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We consider the cell division equation which describes the continuous growth of cells and
their division in two pieces. Growth conserves the total number of cells while division
conserves the total mass of the system but increases the number of cells. We give general
assumptions on the coefficient so that we can prove the existence of a solution (A, N, ¢)
to the related eigenproblem. We also prove that the solution can be obtained as the
sum of an explicit series. Our motivation, besides its applications to the biology and
fragmentation, is that the eigenelements allow to prove a priori estimates and long time
asymptotics through the General Relative Entropy.!6
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1. Introduction

A classical subject in biology, see Ref. 2, 7, 8, 11, 12, 13, 20, 21, is the evolution of
a density describing the number of individuals in a structured population, in par-
ticular, tumor cell population. Several models are written as Population Balance
Equation (PBE) obtained combining several conservation laws (growth in size, num-
ber...). Here we focus on the cell division equation at the cellular scale. 1'3:20 Let
n(t,y) the density of population at time ¢ and size y, then the time evolution of
n(t,y) is described by the master equation

Gt (ty) + Ge(ty) + Blyn(t,y) = [[7 by, y")n(t,y)dy',  y =0,
(1.1)
n(t,0) =0, ¢>0,

where B(y) denotes the rate of division of cells of size y, b(y,y’)/2B(y’) is the
probability that the mother cell of size y’ gives rise to a cell of size y. A Similar model
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also arises to describe fragmentation in physics, see Ref. 14 and the growth term dyn
arises after rescalling.*® An interesting feature of this problem is the asymptotic
behaviour of n(t,y) that gives the invasive capacity of the population and thus a
fitness measure of populations under different rates and probabilities in (1.1). It
appears that the long time behaviour of n is directly linked with the existence of a
solution (), N, ¢), in L! sense, of the associated eigenproblem,!6:18:19,23

~N(y) + [\ + B(y)|N(y) = /oo b(y,y )N(y')dy', y=>0,

Ny=0)=0, N >0, /N@@:L
(1.2)

—%MM+D+MMMw=A%WwMWM% y>0,

6 >0, /N@wwsz

More precisely one can prove that n(t,y)e **

converges to N(y). Thus the asymp-
totic behaviour is given by the Maltusian parameter A and the asymptotic shape
of n given by N. These are proved in the case where b(y,y’) = B(y')d, =2, (equal
mitosis), i.e., a cell division in which a cell of size y gives birth to two cells of size
y/2.1 The methods we use here are closely related to those used in, see Ref. 9,
18, 19, we prove the existence and compactness of approximated solution to this
eigenproblem, then we pass to the limit on the sequence of approximated solutions.
Using the following results, we show, see Ref. 15, that the Maltusian parameter
A depends on the way of a cell divides. Moreover the symmetrical division is not
necessarily the best fitted division, it depends on the birth rate B and an adaptive
strategy would be to have a large spectrum of way to divide to be able to fit in
the case of a change of the environment. Gene mutations of the tumor cells that
alter the cell cycle, see Ref. 10, may alter the symmetry of the division and thus,
by selection, optimize the Maltusian parameter.

This article is organized as follows : in section 3 we prove the existence of
(A, N, ¢), theorems 2.1, 2.2 introduced in section 2, using a priori bounds (proposi-
tions 3.1, 3.2) proved in section 4 and the existence of a regularized solution using
theorem 6.2 and lemma 3.1, 3.3. In section 5 we extend the proof of existence to the
cell division equation with some non constant growth rate and in the section 6 we
focus on the properties of these solutions under some more restrictive assumptions
and prove theorem 6.2.
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2. Existence of solution to the Eigenproblems for the cell division
eq.
The purpose of this section is to prove the existence of a first eigenvalue A and pos-

itive eigenvectors (N, ¢) solution to (1.2). Throughout the paper, our assumptions
on b and B are the following structural properties; for some Kk > 1, 0 <7 < 1,

/0 " by o/ )dy = KB(Y). (2.1)
[ﬁyM%MMyMB@% (2.2)
[ < B, 23)

We notice that (2.2) implies directly

’

Y
/zmww@swmw,sz (2.4)
0

The identity (2.1) with K = 2 expresses that mother cells divide in two daughter
cells. We use a more general parameter & to cover also the fragmentation equation.”
The identity (2.2) expresses that total size is conserved during the division process.
The inequality (2.3) expresses that the division of the mother cell of size y’' does
not give more than one cell of size larger than (1 —n)y’ (where 7 is independent of
Y-

We prove the existence of a solution to this eigenproblem under general condi-
tions on b > 0 and B > 0. Namely

Supp B is an interval, (2.5)
B € Li5 (10, 00[) (] Lioe ([0, o0, (2.6)
- y/ "/l 5 5
A= sup/ b(y,y e Iy BGMs gy < o0, (2.7)
vy Jo
Supp B C [0, 4], and A ol (/A Bly)dy — ——) >0, (28)
u and \ = ————————— — :
or
lim yB(y) = oo. (2.9)
y—00

Assumptions (2.8) or (2.9) mean that there is enough birth to avoid extinction, i.e.,
to avoid A < 0. The inequality (2.7) gives a bound to avoid explosion, we control
here the way to divide with respect to the birth rate. The assumption (2.5) means
that all the cells which divide don’t extinct, it could be replace by some more
complicated assumptions implying a connexion between cells (fragments). These
assumptions cover several cases where the probability of dividing a cell of size y’
into two cells of size y and ¢y’ — y only depends on yi,, b(y,y') = p(%)B(y’)/y’
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1) B(y') =" the assumptions can be written in a simpler way,

v>0, peM([0,1]), (2.10)
= Jy A=)/ @ =% (2.11)

where M'([0,1]) is the set of probability measure on (0,1) (see the proof in the
section 6, Theorem 6.1).

