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Abstract. In this paper, we consider nonlocal nonlinear renewal equation

(Markov chain, Ordinary differential equation and Partial Differential Equa-
tion). We show that the General Relative Entropy [29] can be extend to non-

linear problems and under some assumptions on the nonlinearity we prove the

convergence of the solution to its steady state as time tends to infinity.

1. Introduction. In [29], authors introduce the General Relative Entropy (GRE)
which gives a natural Lyapunov structure in linear evolution equation from the
linear ordinary differential equations to the linear partial differential equations (and
for stochastic processes with Relative Entropy see Chapter 5 in [42]).

From Malthus to McKendrick - VonFoerster like equations. Under as-
sumptions of homogeneity, size and unlimited resource, a population at time t that
has a size n(t) will evolve as follow

d

dt
n(t) = (b− d)n(t), i.e., L : g 7→ (b− d)g, (1)

where b is a birth rate and d a death rate. It is well known that the solution to (1)
is given by n(0)e(b−d)t. Considering that the population has different birth rates
and death rates with respect to their age, therefore, a population at time t and age
k of size n(t, k) (with k ∈ [0,N ]) will evolve as follow

d

dt


n(t, 0)
n(t, 1)

...
n(t,N )

 = M


n(t, 0)
n(t, 1)

...
n(t,N )

 , i.e., L : g 7→Mg,

where M is a Leslie-Usher matrix. We known (see [17]) that,

n(t) ∼ Cst.eλtN,
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where λ = supµ∈Sp(M)Re(µ) and N is a positive eigenvector associated to the

eigenvalue λ (Perron Frobenius). When the class age has an infinitesimal length,
we obtain McKendrick VonFoerster type of equations [32, 34]

∂

∂t
n(t, x) = − ∂

∂x
n(t, x)− d(t, x)n(t, x) + δ0

∫
b(t, x′)n(t, x′)dx′,

i.e., L : g 7→ − ∂

∂x
g − d(t, .)g + δ0

∫
b(t, x′)g(t, x′)dx′,

where b is a birth rate, d is a death rate and δx denotes the Dirac delta at age x.1

The transport term − ∂
∂x correspond to the aging of the population. Here again, it

is well known that n behaves as

n(t, .) ∼ Cst.eλtN(.),

where λ = supµ∈Sp(L)Re(µ) and N is a positive eigenfunction associated to the

eigenvalue λ. More generally, for a size structured population [29, 34], where n
satisfies (with n(t, 0) = 0, i.e., there is no individual of size 0)

∂

∂t
n(t, x) = − ∂

∂x
n(t, x)− d(t, x)n(t, x)−

∫
y>x

b(x, y)n(t, y)dy + b(t, x)n(t, x),

i.e., L : g 7→ − ∂

∂x
g − d(t, .)g −

∫
y>x

b(x, y)g(y)dy + b(t, .)g,

with b the division rate and d the death rate, we have proved the same behavior in
long time asymptotic. And finally, when appears some randomness in the measure
of the age (size or more generally trait), we have a diffusion terms

∂

∂t
n(t, x) = − ∂

∂x
n(t, x) + C

∂2

∂x2
n(t, x)− d(t, x)n(t, x) + δ0

∫
b(t, x′)n(t, x′)dx′,

i.e., L : g 7→ − ∂

∂x
g + C

∂2

∂x2
g − d(t, .)g + δ0

∫
b(t, x′)g(t, x′)dx′,

and we prove a similar result on the asymptotic behavior [1].2 More generally, this
results seems to hold for positive semigroups.

Positive Semigroups and “Perron Frobenius” results. The existence, of
the eigenelements : (λ,N), is well known for irreducible positive matrix (Perron
Frobenius), strongly positive and compact operators (Krein Rutmann). It is a
general result on positive semigroups [14, 33] and we just recall that

Definition 1.1. A strongly continuous semigroup (T (t))t≥0 on a Banach lattice X
is called positive if

0 ≤ f ∈ X implies 0 ≤ T (t)f ∀t ≥ 0.

