ
λ(σ) =

∫ ∞

0

B(y)
[ ∂

∂y
φσ(σy)− ∂

∂y
φσ((1− σ)y)

]
Nσdy. (2.9)

We prove this lemma in Section 3.1 (as an application of Lemma 3.2) and using the same method, we
find :
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Lemma 2.5 The following equality holds :

(
∂2

∂σ2
λ(σ))σ=1/2 = 2

∫ ∞

0

B(y)y2 ∂2

∂y2
φ1/2(y/2)N1/2(y)dy.

Proof. We use Lemma 2.4 and the same method to prove that ∂2

∂σ2 λ(σ) exists and satisfies the above
equality. 2

Now, we can give a direct corollary of Lemma 2.4. We suppose that

σ0 ∈ [1/2, 1[, (2.10)

K = Supp B ⊂ [0,∞[. (2.11)

Corollary 2.6 Assume that φσ0 is a convex (resp. concave) function on [1 − σ0, σ0].ConvHull(K).
Then we find that

(
∂

∂σ
λσ)σ=σ0 ≥ 0 (resp.(

∂

∂σ
λσ)σ=σ0 ≤ 0).

Proof. Indeed, using Lemma 2.4 and that φσ0 is a convex function, we find that ∂
∂y φσ0 is increasing.

Since σ0 ≥ (1− σ0), we have ( ∂
∂σ λσ)σ=σ0 ≥ 0. 2

Remark. The strict convexity (resp. strict concavity) of φσ0 on K implies ∂
∂σ λ > 0 (resp. ∂

∂σ λ < 0).

Thus, we reduce the problem of the variation of λ(σ) with respect to σ to a problem on φσ. In the
next section we prove that under some assumptions on B, the dual eigenfunction φσ is a convex or
concave function.

Step 3. Convexity of the dual eigenfunction φσ When the birth rate has a compact support,
the following result holds.
Theorem 2.7 Assume that (2.1) (resp. (2.2) with σ0 ∈ [1/2, 1[) holds. Then for all σ ∈]1−a/b, a/b[
(resp. σ ∈ [1/2, σ0]), φσ is a strictly convex (resp. strictly concave) function.

We prove Theorem 2.7 in section 4.

Step 4. Conclusion We can now prove the main Theorems 2.1-2.2 on the variation of the eigen-
value λ(σ) with respect to the asymmetry parameter σ. Indeed, using Corollary 2.6 and the results
proved in Section 2, we get directly Theorems 2.1-2.2. 2

3 Main methods

Formally, we have a family of linear bounded operators (and their dual operators) which depend on a
parameter p ∈ I, where I ⊂]−∞,∞[ is an interval,

Lp : B 7→ C, L∗p : C∗ 7→ B∗, (3.1)

B and C are Banach spaces of real functions (in duality 〈., .〉 with B∗ and C∗) such that

∀p ∈ I ∃(Np, λ(p), φp) ∈ B+×]−∞,∞[×C∗+ : Lp(Np) = λ(p)Np, L∗p(φp) = λ(p)φp, (3.2)

where B+ (resp C∗+) is the positive cone of B (resp C∗) and

∀p ∈ I 〈φp, Np〉 = 1. (3.3)

We will study the variation of λ(p) with respect to p. We notice that the variation of Np, φp in Banach
spaces of real functions makes the problem rather complex.

Our purpose is to find the variation of the first eigenvalue in a general eigenvalue problem (3.1)-(3.3).
To study the variation of the first eigenvalue, we develop two points of view, one which favors the
min-max principle and the other which uses the differentiation of the eigenvalue (and eigenproblem).
Even if the second one needs the operators in the eigenproblem to be more regular, it gives better
results in some problems as the cell division one.
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Min-max method: We have the following principle
Lemma 3.1 Assume that there exists a solution (Np, λ(p), φp) to (3.1)-(3.3). Then we have for all
p ∈ I,

λ(p) = max
f∈Λ

min
g∈Λ∗

〈g,Lpf〉
〈g, f〉

, (3.4)

where Λ ⊂ B+ which satisfies Np ∈ Λ, φp ∈ Λ∗ ⊂ C∗+ and 〈g, f〉 > 0 for all f ∈ Λ and g ∈ Λ∗.
Moreover, if Lp is monotone with respect to p ∈ I then so is λ(p). More precisely, we have

∀p ≤ q ∈ J, ∀(f, g) ∈ Λ× Λ∗ 〈g,Lp(f)〉 ≤ 〈g,Lq(f)〉 =⇒ λ(p) ≤ λ(q). (3.5)

Finally, if Lp is continuous with respect to p,

∀(f, g) ∈ Λ× Λ∗ lim
p→q

| 〈g,Lp(f)− Lq(f)〉 |= 0, (3.6)

then λ(p) is continuous with respect to p.