2) Equal mitosis, i.e., b(y,y") = 20(y—y /2)B(y’) with Supp B connex. Then the
assumptions are satlsﬁed with Kk =2, 7 =1/2, B is bounded and then X < sup B
and either B has a compact support in [0, A] and fA/Q y)dy'" > 1 and then

fA/Q B(y)dy—

4 W cither limy o B(y)y = o0

3) Age structured,?? in the particular case where the probability of dividing of a
cell of size y' into cells of size y is given by b(y,y’) = B(y')(dy=y) + d(y=0)) we get
a classical age structured eigenproblem. Indeed, the equation reads in distribution
sense,

LN (y) + AN(y) = dy=0) [ BWIN()dy', y >0,

N(0) =0,
ie., for all £ € C§°([0, o0),

- /0 h N(y)a%ay)dy .\ /0 " Ny = 0) [ BwiNway. yzo

which means that N is discontinuous at y = 0. Then in distribution sense, it is
equivalent to

a@ (y) + AN(y) =0, y >0,

N(y=0)= [ B(y)N(y)dy,

with N(y) = N(y) for y > 0, N(0) = limy, o N(y). Then our assumptions become
k=2, B € L>®([0,00]) and then A < sup B and either B has a compact support in
[0, A] and f:‘(l—n) B(y)dy > 1 for some n < 1, i.e. fo y)dy > 1 and then

1 A
A:AGIOA(XJ’_B(S))ds(/O B(y)dy_]->7

either lim,_,o, B(y)y = 00
Our purpose is to prove the following theorems of existence when B has a com-
pact support,
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Theorem 2.1.

Assume (2.1)-(2.7) and (2.8), then there exists a solution to (1.2), and we have

A<A<A

oo
Ye>0 3C. >0 : / N(y)eM =y < .,
0

o0

Mmsafmﬂm+/ B Ny )dy'), (2.13

Yy

3C >0 : é(y) <C(1+y),
N € BV, ¢ € BV,

éy) =0, y>A

And when B has not a compact support, we have,

Theorem 2.2.

(2.12)

Assume (2.1)-(2.7) and (2.9), then there exists a solution to (1.2) in L' sense, and

we have

0< A<,

o0
Ve>0 3C. >0 : / N(y)er =y < .,
0

o0

(2.17)

Mwsafmﬂm+/ B Ny )dy), (2.18)

Y

3C >0 : é(y) <C(1+y),
N € BV, ¢ € BV,..

3. Proof of the main theorems

3.1. Proof of theorem 2.1

First we prove there exists an approximation scheme of (1.2) and a sequence
(N€, A9, ¢°) of solutions to these approximated problems, then we prove the com-
pactness of this sequence and finally pass to the limit to find a solution of (1.2).

Stepl. Existence of an approximation scheme

We have the existence of solutions satisfying a sequence of regularized problem,
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indeed, consider
0

%N%m+uﬂiﬂMW7m=LwF@wWWWM%

A
N(y=0)=0, N >0, /zwwsz
0

(3.1)
a € € € € y € / € ! ’
~ay (y) + X+ B W (v) = | by, y)o(y)dy',
0
A
020, [ Ny =1,
0
where € > 0,
, 1 &> (k+1)e p(j+1)e . ,
b (y.y) = 5 DD Lyyelbe k1) x e (4+1)d / / b(z,2")dz"dz,
k=0 j=0 ke je
and

vy
B(y) :/ =be(y,y)dy'.
o Y
Lemma 3.1. Assume (2.1)-(2.3), (2.6), (2.7) and (2.8) with A = sup, {y €
SuppB} then for all € > 0 there exists a solution (N, A€, ¢) to (3.1) satisfying
N€(y)elo N +B)ds i ereases and belongs to L([0, 00l), (3.2)

6(y) =0 as y> A, (3.3)

Proof. We use the construction method given in section 6.3 (see theorem 6.2)
to prove the existence of (IN€¢, A€, ¢¢). We only have to notice that b€, B¢ satisfy
(2.2), (2.3), (2.6), (6.10), (6.11), (6.12). Then, (3.2) is obtained by differentiation of
Ne(y)edd A +B()ds indeed,

@ﬂwwwﬁ“wy@“ﬂ:/ Ne(y e B OO gy > o,
y
and 9, (N¢(y)eld A +B (Dds)y — ¢ if y > A, O

Step2. Compactness of the approximation scheme
Now, we have that a solution (N, X, ¢) to (1.2) satisfying (3.2), (3.3) belongs to a
compact set of L'([0, 00[)x] — 00, 00[x L}, ([0, 0o[, N (y)dy),

Proposition 3.1. (Supp B is compact)
Assume (2.1)-(2.8) are satisfied. If (A, N, ¢) is solution to (1.2) and

A >0, (3.4)
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then for some Co(A) < 0o, we have
A€ [AA] €0, o0l (3.5)
/ N(y)eX*dy <1, (3.6)
0
> 25 —
| 1o lay< R (37)
0 k—1
o(y) < Co(M)(1 +y), (3.8)
- 2K
| 9,6() |< CoW) (1 + )3+ —=B()). (39)
Proof. We refer to the lemma 4.1, 4.2 and 4.4 to prove this proposition. O

Thus the sequence (N€, A€, ¢¢) introduced in lemma 3.1 satisfies

’

- A€ belongs to the compact set A® = [inf., X/,supex 2,
- N€ belongs to the compact set SO _ of L(]0, 00]) given by

dens

S0, ={fel: / Fl)dy =1, / Fl)ente X vz, < 1,
0 0

| 1ourw) 1y < 2w, a0)

K
Kk—1
- ¢¢ belongs to the compact set SY,; of L!([0, o[, N(y)dy) given by

Sguar ={g € L": /O 9(y) ingel (y)dy > 1, g(y) < Co(igff)(l +y),
2K

| 9y9(y) 1< Colinf X)) (1 +y)(sup X + ———sup B (y))}.  (3.11)

K

Then we notice that (N€,\¢,¢¢) € A® x §9 = x S9 ., is a compact family and we
can extract a convergent subsequence that gives a solution (N, A, ¢) to the limit

EeNs

problem (in the case when B has a compact support). Therefore Theorem 2.1 is
proved in the case of (2.8).