1equivalent to the system with boundary condition

{
∂
∂t

n(t, x) + ∂
∂x

n(t, x) = −d(t, x)n(t, x)

n(t, 0) =
∫
b(t, x′)n(t, x′)dx′

2equivalent to the system with boundary condition{
∂
∂t

n(t, x) + ∂
∂x

n(t, x) = C ∂2

∂x2 n(t, x)− d(t, x)n(t, x)

n(t, 0)− C ∂
∂x

n(t, 0) =
∫
b(t, x′)n(t, x′)dx′
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Theorem 1.2. Let (T (t))t≥0 be an irreducible, positive, strongly continuous semi-
group with generator A on the Banach lattice X and assume that sup{Re λ : λ ∈
Spectrum of A} = 03. If 0 is a pole of the resolvent R(., A), then the following
properties hold.

• Ker(A) = Fixed Point (T (t))t = lin{N}, for some positive function N ∈ X.
• Ker(A∗) = Fixed Point (T ′(t))t = lin{φ} (where A∗ is the dual operator),

for some positive function φ ∈ X∗.

We refer to [33] for more precise results.

General Relative Entropy results. The GRE gives a natural Lyapunov struc-
ture in an evolution equation such as

∂

∂t
n = Ln, n(t = 0, .) = n0(.). (2)

More precisely, for f = ne−λt

N with LN = λN and L∗φ = λφ 4 strictly positive
eigenelement associated to the eigenvalue λ = sup{Re λ : λ ∈ Spectrum of L} and
for all H regular, positive and convex, we have

d

dt
H(f) = DLH(f), (3)

where H(f) = 〈H(f)N,φ〉 and, by direct computation,

DLH(f) =
〈
H ′(f)L

(
fN
)
−H ′(f)fL

(
N
)

+H(f)L
(
N
)
− L

(
H(f)N

)
, φ
〉
, (4)

where 〈u, v〉 is the duality bracket between a Banach space and its dual. The
dissipation can be rewritten, for convenience, as

DLH(f) =
〈
L
((
H ′(f(x)(f(.)− f(x)) +H(f(x))−H(f(.))

)
N(.)

)
(x), φ(x)

〉
. (5)

Therefore, we have the conservation law (H = Id)

〈fN, φ〉 = 〈fN, φ〉(t = 0), (6)

and for H positive and convex with L be a positive operator, we have

d

dt
H(f) = DLH(f) ≤ 0. (7)

Using a LaSalle’s principle, we see that the ω−limit set of n belongs to the kernel
of the entropy dissipation

Ker(DLH) =
{
f : DLH(f) = 0

}
, (8)

and, under some assumptions on the kernel of DLH (irreducibility), we prove that

f(t)
t→∞−−−→ Constant, i.e.,

n(t, .) ∼ Cst.eλtN(.). (9)

We notice that the dissipation term is linear with respect to L, this means that

L =
∑
k

akLk ⇒ DLH =
∑
k

akD
L
H .

The formalism of the General Relative Entropy (GRE) (see [9, 16, 24, 29, 34, 35,
36, 26, 31, 40]) is an interesting tool to study semigroup of evolution equations (see
[7, 14, 15, 17, 18, 33, 43, 45]). In particular, in linear renewal equations as in the

3True up to a translation of the spectrum by changing A to A− cstId
4L∗ is the dual operator
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McKendrick-VonFoerster (see [6, 16, 29]) the GRE has shown its easy computability
and powerful results to study asymptotic behavior of solution to evolution equation.

Example of operators and their entropy dissipation. For instance, for the
following operators (with H convex)

• Linear system of Ordinary Differential Equations : L = (aij)i,j is a matrix of
transitions states (positive except on its diagonal) and n represents the states
vector (see Leslie-Usher population matrix 5), then

DLH(f) = −
∑
i,j

aijNjφi
[
H ′(fi)(fj − fi) +H(fi)−H(fj)

]
≤ 0.

• Differentiation : L∂f = f ′ corresponds to a transport (term) equation and

DL
∂

H (f) = 0 means that the “transport” operator gives no information on the
dynamic of an evolution equation.

• Multiplication by r : LMultf = rf corresponds, for instance, to a death

term in a population evolution equation and DL
Mult

H (f) = 0 means that the
multiplication operator gives no information on the dynamic of an evolution
equation.

• Diffusion : LDifff = Df ′′ and DL
Diff

H (f) = −
〈
DH ′′(f)(f ′)2N,φ

〉
≤ 0. The

Kernel Ker(L
Diff

H ) of the dissipation is the set {f ∈ X : f |Supp DN=
Cst} 6= ∅ if the support of D is not empty.