Differentiation method : We have the following principle
Lemma 3.2 Assume, there exists (Np, λ(p), φp) solution to (3.1)-(3.3) and

∀q ∈ J̊ , lim
p→q∈J̊

Np = Nq, strongly in B, (3.7)

∀q ∈ J̊ ∃ ∂pL∗p|p=q ∈ L(C∗,B∗) : ∀f ∈ Λ, lim
p→q∈J̊

〈
L∗p − L∗q
p− q

φq, f〉 = 〈∂pL∗q |p=qφq, f〉. (3.8)

Then p 7→ λ(p) is differentiable and we have for all q ∈ J̊ ⊂ I,( d

dp
λ
)
(q) = 〈∂pL∗q |p=qφq, Nq〉. (3.9)

Moreover, under the assumptions of Lemma 2.4, we have (2.9).

3.1 Proof of Lemma 3.1

Since Np ∈ Λ and LpNp = λ(p)Np then we have

∀g ∈ Λ∗, λ(p) =
〈g,LpNp〉
〈g,Np〉

.

Hence we obtain the inequality

λ(p) ≤ max
f∈Λ

min
g∈Λ∗

〈g,Lpf〉
〈g, f〉

.

Now, assume there exists f0 ∈ Λ such that

λ(p) < min
g∈Λ∗

〈g,Lpf0〉
〈g, f0〉

.

In particular, this inequality holds for g = φp and so we have

λ(p) <
〈φp,Lpf0〉
〈φp, f0〉

=
〈L∗pφp, f0〉
〈φp, f0〉

= λ(p),

which is impossible. Thus (3.4) is satisfied. Now, assume that Lp is increasing in the sense of (3.5).
Then we have the inequalities

〈g,Lp(f)〉 ≤ 〈g,Lq(f)〉,

and (using (3.4)),

min
g∈Λ∗

〈g,Lpf〉
〈g, f〉

≤ min
g∈Λ∗

〈g,Lqf〉
〈g, f〉

≤ λ(q).
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In particular, for f = Np, we find :

λ(p) = min
g∈Λ∗

〈g,LpNp〉
〈g,Np〉

≤ min
g∈Λ∗

〈g,LqNp〉
〈g,Np〉

≤ λ(q).

Finally, if Lp is continuous with respect to p, then using the min-max property, we have,

〈g,Lpf〉
〈g, f〉

≤ 〈g,Lqf〉
〈g, f〉

+ ε(p, q),

where ε(p, q) →p→q 0. Thus, we obtain that

min
g∈Λ∗

〈g,Lpf〉
〈g, f〉

≤ min
g∈Λ∗

〈g,Lqf〉
〈g, f〉

+ ε(p, q) ≤ λ(q) + ε(p, q),

and so
λ(p) ≤ λ(q) + ε(p, q).

Similarly,
λ(q) ≤ λ(p) + ε1(p, q),

where ε1(p, q) →p→q 0. Therefore, we prove that λ(p) is continuous with respect to p. 2

3.2 Proof of Lemma 3.2

For all q, p ∈ J̊ , we have :
λq = 〈L∗qφq, Nq〉.

Thus, we find
λq − λp = 〈L∗qφq, Nq〉 − 〈L∗pφp, Np〉. (3.10)

We obtain, using the normalization (3.3), i.e. 〈φq, Nq〉 = 〈φp, Np〉 = 1, and (φs, Ns) ∈ C∗ × (B
⋂
C),

λq − λp = 〈L∗qφq − L∗pφq, Np〉+ 〈L∗qφq, Nq −Np〉 − 〈L∗pφp − L∗pφq, Np〉,

that gives, using (1.1), (3.2), and the duality between Lq and L∗q :

λq − λp = 〈L∗qφq − L∗pφq, Np〉+ λq〈φq, Nq −Np〉 − λp〈φp − φq, Np〉.