Step3. Uniqueness of solution to (2.1)
Now, we prove the uniqueness of solution to this eigenproblem,

Lemma 3.2. Assume there exists (N, X, ¢) solution to (1.2) and (N1, A1) solution
to (1.2) such that 0 < [;° N1(y)¢(y)dy < oo and N1/N € L*([0, 00, N(y)p(y)dy)
then

and there exists C > 0 such that Ny = CN.
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Proof. By integrating from 0 to A, A = sup, {y € SuppB},

S0, N ) + O + BN )oty) = | " by, y )N )y (),
and
“Ni@)0,6() + O+ BOIN )6 = [ b/ )iy M),
with N1(0) = ¢(A) = 0, we find,
A=A
We conclude using GRE method, see Ref. 16, 17, for all C' > 0,
o [ 1% - CINGOwI = [ 1-0,M) - -+ Bu)N)
[ b))~ ooty (312
with
o0 N1 Nl
- [ oM st ) - oty = - [ 01 30— €I Nwolldy

< OyN(y) M Ny
| N § W sen(F W) - ON®wdy

[T 1w - o

thus using boundary condition,
- [T oM s o) - ot =
s [T1Rw -l [ [ownwow - [ o mewNea]dy
[T s N @y T sen ) - st

+ [0 B0 (R 0) - NSy, (313

- [Tomi sgn& (1)~ C)oly)dy =
[T s R - €1 1R - € DN oty
[ / (. ING )y X ) sen(5Ew) — oty

Ny

+ [T B >>%< D) (s )~ ON@)o)dy, (314)
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therefore we have,
at/ | O Nw)o(y)dy =
/ / ,9)( Xo) ~ O | 32— C DN G dy'dy
[ / by )N ()y' S () (5 (9) — C)oly)iy
[T s R (G - OeN Gy, (319

and finally,

at/o O N // )N | ) -0

o () — C) — 1Joly)dy'dy. (3.16)

But [,° | NL—C'| N(y)$(y)dy is independent of ¢ thus [ sgn(52 (y)—C) sgn(5t (y')—
C)-1)= 0 on the support of b(y,y’) for all C thus 4*(y) = 41 (y/) on the support

of b(y,y’) and
_ > ! Nl / Nl N(y/)
= [ oG- Fw)

i.e., N1/N is a constant. O

[sgn( y) —C) sgn(

dy' =0,

3.2. Proof of theorem 2.2

First we prove there exists an approximation scheme of (1.2) and a sequence
(Na,Aa,¢a) of solutions to these approximated problems, then we prove the com-
pactness of this sequence and finally pass to the limit to find a solution to (1.2).

Stepl. Existence of an approximation scheme
We have the existence of solutions satisfying a sequence of regularized problem,
indeed, consider,

a%N,Z(y) N+ BYW)ING (4) = / b (424 )NS ()

A
Ni(y=0)=0, Ni>0, /N,z(y)dyzl,
0
(3.17)

S8 + DXy + B3 )65 () = / b (s )05 ()

A
65 >0, /0 N (9 (y)dy = 1,
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where € > 0, b€ ( Y') = Lyye [0 A1x[0,410°(y,y), (see lemma 3.1 for the definition
of b¢) and B¢ (y fyyb6 y)dy'.
Lemma 3.3. Assume (2.1)-(2.6), (2.7) and (2.9), then for all A > 0 (large

enough), € > 0 (e small enough) there exists a solution (N§,\%,¢%) to (8.17)
and it satisfies that

N (y)elo Ma+Bal)ds increqses and belongs to L™=([0, 00|), (3.18)

Pa(y) =0 as y > A, (3.19)

Proof. Indeed, using (2.9),

A
/ B4 (y)dy > In(1/(1 —n)) inf yBG(y) = 00 as A — o0, € = 0,
A(1—n) y€(A(1—-n),A)

and thus for A large enough, € small enough, B¢ satisfies (2.8). We use the construc-
tion method given in 6.3 (see theorem 6.2) to prove the existence of (N§, A%, ¢%).
We only have to notice that b5, BS satisfy (2.2), (2.3), (2.6), (6.10)-(6.12). O

Remark 3.1. We notice that the property
o4 (y) = 0, as y— oo, (3.20)

is satisfied by the solution of these regularized problems and used to prove the a
priori bounds on ¢ but is not satisfied, in general, by the solution ¢ obtained by
passing to the limit in A.

Step2. Compactness of the approximation scheme
Now, we have that a solution (N, A, ¢) to (1.2) satisfying (3.18), (3.19) belongs to
a compact set of L([0,00[)x] — oo, 0o[x L}, ([0, 00, N (y)dy),

loc

Proposition 3.2. (B >0 at o)
Assume (2.1)-(2.7), (2.9), (3.4) then for some Cy € L7 .(]0, 00[), we have

A €]0, 7] C [0, 00, (3.21)
| N VB < 1 vE=T. (3.22)
d(y) < Co(M)(L+y/N), (3.23)
/0 | 9yN(y) | dy < %X (3.24)
V>0, | 8,0(0) 1< Co 1L+ 9) A+ - B(y)) (3.25)

Proof. We refer to the lemma 4.1 and 4.4 to prove this proposition. O
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Thus the sequence (NG, A, ¢%) introduced in lemma 3.3 satisfies
- X4 belongs to the compact set A' = [0, sup, 4 Xal,

- N§ belongs to the compact set S} of L'([0, oc[) given by

EeENS

Shens = (£ €L+ [ $)dy =1, [ ) sup \JuB )y < 1/VRT,

2K

/ |9y f(y) | dy < — sup Xyt (3.26)
0 e A

K —
at this stage we do not know that A% is uniformly positive. But for A9 > 0
- ¢ belongs to S} . (\4) compact set of L'([0, o[, N(y)dy) given by

SN, N9) = {g € L} ([0, 00, N(y)dy) - / 9(y) NG (y)dy = 1,

9(9) < G+ ), Dy9(0) |< CoAD (1 +9) A+ 2B ()}, (3:27)

where Co (1) is a positive function on |0, c0[. Thus the sequence (A4, N, ¢% ) sat-
isfies (3.21), (3.19), and belongs to the set (A, S} . ., S}, ;). Moreover (A, N9)
belongs to a compact set of L'([0,00[) x [0,00[ and we can extract a convergent
subsequence giving a solution to the limit problem. But the limit is a function
of ([0, 00]), satisfying N (y)elo ABE)ds increases and \/yB(y) > 0 for y large
enough (see (2.9)), thus the limit of A\, Ao satisfies Ao = [ B(y)N(y)dy > 0.
Therefore we can extract a subsequence such that Ay > Ao /2 and for this sequence
S uat A4 NG C Shua(Moo/2, N§) which is a compact set of L*([0, oo, N (y)dy) and
we can extract a convergent subsequence of ¢¢. Therefore Theorem 2.2 is proved
in the case of (2.9).

Step3. Uniqueness of solution to (2.2)
Now, we prove the uniqueness of solution to this eigenproblem,

Lemma 3.4. Assume there exists (N, X, ¢) solution to (1.2) and (N1, A1) solution
to (1.2) such that 0 < [ N1(y)¢(y)dy < oo and N1/N € L?([0,00[, N (y)p(y)dy)
then

AL = A,
and there exists C > 0 such that Ny = CN.