• Integral : (for instance in the Chapmann Kolmogorrov equation) : LIntf =∫
K(., y)f(y)dν(y) corresponds to a mix states term and

DL
Int

H (f) = −
〈∫

K(x, y)
[(
H ′(f(x))(f(y)− f(x))

+H(f(x))−H(f(y))
)
N(y)

]
dν(y), φ(x)

〉
≤ 0

In this case, we need thatK mixes enough the variables x and y (irreducibility)
to have a “useful” Kernel.

• Birth Term : LBirthf = δ0
∫
fdν and

DL
Birth

H (f) = −
〈∫

B(y)
[(
H ′(f(0))(f(y)− f(0))

+H(f(0))−H(f(y))
)
N(y)

]
dν(y), φ(0)

〉
≤ 0.

• and so on, by computation · · ·
The aim of this work is to extend this result to nonlinear evolution equation

d

dt
n = L(〈n, ψ〉)n. (10)

where ψ can be seen as a distribution function of ressources and 〈n, ψ〉 corresponds
to the ressources consumption by the population (see [34, 7, 10, 5, 12, 11, 13]). We

5Leslie matrix with non null terms on the diagonal, such as death terms
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show in section 2 (proofs are given in section 5) that we can decompose the entropy
dissipation in two terms

d

dt
Entropy(n) = −Entropy DissipationL(n) + Entropy IncreaseL(n),

where the Entropy DissipationL(n) contains the linear part and the +Entropy
IncreaseL(n) contains the nonlinear part of the dynamic. In section 3, we study

theoretically three examples of application : Markov chains, an Ordinary Differen-
tial equation and a Partial Differential Equation. Finally we conclude in section
4.

2. Entropy calculus and decomposition of its variation. Let B a Banach
space. For L nonlinear operator : L : n ∈ B 7→ L(〈n, ψ〉)n ∈ B, with ψ ∈ B∗, such
that, for any fixed n

L〈n,ψ〉 : m 7→ L(〈n, ψ〉)m, is linear and compact operator (11)

which satisfies
∀z ∈ R+ ∃C(z) ∈ R s.t. L(z) + C(z)Id is strongly positive,

supSp(L(0)) > 0 and supSp(L(∞)) < 0,

z ∈ R+ 7→ L(z) continuous.

(12)

Assumptions (11)-(12) imply, by Krein Rutmman theorem [23], that for all M ∈ B,
there exists (NM , φM ) solution to L(〈M,ψ〉)NM = λMNM and L(〈M,ψ〉)∗φM =
λMφM . Moreover, compactness condition and condition on the spectrum in 0 and∞
imply that there exists a fixed point to M 7→ NM and λM = 0, i.e. L(〈N,ψ〉)N = 0
(and L(〈N,ψ〉)∗φ = 0). We define the linear operator at the equilibrium

Leq := L(〈N,ψ〉), (13)

where N satisfies L(〈N,ψ〉)N = 0. Denote f = n
N . For any convex function H and

for all functional g, denote

H(g) := 〈H(g)N,φ〉. (14)

Definition 2.1. We define the variation of L around its equilibrium N ,

∀g, |∆Lg| := −
L(〈N,ψ〉+ 〈gN, ψ〉)− L(〈N,ψ〉)

〈gN, ψ〉
. (15)

Moreover, we define the following entropy dissipation

DLinearH (g) :=
〈
Leq
(
u(x, y)

)
, φ(x)

〉
,

(EH)L±(g) := ±
〈
|∆Lg|(N(g + 1))(x)

〈(
g(s)H ′(g(x))

)
∓
N(s), ψ(s)

〉
, φ
〉
, 6

and

NDNon linear
H (g) := −

〈
|∆Lg|(N(g + 1))(x)〈u(x, y), ψ(y)〉, φ(x)

〉
,

where u(x, y) :=
[
H ′(g(x))

(
g(y)− g(x)

)
+H(g(x))−H(g(y))

]
N(y).