Therefore, using the normalization (3.3), we find

λq − λp = 〈L∗qφq − L∗pφq, Np〉+ λq〈φq, Nq −Np〉 − λp〈φq, Nq −Np〉,

So, we obtain
(λq − λp)

[
1− 〈φq, Np −Nq〉

]
= 〈L∗qφq − L∗pφq, Np〉. (3.11)

We notice that, for the moment, we only use (3.1)-(3.3). Hence (3.11) is always satisfied. Now, if we
assume (3.7) and (3.8), then we have

lim
p→q

[
1− 〈φq, Np −Nq〉

]
= 1,

lim
p→q

〈L∗qφq − L∗pφq, Np〉
q − p

= 〈∂pL∗q |p=qφq, Np〉,

and so λ(p) is differentiable and by passing to the limit, we find (3.9).

We prove Lemma 2.4. We have (see the equation (3.11)),

(λ(σ)−λ(σ−ε))
[
1−

∫ ∞

0

(
φσ−ε(y)−φσ(y)

)
Nσ−ε(y)dy

]
=

∫ ∞

0

(
L∗σ(φσ)(y)−L∗σ−ε(φσ)(y)

)
Nσ−ε(y)dy.
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Using (2.7), we have

(L∗σ − L∗σ−ε)(g) = B(y)
(
g(yσ)− g(yσ − yε) + g

(
y(1− σ)

)
− g(y(1− σ) + yε)

)
.

Thus we find

(λ(σ)− λ(σ − ε))
[
1−

∫ ∞

0

(
φσ−ε(y)− φσ(y)

)
Nσ−ε(y)dy

]
=∫ ∞

0

B(y)
(
φσ(yσ)− φσ(yσ − yε) + φσ

(
y(1− σ)

)
− φσ(y(1− σ) + yε)

)
Nσ−εdy,

which can be written also as

(λ(σ)− λ(σ − ε))
[
1−

∫ ∞

0

(
φσ−ε(y)− φσ(y)

)
Nσ−ε(y)dy

]
=∫ ∞

0

B(y)
( ∫ yσ

y(σ−ε)

∂

∂y
φσ(s)ds +

∫ y(1−σ)

y(1−σ+ε)

∂

∂y
φσ(s)ds

)
Nσ−εdy.

Finally, dividing by ε, we have

λ(σ)− λ(σ − ε)
ε

=

∫ ∞

0

B(y)
(∫ yσ

y(σ−ε)

∂

∂y
φσ(s)

ds

ε
+

∫ y(1−σ)

y(1−σ+ε)

∂

∂y
φσ(s)

ds

ε

)
Nσ−εdy(

1−
∫ ∞

0

(
φσ−ε(y)− φσ(y)

)
Nσ−ε(y)dy

) . (3.12)

Thus, using [22], Lemma 2.3 and the Lebesgue dominated convergence theorem, we pass to the limit
in (3.12) as ε → 0. Therefore the function λ(σ) is differentiable. Moreover, passing to the limit, we
obtain (2.9). 2

4 Proof of the convexity of the dual eigenfunction

In this section, we are interested in global conditions on the birth rate B such that the dual function
φσ(.) is convex (resp. concave) on the real line. We prove here Theorem 2.7.

I - Assume that (2.1) holds. Using (1.2), we have,

φσ(y) = Cte eλ(σ)y, ∀y ∈ [0, a],

where φσ is convex on [0, σb] ⊂ [0, a] for all σ such that σb < a.

II - Assume that (2.2) holds. Then we first prove the concavity of the dual eigenfunction in a
neighborhood of y = 0 and we extend the property of concavity to y ∈ [0, σ0b].

We notice that φσ(0) > 0, ∂φσ

∂y (0) = (λσ − B(0))φσ(0) < 0 since B is decreasing (and non constant)
and λσ < B(0) = supB. Moreover, assumption (2.2) implies

∂2φσ

∂y2
(0) < 0.

Using

−∂φσ

∂y
+ (B(y) + λσ)φσ(y) = B(y)

(
φσ(σy) + φσ((1− σ)y)

)
, y ≥ 0,

we find,

∂2φσ

∂y2
= λσ

∂

∂y
φσ(y)− B′(y)

B(y)

(
− ∂

∂y
φσ + λσφσ(y)

)
−B(y)

(
σ

∂

∂y
φσ(σy) + (1− σ)

∂

∂y
φσ((1− σ)y)− ∂

∂y
φσ(y)

)
, y ≥ 0.
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Now, assume that there exists 0 < α < bσ0 such that

∂2φσ

∂y2
(y) < 0, y ∈ [0, α[,

∂2φσ

∂y2
(α) = 0, (4.1)

and
∂φσ

∂y
(y) < 0, y ∈ [0, α[. (4.2)

Then we have

−B(y)
(
σ

∂

∂y
φσ(σy) + (1− σ)

∂

∂y
φσ((1− σ)y)− ∂

∂y
φσ(y)

)
< 0, y ∈ [0, α],

and
∂φσ

∂y
(y) <

∂φσ

∂y
(0) =

(
λσ −B(0)

)
φσ(0) < 0, y ∈ [0, α],

0 < φσ(y) < φσ(0), y ∈ [0, α].