Proof. By integrating from 0 to oo,
o(y)9yN1(y) + (A1 + B(y)) N(y)(y) =/ b(y,y' )N1(y")dy' é(y),
y

and

N )0,60) + O+ BOINWO) = [ 006y Na(o)
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with (N1¢)(0) = (N1¢)(c0) = 0 (see uniform bounds on N, ¢), we find,
A=A

We conclude using GRE method (see lemma 3.2),

@Am —~C | N(y) /‘/) (v, 9) ‘%w@—c|
[Sgn( N ~(y) - C) Sgn( N ~(y) — C) — Lo(y)dy'dy. (3.28)

But fooo | %—C | N(y)o(y)dy is independent of ¢ thus | sgn(%(y)—C) sgn(%(y’)—
C) — 1] = 0 on the support of b(y,y") for all C thus %(y) = %(y') on the support
of b(y,y’) and

0,500 = [ o)) - T

i.e., N;/N is a constant. O

4. Proof of Proposition 3.1, 3.2

Let (A, N, ¢) solution to (1.2) under assumptions (2.1)-(2.7), (3.4) and either (2.8)
or (2.9). We prove some a priori bound on (A, N, ¢), i.e., if we assume there exists a
solution then this solution satisfies the following property A € A, N € Sgens, ¢ €
Squal Where Sgens denotes Sgens = ngs or Séens depending on which case under
consideration (proposition 3.1 or 3.2), the same for Sg,q. and A.

4.1. First step. bounds on N, A

Lemma 4.1. Assume (2.1), (2.2), (2.6), (2.7), (5.4) and (3.2) then

0< A<, (4.1)

[ A vy <1, (12)
o k!

/00 e’\y(l_")N(y)dy < %, vn € (0,1), (4.3)
0

/oo | N(2+h) — N(2) | dz < 2“1hX. (4.4)
A —

Also, assume (2.1), (2.2), (2.6), (2.7), (2.9) and (3.4) then

| N6V < VL (45)

Proof. We first prove the bound (4.1) then the bounds on N.



August 5, 2005 11:28 WSPC/INSTRUCTION FILE BellomoJuilletSent

13

Upper bound (4.1) Consider the problem equivalent to (1.2),
2 GW) +AGW) = [ e I POy )Gy dy, y >0,
(4.6)

where G(y) = N(y)eld B&)45 thus G > 0. From (3.4), (3.2) we deduce that G €
L*([0,00]) and limy—o, G(y) = 0. Next we can integrate this equation between 0
and oo and we find, using (2.7),

A/ G@)dy:/ / O by NGy )y dy,

0 0 Y
o0 o0 o0 y/ ,

A/ G(y)dy=/ / Lysy e B POy NGy )y dy,
0 0 0

o0 o0 Y :‘J/ /
s [ etn= [ [T e PO g ag] 6ty
0 0 0
and finally we arrive at the upper bound

A< A< oo (4.7)

Stepl. Upper bound (4.3) Now we prove the bound
*° 1
| vy < 5. (18)
0
Multiply (1.2) by y
8 (o ]
v N+ N BING) =y [ oIV, yzo, (49
y
and integrate (4.9) from 0 to oo using (2.2), we obtain
/ (1= Ay)N(y)dy =0, (4.10)
0

thus proving (4.8). To prove the bound (4.3), we multiply (1.2) by y* (with k > 0)
and integrate the equation from 0 to co, now we recall that (b, B) satisfies (2.4),

[e7e] k ]
/O (A]Z) N(y)dy < /0 N(y)dy,

then we obtain
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and (4.3) follows. Instead of integrating from 0 to co we integrate (1.2) by y* (with
k > 0) from 0 to Y then for all k > 1,

Y Y
YFN(Y) —k/o y’“‘lN(y)dy+A/ N(y)dy =

/ / (v, 9 )N (y')dy'dy — /Oyy‘“B(y)N(y)dy,

Y’fN(Y)—k/ y*IN(y dy—&-A/ N(y)dy

/ /nnn(y " b(y,y")dyN (y')dy’ —/ y*B(y)N(y)dy,

Y oo
YEN(Y) < & / YN (y)dy + /Y BN (Y )dy,

k(1 — e)kyk _kNE Y 0 vk
I < GO [Ny + [ 550 9t BWING

using (4.2) and summing for all k¥ we find

N(y) £ Ce MM+ [ BN N ),
y
with Ce = 1/e.
Step2. Bound (4.4) We integrate (1.2) from z to z + h
z+h z+h
Neth-N@ == [ 0+ BoNGd+ [ [ )N,
z z )
and integrate | N(z + h) — N(z) | from 0 to oo then using (2.1)
| INGEn NG Laz < [T BN Gy
0
+h/ / b(y,y )N dy’dy<7h/\
because
| o+ BNy = [ Nw+ [ BNy
0 0

oo A
:)\—i-/ B(y)N(y)dy =+ ——,
0 Iﬁ}—l
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then using (2.1)

/0°° /y‘x’ by v IN W) dy'dy = /OOO /Oy by, y")dyN (y')dy'

= H/OOO B(y')N(y'")dy' =

Step3. Bound (4.5) Now, we assume (2.9) and integrate (1.2) from 0 to oo then
) y'
A= [ ([ by - B NG,
0o Jo

but we have (4.8) thus, combining with (2.1)

oo oo

[Nty [ Bu)NGa <176,
0 0
and using Cauchy-Schwarz inequality we finally obtain
/ Ny By )dy <1/Vk—1. O
0

Lemma 4.2. Assume (2.3), (2.6), (2.7), (2.8) (with A = sup,, {y € SuppB})

’

/Oy bly,y")dy > kB(y'), (4.11)

and (A, N, ¢) is the solution to (1.2) then
A> A

Proof. Assume A < ), (2.6), (2.7), then there exists a solution to
A
0,0 + (A BIM = | b)) M )iy (4.12)
y

such that M(A) = N(A). We notice that
M(y) ==M(A—-y), N(y):=NA-y),

satisfy

A
0,7 — (A + B)IT + / B(A—y, A—y )V (y)dy =0,
y

A
0,8 — A+ BN + / bA —y, A — YN/ )dy' =0,
Yy
thus

A
OyM — (\+ B)M + / b(A—y, A—y )My )dy' >0,
Yy
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and M (A—y) is a supersolution to the equation satisfied by N(A—y). Now, integrate
(4.12) from 0 to A then

M) - 0) = | ’ / " b/ - BN My =2 [ "My

thus using (4.11)

—M(0) > /0,4 [(fﬁ -1B(Y) - A} M(y")dy' — M(A).