6We recall that x+ =

{
x, if x > 0,

0, if x ≤ 0
and x− =

{
−x, if x < 0,

0, if x ≥ 0
.
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Theorem 2.2. (Entropy Calculus). Let H ∈ C1(R,R+), convex and H(0) = 0.
Then we have

d

dt
H(f − 1) = DLinearH (f − 1) + (EH)L−(f − 1) + (EH)L+(f − 1). (16)

Now, assuming that, for all g, |∆Lg| is a positive operator, then we have

d

dt
H(f − 1) = DLH(f − 1) ≤ DLinearH (f − 1) +NDNonlinearH (f − 1). (17)

Corollary 1. (boundedness and Convergence). Assuming there exists C > 0 so
that

∃Cst ∈ R, ∀−1 ≤ g ≤ C + 1, |∆Lg|(N
g + 1

C
) ≤ inf

u>0

1

2
(Leq+CstId)

( u

〈u, ψ〉

)
(18)

then n0 ≤ CN implies that for all t ≥ 0, n(t, .) ≤ CN(.). Moreover, if n0 ≤ CN
and

∃Cst ∈ R, ∀−1 ≤ g ≤ C, |∆Lg|(N(g + 1)) ≤ inf
u>0

(Leq + CstId)
( u

〈u, ψ〉

)
(19)

then g(t, .)→ 0 as t→∞, i.e., n(t, .)
t→∞−−−→ N .7

Proofs of Theorem 2.2 and Corollary 1 are given in section 5. To show the
usefulness of the methods we apply it to different types of evolution system.

3. Examples of application. This section is subdivided in three paragraph where
we give examples of application of the GRE method : a discrete time evolution
equation (Markov Chain), in section 3.1, a continuous in time and discrete in “space”
(Ordinary Differential Equation), in section 3.2 and finally a Partial Differential
Equation in section 3.3.

3.1. Discrete time evolution equation : Application to non homogeneous
Markov chains. Let π a probability vector on RN , ψ ∈ RN

+ so that 〈1, ψ〉 = 1 and
assume that L(〈π, ψ〉) is a square N ×N positive and irreducible matrix. We have,
using Perron Frobenius theorem, that L(〈π, ψ〉) (and L(〈π, ψ〉)′) admit a strictly
positive eigenvector associated to the spectral radius of L(〈π, ψ〉). Moreover, if
L(〈π, ψ〉) is stochastic then the spectral radius is 1 and we know that φ = (1, 1, ..., 1)
is an eigenvector of L(〈π, ψ〉) associated to 1, i.e. L(〈π, ψ〉)φ = φ (see [3, 20]). Then,
we can construct a, non homogeneous, Markov chain,

πk+1 = πkL(〈πk, ψ〉), k ∈ N, (20)

where π0 is a given probability vector. Then, by induction, for all k, πk is a
probability vector, i.e.,

〈πk, 1〉 = 〈π̄, 1〉 = 1. (21)

Moreover, assuming that π 7→ L(〈π, ψ〉) is continuous, we have by compactness,
existence of π̄ solution to the stationary equation

π̄ = π̄L(〈π̄, ψ〉). (22)

We define

F1(h) :=
1

2

〈〈[( h
π̄ π̄L(〈π̄, ψ〉)

π̄

)′ − h

π̄

]2( π̄L(〈π̄, ψ〉)
π̄

)( π̄L(〈π̄, ψ〉)
π̄

)′
π̄, 1
〉
, 1′〉,

7We notice that the conditions (18) and (19) directly satisfy for a linear problem, i.e. |∆Lg | = 0.
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and

F2(h) := 〈(h
π̄
− 1)π̄, ψ〉2

which are both, quadratic functions vanishing on π̄. Then, we have the following
result

Proposition 1. If the variation of the transition matrix

∆L =
π̄(L(〈πk, ψ〉)− L(〈π̄, ψ〉))

π̄〈(πkπ̄ − 1)π̄, ψ〉

satisfies

F2(h)[sup
j

1(/π̄j)‖∆L‖2 + 2 sup
j

(1/ψj)‖∆L‖] ≤ F1(h), ∀h ≥ 0,
∑
i

hi = 1, (23)

and

F1(h) = 0, h ≥ 0,

N∑
i=1

hi = 1⇐⇒ h = π̄. (24)

Then, we have

πk
k→∞−−−−→ π̄.

Proof. We define

Entropy :=
〈(πk
π̄
− 1
)2
π̄, 1
〉

=
∑
j

(πkj
π̄j
− 1
)2
π̄j ,

and its variations by

DL2 :=
〈(πk+1

π̄
− 1
)2
π̄, 1
〉
−
〈(πk
π̄
− 1
)2
π̄, 1
〉
.