Assumption (2.2) implies

λσ +
B′(y)
B(y)

≥ λσ +
λσ(λσ −B(0))

B(0)
=

λ2
σ

B(0)
≥ 0, ∀y ∈ [0, bσ0].

Thus we obtain

∂2φσ

∂y2
(y) <

[(
λσ +

B′(y)
B(y)

)
(λσ −B(0))− B′(y)

B(y)
λσ

]
φσ(0), y ∈ [0, α],

∂2φσ

∂y2
(y) <

[
λσ

λσ −B(0)
B(0)

− B′(y)
B(y)

]
φσ(0)B(0), y ∈ [0, α],

and finally, we have
∂2φσ

∂y2
(y) < 0, y ∈ [0, α].

Therefore, the strict inequalities (4.1) and (4.2) are satisfied on [0, bσ0] and φσ is a concave function
on [0, σ0b] for all σ ∈ [1/2, σ0]. 2

5 Extension to a more general cell division model

In this section we extend the main results to a more general model of cell division. More precisely, in
Section 5.1, we generalize the results to the homogeneous cell division (see [22]) and in Section 5.2,
we allow cells to have non constant rate of division.

5.1 Homogeneous cell division

A cell of size y may give birth to a cell of size ys, s ∈ [0, 1], with ”probability” Θ(s) where

Θ(s) = Θ(1− s), (5.1)∫ 1

0

sΘ(s)ds = 1,

∫ 1

0

Θ(s)ds = 2, (5.2)∫ 1

η

Θ(s)ds ≤ 1, for η ∈]0, 1[. (5.3)

Equation (5.1) means that the probability Θ must be symmetric with respect to s = 1/2 (the sym-
metric division). Equation (5.2) implies the conservation of ”size” after division and fix the average
number of childs after division to 2. The density of cell population n satisfies the main equation

∂

∂t
n(t, y) +

∂

∂y
n(t, y) + B(y)n(t, y) =

∫ 1

0

Θ(s)B(y/s)n(t, y/s)
ds

s
, (5.4)
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Again, we prove, using General Relative Entropy method that the asymptotic behavior of such an
evolution equation is given by the following eigenproblem

∂

∂y
N(y) + [λ + B(y)]N(y) =

∫ 1

0

Θ(s)B(y/s)N(y/s)
ds

s
,

− ∂

∂y
φ(y) + λφ(y) = B(y)

[ ∫ 1

0

Θ(s)φ(ys)ds− φ(y)
]
,

N(y = 0) = 0, N, φ ≥ 0,

∫ ∞

0

N(y)φ(y)dy = 1, φ(0) = 1.

(5.5)

Definition 5.1 We call λΘ the first eigenvalue associated to eigenproblem (5.5) and λsym the eigen-
value associated to Θ(s) = δs=1/2.

Then we have the following theorem.
Theorem 5.2 Assume that (2.1) (resp. (2.2)) holds and

ConvHull(Supp Θ) := Convex Hull(Supp Θ) ⊂ [1− a/b, a/b] (resp.[1− σ0, σ0]). (5.6)

Then we have
λΘ ≥ λsym, (resp. λΘ ≤ λsym).

Thus, the less (resp. the ’best’) fitted division is the symmetric division.

Proof of Theorem 5.2 Under assumption (2.1) (resp. (2.2)), we directly obtain that the dual
eigenfunctions are convex (resp. concave) on

ConvHull(Supp Θ).Supp B := {ry, r ∈ ConvHull(Supp Θ), y ∈ Supp B},

for all Θ that satisfies (5.1)-(5.3) and (5.6). We use a min-max principle to conclude the proof of the
theorem.

Step 1. Min-max method:
Let

L(f) := −∂f

∂y
(.)−B(.)f(t, .) +

∫ 1

0

Θ(s)B(./s)f(./s)
ds

s
, (5.7)

and the dual operator,

L∗(f) :=
∂f

∂y
(.)−B(.)f(t, .) + B(.)