But we have M(x) > M(A) on [(1 —n)A, A], indeed

A y' A
M) -y = [ [ vy - B |aray - a [ arey,
and forall (1-nmA<z<y <Awehave (1—n)y <(1-nA<z<y <Aand

x> (1-n)y,
thus using (2.3) we have on [A(1 — ), A]

’ ’

Yy Yy
F(x) := sup {/ b(y,y')dy*B(y')} < sup [/ b(y,y")dy—B(y')| <0.
y'>x bt/ y' >x>(1-n)y’ -J(1-n)y’

Therefore,
—M(0) > M(A)(k — 1)/
A(1—n)

using (2.3), the growth of M (y)elod ATB()ds and (2.8), we obtain

A A
B(y)dy — A /0 M(y')dy' — M(A),

A A
— M (0) ZM(A)(_A/ eff(A+B(s))dsdy+(/i—l)/ B(y')dy’—l) > 0.
0 A(l—n)
Thus M(0) < 0 and M(A — y) is a supersolution to N(A — y), thus N(0) must
be non positive but N(0) = 0 therefore A < A is absurd and we have A > )\ =

k—1 A
gz Jaa—y B —1).

O

4.2. Second step. Bounds on ¢
First we prove that IV is strictly positive on the support of B,

Lemma 4.3. Under assumptions (2.1), (2.3), (2.5), (2.6), (2.7), if (N, A) is solu-
tion to (1.2) and let a = inf Supp B > 0, @ = sup Supp B < oo then

N(y) >0, Yy > a, ie., Supp N C Supp B.

Proof. Let a = inf{y : N(y) > 0} then a < @ otherwise N(y) =0 for all y <@
and Oy N + AN =0 for all y > @ and N = 0. Moreover if we assume that a > a then

/ by, y )N(y')dy' =0, Vy <a,
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and b(y,y’) =0 for all y < a, ¢y > a, thus foa b(y,y )dy = 0 for all y’ > a. But

’

/(y b(y,y')dy < B(y'),

1-n)y’
thus

(1—=n)
/O by, ')y > (5 — DB(Y),

and B(y') =0 for all a <y’ < a/(1—n), which is absurd and contradict that a > a.
Indeed using Supp(B) is a connex set (2.5) and B(y’) = 0 on (a,a/(1 —n)) we have
B(y') =0on (a,a/(1 — 7)) and a < inf Supp B. |

Lemma 4.4. Under assumptions (2.1)-(2.6), (3.3) there exists Co(N) strictly pos-
itive and defined on )0, 00|, such that

P(y) < Co(N)(y +1).

Proof. We refer to Ref. 19 to the following construction of a supersolution of ¢.

Stepl. Bound on (0, 1/)\) We integrate the equation of ¢ from Y to xo where xg
is chosen such that [ [/ b(y,y)dy'dy = & [;° B(y)dy = a €]0,1/2] (using (2.1),
(2.6)) then we have

(YY) < ¢(z0) // (v, y)o(y')dy'dy,
and

oY) < p(x0) + sup ¢(z / / (v, y)dy'dy < ¢(xo) +a sup ¢(z),

2€(0,z0) z€(0,z0)

sup  ¢(Y) < :

Ye(0,20) 1-

éf)(iﬂo)-

Using the decay of ¢(y)e™ Jo A+B()ds there exists C'(\) such that
sup ¢ < C(A)o(xo).

(0,1/X)
Noticing that [, N(y)¢(y)dy = 1, we have
xo =
12 [N = o) [ OO NGy
0

moreover using lemma 4.3 we have fo‘ro N(y)dy > 0 and

sup ¢ < Co(N).
(0,1/X)
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Step2. Bound on (1/X,00) Now, let ¢(y) = ¢(x(v)), B(y) = B(x(y)), then

x(y)
9y¢ = X' (y) (A + B(y))o = —x'(y)/o by’ X))o (X (y))dy'-
Using (2.2), (3.3), we have v(y) = Cx(y) is a supersolution if
X' () = x' WA () = X' ()1 = x(¥)A) 20,

x(0) = oo,
which is satisfied for x(y) = (1/y + 1/X) and C large enough, thus ¢(y) < Cy for
y>1/\
Step3. Bound on (0, 00) Finally, we have,
o(y) < Co(A)(y +1). =

5. Extension to cell division problem with non constant growth
speed

In this section we consider the eigenproblem

2 (VN®©) + A+ BIN(y) = [ by, y")N(y)dy', y=>0,

N(y=0)=0, N>0, [N(ydy=1,

(5.1)
~V(y) & o) + M+ B)oy) = [0y, v)oy)dy's y >0,
¢=0, [Nyoy)dy =1.
where B(y) = y7, V(y) = y*.
Proposition 5.1. Assume (2.1), (2.2), (2.3) and
vy>0, v+1—p>0, (5.2)
sup / by e T FB gy < o, (5.3)
y Jo
y
cr(y) = /0 oy )y [y)*/By)dy' <1, k=~ —p+1, (5:4)

then there exists a solution to (5.1).

Proof. Here, we are in the case B > 0 at oo, then we prove some a priori bound on
(A, N, ¢) as in the proposition 3.2. If we assume there exists a regularized solution,
defined as in the proposition 3.2 then we prove this solution belongs a compact set.
Assume (A, N, ¢) is a solution to (5.1) then
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Stepl. A bound: Proceeding analogously to similar bound (4.7) in the lemma 4.1,
we have the following bound on A,

Y _ v B(s)
0< A< sup/ b(y',y)e Iy
y Jo

v VO ¥y < o

Step2. N bound: We have the following bound on N
/N(y)yk“dy/y”N(y)dy < /y“+kN(y)dy, Vk > 0,

which gives a bound [y*N(y)dy <~v/(k—1),a=v—pu+1>0.
Indeed multiplying by y**!