Using (20), (21) and (22), we have〈(πk
π̄

)2
π̄, 1
〉

=
∑
j

(πkj
π̄j

)2
π̄j ,

〈
(
πk

π̄ π̄L(〈π̄, ψ〉)
π̄

)2π̄, 1
〉

=
∑
j

(∑
i

πki
π̄i

π̄iL(〈π̄, ψ〉)ij
π̄j

)2
π̄j =

∑
j

(∑
i

πki
π̄i
βij
)2
π̄j ,

with βij =
π̄iL(〈π̄,ψ〉)ij

π̄j
(
∑
i βij = 1) and so∑

ii′

∑
j

(πki
π̄i
− πki′

π̄i′

)2
βijβi′j π̄j = 2

∑
i

∑
j

(πki
π̄i

)2
π̄j − 2

∑
j

(∑
i

πki
π̄i
βij
)2
π̄j ,

1

2

〈〈[( πk
π̄ π̄L(〈π̄, ψ〉)

π̄

)′ − πk

π̄

]2( π̄L(〈π̄, ψ〉)
π̄

)( π̄L(〈π̄, ψ〉)
π̄

)′
π̄, 1
〉
, 1′
〉

=
〈(πk

π̄

)2
(
π̄L(〈π̄, ψ〉)

π̄
)π̄, 1

〉
−
〈( πk

π̄ π̄L(〈π̄, ψ〉)
π̄

)2
(
π̄L(〈π̄, ψ〉)

π̄
)π̄, 1

〉
=
〈(πk

π̄

)2
π̄, 1
〉
−
〈

(
πk

π̄ π̄L(〈π̄, ψ〉)
π̄

)2π̄, 1
〉
.
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Moreover, we can separate the nonlinear part and the linear part of the variation
of the entropy, noticing that

DL2 :=
〈(πkL(〈πk, ψ〉)

π̄
− 1
)2
π̄, 1
〉
−
〈(πk

π̄
− 1
)2
π̄, 1
〉
,

and so we have

DL2 := 〈(π
k(L(〈πk, ψ〉)− L(〈π̄, ψ〉))

π̄
)(
πk(L(〈πk, ψ〉) + L(〈π̄, ψ〉))

π̄
− 2)π̄, 1〉

+ 〈(
πk

π̄ π̄L(〈π̄, ψ〉)
π̄

− 1)2π̄, 1〉 − 〈(π
k

π̄
− 1)2π̄, 1〉

= 〈(π
k(L(〈πk, ψ〉)− L(〈π̄, ψ〉))

π̄
)(
πk(L(〈πk, ψ〉) + L(〈π̄, ψ〉))

π̄
− 2)π̄, 1〉

− 1

2

〈〈[( πk
π̄ π̄L(〈π̄, ψ〉)

π̄

)′ − πk

π̄

]2( π̄L(〈π̄, ψ〉)
π̄

)( π̄L(〈π̄, ψ〉)
π̄

)′
π̄, 1
〉
, 1′
〉
.

Now, we have( πk
π̄ π̄(L(〈πk, ψ〉)− L(〈π̄, ψ〉))

π̄

)
=
πk

π̄
∆L〈(π

k

π̄
− 1)π̄, ψ〉,

πk(L(〈πk, ψ〉) + L(〈π̄, ψ〉))
π̄

− 2=
πk(L(〈πk, ψ〉)− L(〈π̄, ψ〉))

π̄

+ 2
πk − π̄
π̄
L(〈π̄, ψ〉) =

πk

π̄
∆L〈(π

k

π̄
− 1)π̄, ψ〉+ 2

πk − π̄
π̄
L(〈π̄, ψ〉),

and the nonlinear part that satisfies the following inequality

|〈(π
k(L(〈πk, ψ〉)− L(〈π̄, ψ〉))

π̄
)(
πk(L(〈πk, ψ〉) + L(〈π̄, ψ〉))

π̄
− 2)π̄, 1〉|

≤ |〈(π
k

π̄
∆L)(

πk

π̄
∆L)π̄, 1〉|〈(π

k

π̄
− 1)π̄, ψ〉2

+2|〈(π
k

π̄ ∆L)(π
k−π̄
π̄ L(〈π̄, ψ〉))π̄, 1〉|〈(π

k

π̄ − 1)π̄, ψ〉

≤ sup
j

(1/π̄j)‖∆L‖2〈(
πk

π̄
− 1)π̄, ψ〉2 + 2 sup

j
(1/ψj)‖∆L‖〈(

πk

π̄
− 1)π̄, ψ〉2

≤ [sup
j

(1/π̄j)‖∆L‖2 + 2 sup
j

(1/ψj)‖∆L‖]〈(
πk

π̄
− 1)π̄, ψ〉2

Using assumptions (23) and (24), we have the result.