[ ∫ 1

0

Θ(s)f(.s)ds− f(.)
]
. (5.8)

We have the min-max lemma (see Section 3).
Lemma 5.3 Assume that there exists (N,λ, φ) solution to (5.5). Then we have for all Θ,

λΘ = max
f∈Λ

min
g∈Λ∗

〈g,Lf〉
〈g, f〉

, (5.9)

where φ ∈ Λ∗ ⊂ Dom(L∗) and N ∈ Λ ⊂ Dom(L).

Step 2. Application to the homogeneous cell division: Let

Lsym(f) := −∂f

∂y
(.)−B(.)f(t, .) + 4B(2.)f(2.), (5.10)

and the dual operator,

L∗sym(f) :=
∂f

∂y
(.)−B(.)f(t, .) + B(.)

[
2f(./2)− f(.)

]
. (5.11)
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Lemma 5.4 Assuming (2.1) (resp. 2.2)), we have for all Θ satisfying (5.1)-(5.3) and (5.6),

λΘ ≥ λsym (resp ≤ λsym). (5.12)

Proof. We have shown that for all Θ satisfying (5.1)-(5.3) and (5.6), and B satisfying (2.1) (resp.
2.2)), the dual functions φ (and in particular φsym) are convex (resp. concave) functions on
ConvHull(Supp Θ).Supp B. Thus, we can choose Λ∗ as the set of positive convex (resp. concave)
functions on ConvHull(Supp Θ).Supp B. We have

L∗(f)− L∗sym(f) = B(.)
∫ 1

0

Θ(s)
[
f(s.)− f(./2)

]
ds, ∀f ∈ Λ∗,

which can be rewritten as

L∗(f)− L∗sym(f) = 2B(.)
∫ 1

1/2

Θ(s)
[f(s.) + f((1− s).)

2
− f(./2)

]
ds, ∀f ∈ Λ∗.

Since f ∈ Λ∗ is a convex (resp. concave) function on ConvHull(Supp Θ).Supp B, then we have
f(s.)+f((1−s).)

2 − f(./2) ≥ 0 (resp. ≤ 0), and

L∗(f)− L∗sym(f) ≥ 0, ∀f ∈ Λ∗, (resp. ≤ 0).

Thus, using the min-max Lemma 5.3, we have λ(Θ) ≥ λsym (resp. λ(Θ) ≤ λsym ). 2

5.2 Cell division model with non constant speed rate

In this section we consider the cell division equation

∂

∂t
n(t, y) +

∂

∂y
V (y)n(t, y) + B(y)n(t, y) =

∫ 1

0

Θ(s)B(y/s)n(t, y/s)ds/s, (5.13)

where the birth rate satisfies Supp B(y) ⊂ [a, b] and the speed rate V (y) = yµ. As above, we prove,
using General Relative Entropy method that the asymptotic behavior of such an evolution equation
is given by the following eigenproblem

∂

∂y
(V (y)N(y)) + [λ + B(y)]N(y) =

∫ 1

0

Θ(s)B(y/s)N(y/s)ds/s, y ≥ 0,

−V (y)
∂

∂y
φ(y) + [λ + B(y)]φ(y) = B(y)

∫ 1

0

Θ(s)φ(ys)ds, y ≥ 0,

N(0) = 0, N ≥ 0, φ ≥ 0,

∫
N(y)φ(y)dy = 1.

(5.14)

If λsym 6= 0 and one of these conditions holds

0 < µ < 1 and 0 < λsym < µaµ−1, (5.15)

µ > 1 and λsym > µaµ−1, (5.16)

or
λsym < 0, (5.17)

then we have the following theorem.
Theorem 5.5 Assume that Θ satisfies (5.1)-(5.3) and (5.6), and µ satisfies (5.15) (resp. (5.16) or
(5.17)). Then we have

sup
Θ

λΘ ≤ λsym (resp. ≥ λsym). (5.18)

Here, we only have to prove the convexity (resp. the concavity) of the dual eigenfunction in (5.14).
First, we recall results on the existence of a solution to the eigenproblem. Then, we use the differen-
tiation method in order to find the variation of the invasive parameter with respect to Θ by proving
that the solution φΘ to the dual problem is convex (or concave).
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Step 1. Existence and uniqueness of the solution to the eigenproblem (5.14). We have
the following lemma.
Lemma 5.6 Under the assumption µ > −1, there exists a solution (Nσ, λ(σ), φσ) to (2.5).
We refer to [22] for the proof of this result.

Step 2. Corollary of the min-max method Using the proof of Theorem 5.2 and Lemmas 5.3
and 5.4, we have the following lemma.
Lemma 5.7 If φσ is a convex (resp. concave) function on [1/2−η, 1/2+η].Supp B = σSupp B with
Θ = δσ + δ1−σ for σ ∈ [1/2− η, 1/2 + η], then

∀ 1/2− η < σ0 < σ1 < 1/2 + η, λσ0 < λσ1 (resp. > λσ1).