0 (V(y)N(y) + A+ By)IN(y) = /OO by, y" )N (y')dy',

, we have
dy
and integrating from 0 to oo (for k + v+ 1 > 0) then
(1) [N [Ny [N @y
< ck/y”’““N(y)dy,
and A = (k — 1) [ y"N(y)dy. Thus, using ¢;, = foy/ b(y,y )y dy' /By )y'* <1,

(k1) / YN (y)dy / PN (g)dy < (k -+t 1) / YN (y)dy,

and for k+pu=+,ie,k+1=~v—pu+1>0 we have
[Ny </ - .
Step3. ¢ bound: We have

V2,0 - -+ B)ot) = - [ "oy )b )y (5.5)

Similarly to the lemma 4.4, we bound ¢ in a neighborhood of co and 0.
Step3a. Bound in a neighborhood of co Let ¢(y) = ¢(1/y) then
_ _ 1/y
v’V (1/9)0y6(y) + (A + B(1/y))e(y) =/ by’ 1/y)o(y)dy',  (5.6)
0

©(y) = 1/y is a supersolution (5.6) in a neighbourhood of 0 if we have

— _ 1 =1 _ 1y ’ — ’ ’

V()d,0(0) = —— (A +B)ow) - | b y)o(/y)dy),

0

where V(y) = V(1/y) and B(y) = B(1/y). Thus v(y) = 1/y is a supersolution (5.6)
in a neighbourhood of 0 if

V) /v* > =Ny,
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so if
yV(y) <A

It remains to study the different possibilities for V, i.e., the different u:
If 4 < 1 then v is an supersolution in a neighbourhood of 0.
If p =1 then A =2 > 1 and v is a global supersolution.

If > 1 then we let (y) = (1/y)* and prove v is a supersolution. Indeed, if we
assume that ¢, = [/ by, y)(y'/y)¥/B(y)dy is well defined, co = 2, ¢; = 1 and
¢ < 1 as k large enough then (using v > u + 1) we have

kyV(y) <A+ (1 —c)B(y),

thus

KT/ 2 g = (1= ) B/

and so U is a supersolution in a neighbourhood of 0.

Step3b. Bound in a neighborhood of 0 Now, we prove that ¢ is bounded in a
neighbourhood of 0 for the different p:

A+E(9)) g

If p < 1 then ¢(y)e” ] = is decreasing and 1/V (y) belongs to L([0, A]) for
all A > 0, thus, as in the case V(y) = 1, p = 0 we can prove that ¢ is bounded in
a neighbourhood of 0, the same proof holds.

If 4 = 1 then by the last point T(y) = 1/y is a supersolution and ¢(y) < y (more
precisely ¢(y) = ).

If p > 1 then let & defined by ¢'(y) = V(E(y)), ie., &(x) = (12)77, 4(y) =
6(£(y)), thus

0,6+ (A + BEW)))dly) = /E BEW), W) S )duw(y).

Y

0,0+ O+ BN = [ HEW), )2ty

where dw(y') = 9,£(y')dy’, B(y) = B(£(y)) and b(y,y") = b(§(y),£(y)), thus using
(2.2), we obtain

/ U by ydwly) = kB(y)
£-1(0)
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with £€71(0) = oo because &(x) = (%*Z)ﬁ with g > 1,

/ ’ WLy y)dw(y') = E(y)B(y).
£-1(0)

Therefore, for zg such that 0 < alpha = [*° B(&(y))dy < 1/2 (which exists because
~v/(p — 1) > 1), proceeding similarly to the lemma 4.4,

sup ¢ < ¢(x0)/(1 = a),

(o0,z0)

and finally ¢ is bounded in a neighbourhood of 0.

Step4. Compactness: Using the construction given in Ref. 19 (or like in lemmas
3.1, 3.17) we have the existence of a sequence of solution to a regularized problem of
(5.1). Then we use the bounds we find (stepl. to step3.) to prove the compactness
(see below A, Sgens, Sauar) Of this sequence and conclude to the existence of a
solution to (5.1).

- X belongs to the compact set A = [0, \],

- N belongs to the compact set Sgens of L([0,00[) given by

Siens = {f € L' /0 T fwydy =1, /0 T H iy < (- 1),
[T 1avwie 1a s 258, 60

- ¢ belongs to the compact set Sgua; of L1([0, 00, N(y)dy) given by

Sauar = {g € L' : /OOO gW)N(y)dy > 1, g(y) < Ci(y),
2K

K —

[ V®)dy9(y) [< Cily) A+ —=By)}, (58)

with C1(y) defined above and L®o0c(]0, co[). Proceeding similarly to the theorems
2.1, 2.2, we conclude the proof of this theorem. O

6. More precise results

In this paper we prove the existence of (A, N, ¢) for a large class of B, b. Now we are
interesting in more precise results as regularity, existence in the case where b(y,y’) =
¥ 0(y/y')/y (mitosis or some more general cell divison). Moreover we construct
explicitely the solution (A, N, ¢) in the case where for instance Supp,b(y',y) €
[ny, (1 — 1)y and prove that N(y) ~y .o e Jo AHBI()ds,
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6.1. Homogeneous cell division b(y,y’) = v po(y/v') /v’
Identities (2.1), (2.2), (2.3) become

’

/0 ' o2 — (6.1)
/0 ’ v~y (6.2)
[ e <t (6:3)

Theorem 6.1.
We assume that p,~ satisfy (6.1), (6.2), (6.3), (2.10), (2.11), then assumptions
(2.5), (2.6), (2.7), (2.9) (for b, B) are fulfilled and Theorem 2.1 holds.

Proof. Assumptions (2.10) on v, ¢ imply directly the conditions (2.6), (2.9) on
b, B. Assume (2.7) and let

Y , 1 WH )
/ by, y)e v B(S)dsdy:w/ o()e T (=67 g
0 0
then
! 1
supy Ve~ ":%—Jrll (-7t _ 'V’y/(’w_ e _ c, |
y’ (1- 0v+1)w/(v+1) (1— 07+1)7/(v+1)
and finally
A 1 y _
I
A< /0 p(é))(1 EyTESAEyICARY o < C, N < . .