Remark 1. Markov chains : Assuming that L is a square n× n positive and irre-
ducible matrix, we have, using Perron Frobenius theorem, that L (resp. L′ =t L)
admit a strictly positive eigenvector associated to the spectral radius of L. More-
over, if L is stochastic then the spectral radius is 1 and we know that φ = (1, 1, ..., 1)
is an eigenvector of L′ associated to 1 and π̄ can be normalized to be a probability

vector. Let Ci :=
{
j : aij > 0

}
, and we define the equivalence relation ∼ by

Ci ∼ Cj ⇔ ∃i0 = i, i1, i2, ..., ir = j : Cik
⋂
Ck+1 6= ∅, ∀k ∈ [0, r − 1].

We note Ω∼ := {1, 2, 3, ..., n}/ ∼ the quotient space states. Therefore, the aperiodic
condition of convergence of Markov chains (see [3, 20]), can be seen as follows :

]Ω∼ = 1⇒ lim
k→∞

πk = π∞.
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3.2. A time continuous and discrete state : Application for an age struc-
tured model. In this section, we are interested in the time evolution of a species
which is state structured. More precisely, let n(t) = (ni(t))

N
i=1, at time t, a real

vector in RN
+ , where ni(t) corresponds to the number of individuals at state i at

time t, which follows the main evolution equation

d

dt
n(t) = Ln(t), ∀t ≥ 0. (25)

For example, in a discrete age structured model, we use a Leslie-Usher like matrix
(see for discrete time application of the Leslie (or Leslie-Usher, with non null terms
on the diagonal) matrix [2, 44, 38])

L =


b1(t)− d1 − p1 b2(t) b3(t) · · · bN (t)

p1 −d2 − p2 0 · · · 0
0 p2 −d3 − p3 0 · · ·
· · · · · · · · · · · · · · ·
0 · · · 0 pN −1 −dN

 , (26)

to modelize the aging with (pi)i, the death with (di)i and the birth process with
(bi)i > 0. The linear evolution is classical and we only focus on the nonlinear
problem : since resources are limited, the birth rate is depending on the number of
individuals which use these resources, i.e., we have

bi(t) = bih(w(t)), (27)

where
w(t) =

∑
i

αini(t),

represents the total consumption of resource, assuming that individual of age i
consume αi > 0 resources and h the decay of birth rate due to the lack of resources
[38].

Proposition 2. Assuming that h is a decreasing C1 function which satisfies,

− h′(ζ)

h−1
( p1 + d1

b1 +
∑
j≥2 bj

∏j
k=2

pk−1

pk+dk

)
p1 + d1

b1 +
∑
j≥2 bj

∏j
k=2

pk−1

pk+dk

≤ 1

2(C + 1)

inf(bi)i inf(αj)j
sup(bj)j sup(αj)j

, (28)

∀ζ ∈ [0, C
∑
i

αiNi] and

n(0) ≤ CN (C > 1) where N is the stationary solution, i.e., solution to the following
equation

b1(
∑
i

αiNi)− d1 − p1 b2(
∑
i

αiNi) · · · bn(
∑
i

αiNi)

p1 −d2 − p2 · · · 0
0 p2 · · ·
· · · · · · · · · · · ·
0 · · · pN −1 −dN

N = 0. (29)

Then we have n(t)
t→∞−−−→ N .