Moreover, if we assume that the probabilities Θ satisfy (5.1)-(5.3) and (5.6), and the dual eigenfunction
φ is convex (resp. concave) on ConvHull(Supp Θ).Supp B, then we have

inf
Θ

λΘ = λsym (resp. sup
Θ

λΘ = λsym).

Proof. Indeed, we have,

L∗σ0
(f)− L∗σ1

(f) = B(.)
[
f(σ0.) + f((1− σ0).)− f(σ1.)− f((1− σ1).)

]
ds, ∀f ∈ Λ∗,

where Λ∗ is the set of positive convex (resp. concave) functions on ConvHull(Supp Θ).Supp B. Since
1/2− η < σ0 < σ1 < 1/2 + η, then we find that the constant t given by the equality

t =
σ0 + σ1 − 1

2σ1 − 1
∈]0, 1[,

satisfies σ0 = tσ1 + (1− t)σ1 and 1− σ0 = tσ1 + (1− t)σ1. We have

f(σ0y) + f((1− σ0)y)− f(σ1y)− f((1− σ1)y) =[
f(σ0y)− tf(σ1y)− (1− t)f((1− σ1)y)

]
+

[
f((1− σ0)y)− tf((1− σ1)y)− (1− t)f(σ1y)

]
,

with f positive convex (resp. concave) function and t ∈]0, 1[. Thus, we find that

L∗σ0
(f)− L∗σ1

(f) ≤ 0 (resp. ≥ 0), ∀f ∈ Λ∗.

We conclude using the extension of the min-max Lemma 5.3.
Next, we assume that for all Θ satisfying (5.1)-(5.3) and (5.6), the dual functions φ (and in particular

φsym) are convex (resp. concave) functions on ConvHull(Supp Θ).Supp B = [1 − σ, σ].Supp B.
Thus, we can choose, in Lemma 5.3, Λ∗ as the set of positive convex (resp. concave) functions on
[1− σ, σ].Supp B. We have

L∗(f)− L∗sym(f) = B(.)
∫ 1

0

Θ(s)
[
f(s.)− f(./2)

]
ds, ∀f ∈ Λ∗,

which can be rewritten as

L∗(f)− L∗sym(f) = 2B(.)
∫ 1

1/2

Θ(s)
[f(s.) + f((1− s).)

2
− f(./2)

]
ds, ∀f ∈ Λ∗.

Since f ∈ Λ is a positive convex (resp. concave) function, then we have f(s.)+f((1−s).)
2 − f(./2) ≥ 0

(resp. ≤ 0),
L∗(f)− L∗sym(f) ≥ 0 (resp. ≤ 0), ∀f ∈ Λ∗.

Thus, using the min-max Lemma 5.3, we have λ(Θ) ≥ λsym (resp. λ(Θ) ≤ λsym) . 2
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Step 3. Concavity of the dual eigenfunction We have

φ′′(y) =
λ2

V (y)2
(
1− V ′/λ

)
, y ∈ Supp B,

with V (y) = yµ and Supp B = [a, b]. Therefore, we have clearly that assumptions (5.16) or (5.17)
lead to φ′′(y) > 0 on ConvHull(Supp Θ).Supp B and condition (5.15) leads to φ′′(y) < 0 on
ConvHull(Supp Θ).Supp B.

Step 4. Conclusion Thus, using Lemma 5.7 and step 3, we prove the theorem. 2

6 Simple application of the differentiation and the min-max
methods

In this section, in order to apply both methods, we focus our attention on a simple model of
McKendrick-VonFoerster in which cells are structured by their age (see for instance [7, 11, 15, 23, 31]).
The density of the population of age a at time t is denoted by n(t, a) and follows the renewal equation

∂

∂t
n(t, a) +

∂

∂a
n(t, a) + d(a)n(t, a) = 0,

n(t, 0) =
∫ ∞

0

B(a)n(t, a)da,

(6.1)

where B is the growth rate and d the death rate. As above, the GRE gives the asymptotic behavior
of n(t, .) ∼ cst N(.)eλt, where (N,λ, φ) is a solution to the eigenproblem

∂

∂a
N(a) + d(a)N(a) + λN(a) = 0, N(0) =

∫ ∞

0

B(a)N(a)da,

− ∂

∂a
φ(a) + d(a)φ(a) + λφ(a) = B(a)φ(0),

∫ ∞

0

N(a)φ(a)da = 1.