6.2. Regularity

The regularity of the solution is given by the behaviour of b(y,y’). For example for
the age structured model, we have a discontinuity at y = 0 given by the behaviour
of b(y,y") = B(y')(d(y'=y) + d(y=0)). Indeed

min(y1,y") oo
iy N ()N = [ fim [ by )N W)y = [ BING
y1—0 y1—0 Jg 0
More precisely we have

Lemma 6.1. Assume (2.6) and the existence of (A, N, ¢) solution to (1.2) then
0o min (y1,y")

V20, lm | Nn) - Nw) = [ lim by AN ()

0

Y1—Y0,Y1>Yo Y17Y0 Sy

The same result holds for ¢.
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Proof. Let 0 < yo < y1 and integrate the equation

%N@) L+ BING) = / T,y )N,y >0,

from yg to y; then

Y1 00 min(yl,y’)
| N(w) - N(wo) |= — / (B(y) + NN (y)dy + / / by, y')dyN (') dy'-

0 Yo Yo

Therefore the regularity of N is given by the term f;ﬂn(yl’y/) b(y,y')dy. Indeed

the existence of N solution to (1.2) is L*(R,) by definition, A is bounded and
NeJd (B()+0ds ig increasing, thus N is L (R, ) and

[ @) + NGty = ). lim ) =0,

Yo

/ N(y')dy' = D >0,

Yo

and finally

oo min(y1,y’)
tim | M)~ No) = [t [ by )N '

y1yo yo Y1TYO Uy,

Using the same proof, we obtain

Y1 Y1
lim | é(y1) — d(yo) |=/ lim / b(y, y')dyo(y)dy'. -

Y1—Yo o Y1—Yo max(yo,y’)

Remark 6.1. The regularity of N in 0 in the case Supp, b(y',y) C [ny, (1 —n)y],
0 < n < 1, by the last point we have

Vk >0, 3C, >0, N(z) < Cpat,
and more precisely,
Vk >0, 3Dy >0, N(z)< Dkelln(r)/ln(n)\kln(n)/Dk,

which gives more information on the behavior of N near 0, which is much better

than a polynomial term but not better than e~/
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6.3. Example of construction of solution

We recall the eigenproblem

G+ 00N = [Thr N yzo. 6
S0 (B + o) = [ W6 et vz (6.5)
NO =0, N0 y=0. [N =1 (6.6)
o) 20 yz0. [N =1, (6.7)

In some case we can construct explicitely the solution of this problem. The strategy
we adopt is to construct a solution N, ¢ to (6.4), (6.5) for all A > 0, then prove the
existence of A > 0 such that N, ¢ are positive and satisfy (6.6), (6.7).

In order to construct a solution to (6.4), (6.5), we notice that it is equivalent to
construct W and 1 solution to

W~ [ e Oy, 0
_% _ foy by, y)e” fl;/(B(s)-Q—/\)dsw(y,)dy,’ y >0, (6.8)

W, € L>(]0, 00f).

We search W under the form

where w; is defined recursively by

wi-‘rl(x) = f:roo fyoo b(ya y/)e_ f; (B(S)+/\)dswi(y/)dy/dy Z 07

wo(y) = 1.

Similarly, we set

where v; is defined recursively by
xT _ (Y
Visr (@) = Jy J3 b s y)e I Py g aydy > o,

Yo(y) = 1.
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In order to study the convergence and the properties of these sums, we let Z, Z*
positive operators used in the definition of the sequences w;, v;

(@) = [ [ by, )e I POINE phay'dy > 0,
(6.9)

= 5 Sty y)e T POV gy ay > o,
Under some assumptions on B and b the operators are well defined onto the

bounded valued functions and the sequences and their sums are well defined, deriv-
able and by construction satisfy equation (6.8).

/ by, )e o B gy e L1([0, 00]), (6.10)
y(1+7°)
hr%/ / by, o )e o B gy qy — o, (6.11)
Y y . .
y / by y)e v PO ay e LY([0, o)) (6.12)
0

These assumptions cover several cases where the probability of dividing a cell of
size ' into two cells of size y and y’ —y only depends on %, b(y,y') = ( By
with Supp @ C [0p,601] C]0,1[ and either (2.8) or (2.9). When B(y ) = 47 the

assumptions can be written in a simpler way,
v >0, p€ M ([0, 01]), 0<6y<6; <1, (6.13)
or

v >0, pe M*[0,1]), (6.14)

1
p(6)
/0 (1 —6)207+2(1 — gr+1)7/(+1) df < oo. (6.15)

Finally we prove

Theorem 6.2. Assume (2.2), (2.3), (2.6), (6.10), (6.11), (6.12), either (2.8) or
(2.9) then there exists a solution of (6.4), (6.5) satisfying (6.6), (6.7). Moreover in
the compact support case (2.8) with A = sup Supp B, we have,

¢(z) =0, Vz> A. (6.16)

Remark 6.2. We notice that assumption (2.5) is not used in this theorem, we only
use it to prove the L®> bound of ¢ and thus compactness of ¢¢ or ¢¢.
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Stepl. Construction The construction of W is given by the lemma

Lemma 6.2. Let A, B two linear operators such that Ker(A) — Ker(B) is a non-
empty set. If there exists (z;)i>0 such that

1) xg € Ker(A) — Ker(B) and A(x;41) = B(x;),

2) X =) ,~oxi converges in D(A), D(B) with A(X) = >,~,A(z;) and B(X) =
Zizo B(xi),

then it is clear that A(X) = B(X).

Here A(f)(y) = 92 (y) and B(f)(y) = [ bly y')els BOE )y,

Lemma 6.3. Assume (2.6), (6.10),(6.11), then for all X > 0, there exists (x;)i>0
such that

1) xzg € Ker(A) — Ker(B) and A(x;41) = B(x;),

2) X = 3,502 converges in D(A), D(B) with A(X) = ,~,A(z;) and B(X) =
ZiZO B(z;),

thus there exists a solution to (6.8).