Proof. Using (29), we have, for all j ∈]1,N ], Nj = Nj−1pj−1/(dj + pj) (with
the convention pN = 0) and N1(d1 + p1) =

∑
i biNih(

∑
i αiNi). Thus, we find

Nj = N1

∏j−1
k=1 pk/(dk + pk) for all j 6= 1 and finally h(

∑
i αiNi) = (d1 + p1)/(b1 +
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i bi
∏j−1
k=1 pk/(dk + pk)) which means that

∑
i αiNi = h−1((d1 + p1)/(b1 +

∑
i bi∏j−1

k=1 pk/(dk + pk))). We have

|∆Lh|=−


b1(w(t))−b̄1
w(t)−w̄ · · · bn(w(t))−b̄n

w(t)−w̄
0 · · · 0
0 0 · · ·
· · · · · · · · ·
0 · · · 0

=−h′(ζ)


b1 · · · bn
0 · · · 0
0 0 · · ·
· · · · · · · · ·
0 · · · 0

 , (30)

for ζ ∈ [min(w̄, w(t)),max(w̄, w(t))]. Moreover, a direct computation gives that

|∆Lh|(N(h+ 1)) = −h′(ζ)


∑
i biNi(hi + 1)

0
...
0


≤ −h′(ζ)(C + 1)

sup(bj)j
inf(αj)j

h−1
( p1 + d1

b1 +
∑
j≥2 bj

∏j
k=2

pk−1

pk+dk

)
, ∀h ∈ [−1, C],

and for all u ∈ (R∗+)n

(Leq + CstId)
( u

〈u, ψ〉

)
=



∑
i b̄iui + (Cst− d1 − p1)u1

p1u1 + (Cst− d2 − p2)u2

p2u2 + (Cst− d3 − p3)u3

...
pn−1un−1 + (Cst− dn)un


∑
j αjuj

≥



∑
i b̄iui∑
j αjuj

0
0
...
0


≥ inf(b̄i)i

sup(αj)j
=

inf(bi)i
sup(αj)j

p1 + d1

b1 +
∑
j≥2 bj

∏j
k=2

pk−1

pk+dk

.

Therefore, assumption (18)-(19) are satisfied as (28) is verified.

3.3. Partial differential equation : Application to renewal equation with
diffusive effect on the age. Renewal equation appears in mathematical biology
to study the evolution of population structured in age (see [7, 17, 18, 25, 34, 43]).
The density n(t, x) at time t and age x follows the main equation (transport equation
with loss due to a death term d and diffusion in age). According to the biologists,
the matter of which sites are active on various chromosomes determines the true
age of a biological entity [4]. This true age is a multidimensional variable and can
be determined by time since birth. We are mainly concerned about the population
and not on the individuals, hence we assume that average aging in the population is
measured from time since birth (renewal). Because of lots of sources of variation in
the vector valued age of individuals, the population as a whole diffuse in population
age variable. We are interested to study the dynamics of the following renewal
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equation with diffusion.
nt(t, x) + nx(t, x) + d(x, S(t, x))n(t, x) = Cnxx(t, x), t > 0, x > 0,

n(t, 0)− Cnx(t, 0) =

∫ ∞
0

b(x, S(t, x))n(t, x)dx, t > 0,

n(0, .) = n0(.), n0 ∈ L1(R+) ∩ L2(R+),

(31)

where 1/S(t, x) represents resource allocated to individuals of trait x at time t,

S(t, x) =

∫ ∞
0

β(x, y)n(t, y)dy, ∀t, x. (32)

Equation (31) with C = 0 is popularly known as McKendrick–Von Foerster
(MV) equation (see [7, 39]). There are several mathematicians who worked on
the stability estimates and longtime behavior of the MV equation ([7, 18, 43] and
the references therein) or MV - like (see [19, 22] for instance). In [37, 41] the
authors have discussed the existence and uniqueness of a weak solution and have
also proved the linear stability around the nontrivial steady state of the nonlinear
renewal equation. The linear version of equation (31) with C = 1 has been studied
in [1]. Touaoula et. al., proved the existence and uniqueness of a weak solution.
They have used Poincaré Writinger’s type inequality to prove the exponential decay
of the solution for large times to a steady state. In [30], Michel et. al., considered
the nonlinearity in the boundary term in equation (31) and proved the convergence
of the solution towards the steady state problem. In [21], Kakumani et. al., proved
the existence and uniqueness of a weak solution with S(t) =

∫
ψ(y)n(t, y)dy and

they have also proved the longtime behavior is some particular cases. We will prove
that n converge to N solution to the corresponding steady state equation (of (31))

N ′(x) + d(x, S̄(x))N(x) = CN ′′(x), x > 0,

N(0)− CN ′(0) =

∫ ∞
0

b(x, S̄(x))N(x)dx,∫ ∞
0

N(x)dx <∞, S̄(x) =

∫ ∞
0

β(x, y)N(y)dy.