(6.2)

The relevance of this model is its simplicity, contrary to the cell division model (1.1). We can easily
compute (N,λ, φ). Indeed, if there exists λ such that∫ ∞

0

B(a′)e−
∫ a′
0 (d(s)+λ)dsda′ = 1, (6.3)

then we have 
N(a) = e−

∫ a
0 (d(s)+λ)ds,

φ(a) =
∫ ∞

a

B(a′)e−
∫ a′

a
(d(s)+λ)dsda′.

(6.4)

Let
L(f) = −[

∂

∂a
f(a) + d(a)f(a)] + δa=0

∫ ∞

0

B(a′)f(a′)da′,

L∗(g) = −[− ∂

∂a
g(a) + d(a)g(a)] + g(0)B(a).

Thus we have the following lemma.

12



Lemma 6.1 Assume that B, d ∈ L∞([0,∞[, [0,∞[) and Supp B ⊂ [0, A] is compact. Then we have
the existence of a solution (N,λ, φ) to eigenproblem (6.2). Moreover, we have,

L(f) : L2([0, A]) 7→ M([0, A]),

L∗(f) : C0
0 ([0,∞[) 7→ L2([0,∞[),

where M([0, A]) is the set of a bounded measure on [0, A] and

N ∈ C0
b ([0, A]), N ≤ 1, Supp φ ⊂ [0, A], φ ≤

∫ A

0

B(s)dseλA.

Therefore (3.1)-(3.3) are satisfied for B = L2 and C = C0
0 ([0,∞[).

6.1 Evolution of the invasive parameter λ with respect to the growth of
the death rate d or the birth rate B.

The aim of this part is to study the evolution of the first eigenvalue λ when the death rate (resp. the
birth rate) increases.

Growth of death rate. Let n1 (resp. n2) be the density of the population satisfying (6.1) with
the death rate d = d1 (resp. d = d2) that verifies the assumptions of Lemma 6.1.

Let λ1 (resp. λ2) be the invasive parameter, that is the eigenvalue, associated to the first population
n1 (resp. the second population n2)

Lemma 6.2 Assume that 0 ≤ d1 ≤ d2. Then λ2 ≤ λ1. Thus, the population n2 is less fitted than the
population n1.
Proof. Here we can use both methods. Indeed, let

L1(f) = −[
∂

∂a
f(a) + d1(a)f(a)] + δa=0

∫ ∞

0

B(a′)f(a′)da′,

L2(f) = −[
∂

∂a
f(a) + d2(a)f(a)] + δa=0

∫ ∞

0

B(a′)f(a′)da′,

then L1(f) = L2(f) + (d2 − d1)(a)f(a) ≥ L2(f) for all f ≥ 0 and thus, using Lemma 3.2, we obtain
that λ1 ≥ λ2. 2

Remark. The differentiation method could be used to prove the lemma. Indeed, let

L∗p(f) = −[− ∂

∂a
f(a) + dp(a)f(a)] + B(a)f(0),

with dp = pd2 + (1− p)d1 and p ∈ [0, 1]. Then

L∗p(f)− L∗q(f) =
[
dq(a)− dp(a)

]
f(a) = (p− q)(d1 − d2),

and so (3.8) is satisfied. Moreover, the implicit form of λ(p) and the explicit form of Np imply directly
condition (3.7). Therefore, we have,

d

dp
λ(p) =

∫ ∞

0

(d1 − d2)(a)φp(a)Np(a)da ≤ 0,

and we find λ2 = λ(1) ≤ λ(0) = λ1.

Growth of birth rate. Let n1 (resp. n2) be the density of the population satisfying (6.1) with the
birth rate B = B1 (resp. B = B2) that verifies the assumptions of Lemma 6.1.

Let λ1 (resp. λ2) be the invasive parameter, i.e., eigenvalue, associated to the first population n1

(resp. the second population n2)
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Lemma 6.3 Assume that 0 ≤ B1 ≤ B2. Then λ1 ≤ λ2. Thus, the population n2 is better fitted than
the population n1.
Proof. Here we can use both methods. Indeed, let

L1(f) = −[
∂

∂a
f(a) + d(a)f(a)] + δa=0

∫ ∞

0

B1(a′)f(a′)da′,

L2(f) = −[
∂

∂a
f(a) + d(a)f(a)] + δa=0

∫ ∞

0

B2(a′)f(a′)da′.