Proof. Assumptions (2.6), (6.10) prove the existence of the sequence w; in
L*>(]0,00[). Now we notice that assumption (6.10) gives the existence of the sum
of w; in a neigbourhood of infinity, indeed in this case the operator is strictly
bounded by 1 into the bounded valued functions space, moreover d%W(y) =
E;’io(—l)i%wi(y). The assumptions lead to the proof of convergence on |0, co].
Indeed let > 0 and

Z(f) (@) = Z1(f) (@) + Zo(f)(x), f e L®(]0,00]), (6.17)
oo pry'(14r) o

Zi(f)(x) =/ / by, y')e v BTN £ gy’ (6.18)

Zo(f)(x) = / i / ZOH )b<y,y’)e‘fy’“%””“f(y)dydy'. (6.19)

We define recursively the operator Z* D (f) = Z(Z®) (f)) and ZO(f) = f (simi-
lary for Zy, Z5) then

| 20 (F)() 1< S0 1 28 () @) (| 287 (@) |-
0

Now, let € > 0, the function Z;(1) is uniformly bounded by § if 7 is small enough
(assumption (6.11)) and there exists xy > 0 such that the operator Z satisfies
| Zo(f)(21) |< 5 | f |oo for all z1 >z (see (6.10)). Moreover,

| Zy™ (1) () <] 28 (1)) || 28 (1L + 7)™ ) |
< Comy | Z8™(1)((1+1)™2) |,
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thus if my > lﬁl((”ﬁ/f)) we have | Zémﬁml)(l)(x) |< Crny (5)™0. Finally, let m =

In(zo/x)
max(0, 77555 )
€. _
| 2 (1)() |< O ch| "kll()kmlf m(5) """
and the sum of w; is absolutly convergent, moreover %W(y) =32, (=1 di/ w;(y).
A similar proof gives the convergence of the sum of general term ;. Thus we have

proved the existence of w, for all A > 0. O

Step2. Positivity We prove the existence of A such that the constructed solution
satisfies (6.6).

Under the assumptions (2.6), (6.10),(6.11) we have (by Stepl. lemma 6.3) the exis-
tence of W, ¢ solution of (6.8) for all A > 0,

Lemma 6.4. Moreover, if we assume that (2.8) or (2.9) is satisfied then there
exists A such that N(0) = W(0) =0 and W, ¢ are non negative and different from
0.

Proof. If ) is large enough, the solution satisfies

W is strictly positive on [0,00[ and strictly increasing. (6.20)

Y is strictly positive on [0,00] and decreasing. (6.21)

Moreover, using Lemma 6.6, we have W(0) = 1(oc0). Thus, if there exists Ao
such that W (0) < 0, then there exists A, such that W(.), ¢(.) are positive and
W(0) = ¢(c0) = 0.

We prove the existence of Ay under assumption (2.9), assume there does not ex-
ist such a A then for all A > 0 there exists N strictly positive and bounded by
e~ Jo B&)ds (which is L'([0, 00[) by (2.9)) satisfying (6.4). But integrating (6.4), we
find

0>-N(0 / N (s = 1)B(y) — Ndy',

which is absurd if N > 0, (2.6) and A = 0, thus there exists A\g > 0 such that
N(0) < 0. Now if we assume (2.9), we have, using the proof of Lemma 3.1, A > A > 0.
Thus using N(y) = W (y)e™ Jo A+B)ds e have the sign of N and W which are
the same and W (0) = N(0), therefore the lemma is proved. O

Step3. Integrability Now we prove integrability of W1, i.e. N¢, we have

Lemma 6.5. Assume (6.12) then for A such that W(0) = ¢(c0) = 0 and W, ¢
non negative, we have

/ N(y)¢ dy—/ W (y)¥(y)dy < oo.
0
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Proof. We have,

N(y)eld C+BEs g bounded by 1, positive and increasing, (6.22)

o(y)e” JdOFBE)ds s bounded by 1, positive and decreasing to 0.(6.23)

Hence, integrate N(x)¢(z) from 0 to z and use (6.22), we find
z z
/O (N(x)efd”()\-‘rB(s))dS)(gb(x)e— f(‘f()\+B(s))ds)dm < /O (¢($)€_ fd”(k—&-B(s))ds)dx-

But (qﬁ(y)e‘ foy(M‘B(S))ds) vanishes at infinity and satisfies the equation

’

’ Y . o Nds
By (o(y e I OHBENE) = — / by, ') ($ly)e™ S OFBED )= EBENE: gy
0

so integrating this equation we find

¢(x)e_ fOI(A'FB('S))dS —

ooy y
/ / b(y. o) (d(y)e § AT )= L BN S gy gy
T 0

and

; S y/ ’
(¢(l‘)67 f[f(/\JrB(s))ds) < / / b(y, y/)e— fyu (/\+B(S))ds)dydy/.
T 0

Finally, by integration

00 00 Yy y
/ N(z)¢p(x)dx §/ y'/ b(y,y')e” Iy ()‘+B(S))dsdydy’.
0 0 0

Thus by (6.12), W is integrable and we can normalize

W(y>€7 foy(B(sH*)\)ds

N =
v JoS W(z)e™ JE BTNy g,

B(y)(y)eld BWH+Nay’
[ N (2)() el BN

o(y) =
and these functions satisfy (6.4), (6.6). O
Remark 6.3. If B has a compact support with A = sup Supp B then W(y) is

constant equal to 1 for y > A and %(y) must be constant for y > A, but Wy
belongs to L', thus ¥(y) = 0 for y > A.
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Lemma 6.6. Assume that the constant function 1 satisfy Z(1) € LY([0,00]), (Z
defined in (6.9)) and for all k >0

Z®)(), 20 )(.) € L' (0,50,
20 D(1)() = 242" P (1)),
25 (1)) = 2(29 (1)),

ZOMW() =2°1)() =1,
then we have

2709 (1)(00) = / T 2D ) () 25D (1) )y, VR 1,1<5 <k,

Proof. Let k£ > 1 then we prove

2409 (1)(00) = /OWZ*M(l)(y)ZU1><1><y>dy, Vi<ji<h  (624)

Stepl. We first prove the equation for j =1
o ry
20 W)(e0) = / / ZE=D (1) )by, y)e T PO gy gy
o Jo
- [z 0wz wi.

Step2. Assume (6.24) is true for j < k then

2" M(1)(00) = /Ooo 720D (1) (y) 297D (1) (y)dy,

- /0°° /Oy h(y',y) 2= (1)(y")dy' 2971 (1) (y)dy,

/ / Wy, ) 25~ (1)) () 260D (1) () dydy/,
y'=0 Jy=y’

(oo} oo

Z* (F =G0 (1)) () ( / Wy, ) 26D (1) (y)dy) dy,

y=y

’

I
S~

0

8

0

_ / Z+(k=GHD) (1) () 2D (1) (y ) dy/,
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where h(y',y) = b(y', y)e

7-fz}y’(B(S)+>‘)dS, then (6.24) is true for j +1 < k.

Step3. Thus we prove (6.24) for all 1 < j < k and if j = k we find Z*(*)(1)(c0) =
Z®M(1)(0).

The result is independent of k > 1, thus (6.24) is true for all K > 1 and 1 < j < kO
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