Then L1(f) = L2(f)+δa=0

∫∞
0

(B1(a′)−B2(a′))f(a′)da′ ≤ L2(f) for all f ≥ 0 and thus, using Lemma
3.2, we obtain that λ1 ≤ λ2. 2

Remark. The differentiation method could be used to prove the lemma. Indeed, let

L∗p(f) = −[− ∂

∂a
f(a) + d(a)f(a)] + Bp(a)f(0),

with Bp = pB2 + (1− p)B1 and p ∈ [0, 1]. Then (as above)

d

dp
λ(p) =

∫ ∞

0

(B2 −B1)(a)φp(0)Np(a)da ≥ 0,

and we find λ2 = λ(1) ≥ λ(0) = λ1.

We notice that both examples give the same results using the min-max method or the differentiation
method. Here, we give an example which is more difficult to study with the min-max method.

6.2 Evolution of the invasive parameter λ with respect to a complex vari-
ation of the death rate d.

Child Vs Oldness death. Let np be the density of the population satisfying (6.1) with the death
rate dp(y) = 1y∈[p,p+1]d(y) that verifies the assumptions of Lemma 6.1. More precisely, the death rate
dp has its support on the interval [p, p+1], which means that for small p, only childs die and for large
p, only old individuals die. Let λ(p) be the invasive parameter, that is the eigenvalue, associated to
the population np. In this part, we assume that

Supp B = [α, β] ⊂ [0,∞[, (6.5)

and
d ∈ C1([0,∞[) decreases on [0, β − 1]. (6.6)

Then we have the following result.

Lemma 6.4 Assume that (6.5) and (6.6) are satisfied. Then λ(p) is increasing, that is the juvenile
death rate is less fitted than ’oldness’ death rate.
Proof. Here we can use only the differentiation method. Indeed, let

L∗p(f) = −[− ∂

∂a
f(a) + dp(a)f(a)] + B(a)f(0).

Then for dp(y) = 1y∈[p,p+1]d(y) = 1p∈[y−1,y]d(y) we have

− ∂

∂p
dp(y) = −δp=y−1d(p + 1) + δp=yd(p),

and so, we find
d

dp
λ(p) = d(p)φp(p)Np(p)− d(p + 1)φp(p + 1)Np(p + 1).
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Therefore, using (6.4),we obtain,

d

dp
λ(p) = −d(p + 1)

∫ ∞

p+1

B(a′)e−
∫ a′
0 (d(s)+λ)dsda′ + d(p)

∫ ∞

p

B(a′)e−
∫ a′
0 (d(s)+λ)dsda′,

and so, we have,

d

dp
λ(p) =

[
d(p)− d(p + 1)

] ∫ ∞

p+1

B(a′)e−
∫ a′
0 (d(s)+λ)dsda′ + d(p)

∫ p+1

p

B(a′)e−
∫ a′
0 (d(s)+λ)dsda′.

Since d increases (see (6.6)), then
[
d(p)− d(p + 1)

] ∫∞
p+1

B(a′)e−
∫ a′
0 (d(s)+λ)dsda′ ≥ 0 and

d

dp
λ(p) ≥ 0.

Therefore, we obtain that λ(p) is increasing. 2

We notice that the min-max method is not well adapted when the growth of the operators Lp

with respect to p is hard to prove. As for instance in the McKendrick-Von Foerster model when the
death rates cannot be compared. The question of knowing the variation of the invasive parameter
with respect to the asymmetry parameter leads to the same remark and therefore, we first use the
differentiation method.

7 Discussion

In this paper we have studied the variation of the Malthusian growth rate of a cell population due
to the variability of the symmetry of the cell division during mitosis [14]. We show that under the
assumption of a constant speed rate, equal mitosis is not necessarily the division giving the better
growth rate. More precisely, when the cells divide lately, that is for large size relatively to the average
size of a dividing cell, then equal mitosis is not the best fitted division. When cells can divide early,
then equal mitosis is the best fitted division.

Obviously, this model is a simple one and the conclusion depends on the assumptions such as :
- there is no interaction between cells, no competition between species with different asymmetry
parameters,
- the speed rate is constant (or a power of the size) which cannot be the case in general,
- there is no apoptosis in the model.

Nevertheless, the tools we have used to study this problem, that is the differentiation method and
the min-max method, seem to be well fitted to study the variation of the Malthusian growth rate with
respect to a parameter for various problems (see Section 6).

An interesting question to study is the competition between two species of cells (with two differ-
ent cell divisions) as for instance for normal and tumoral (due to mutation) cells.
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