(33)

Moreover, we will need the solution to the adjoint equation, i.e. φ solution to
−φ′(x) + d(x, S̄(x))φ(x) = Cφ′′(x) + φ(0)b(x, S̄(x)), x > 0,
φ′(0) = 0,∫ ∞

0

φ(x)N(x)dx = 1.
(34)

Main results. Throughout this section, we assume that the functions d, b, β are
nonnegative and continuous. Further we assume that there exists L > 0 such that
for all x, S1, S2 we have

|b(x, S1)− b(x, S2)| ≤ L|S1 − S2|, |d(x, S1)− d(x, S2)| ≤ L|S1 − S2|, (35)

∂

∂S
d(., .) > 0,

∂

∂S
b(., .) < 0, (36)

0 < bm ≤ b(., .) ≤ bM , 0 < dm ≤ d(., .) ≤ dM , 0 ≤ β ≤ βM (37)

where bm, bM , dm, dM , βM are positive constants.
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Proposition 3. Assume (35)–(37), then there is a unique weak solution n ∈
C
(
R+;L1(R+)

)
∩L2

loc(R+;W 1,2(R+)) solving (31) - (32). Moreover, assuming (36)
and

k ≤ β ≤ k, 0 < k ≤ k <∞. (38)

S2 7→ b(x, S2) is strictly decreasing and

S1 7→ d(x, S1) is strictly increasing on [α, β], α < β (39)

and

b(x, 0)− d(x, 0) > 0 b(x,∞)− d(x,∞) < 0 (40)

are satisfied then there exists a solution to (33)-(34).

Since, in this work, we focus on the convergence of n to N , we give the proof of
existence and uniqueness in annex 5. Now, we give assumptions on b, d and n0(.)
which lead to the convergence of n, solution to (31) - (32), to N solution to (33).

Proposition 4. Assuming that n(0, .) < KN(.) for K > 0 and

(Cbound)


sup
S,S̄

∣∣b(x, S)− b(x, S̄)

S − S̄
∣∣N(x)

(K + 2)

K
<

1

2
inf
u>0

∫
b(y, S̄)u(y)dy∫
β(x, y)u(y)dy

,

sup
S,S̄

∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣ <∞, (41)

then for all t > 0, n(t, .) ≤ KN(.). Moreover, if we assume that

(C1)


2

∫ ∣∣b(x, S)− b(x, S̄)

S − S̄
∣∣β(x, y)Ndx < b(y, S̄)/K,∫ ∞

s

∫ s

0

|x−y|β(x, y)N(y)dy
∣∣∣d(x, S)−d(x, S̄)

S−S̄

∣∣∣dν(x)<CN(s)φ(s)/K,

(42)

or

(C2)



∣∣b(x, S)− b(x, S̄)

S − S̄
∣∣[4∫ β(x, y)dy

]
< b(x, S̄)/K,∫ ∞

s

∫ s

0

|x− y|β(x, y)N(y)dy
[
2φ(0)

∣∣∣b(x, S)− b(x, S̄)

S − S̄

∣∣∣N]dx
+

∫ ∞
s

∫ s

0

|x− y|β(x, y)N(y)dy
[∣∣∣d(x, S)− d(x, S̄)

S − S̄

∣∣∣Nφ(x)
]
dx

< CN(s)φ(s)/K,

(43)

is satisfied, then n(t, .)
t→∞−−−→ N , i.e.

∫∞
0

(f(t)− 1)2dν → 0.

Remark. The assumption (41) is the translation of assumption (18) to the problem

(31) therefore the result holds (we notice that supS,S̄
∣∣d(x,S)−d(x,S̄)

S−S̄

∣∣ < ∞ implies

the existence of Cst in assumption (18). First we decompose the variation of the
entropy into negative part and positive part in Lemma 3.1. Then we show that under
assumptions (41) and ((42) or(43)), the negative part (which forces the convergence)
wins against the positive part (which creates oscillations).
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Lemma 3.1. Let n,N, φ be solution to equation (31), (33) and (34) respectively,
f = n/N and dν(x) = N(x)φ(x)dx. Let the entropy defined as follows H(f(t)) :=∫∞

0
(f(t)− 1)2dν. Then we have

d

dt
H(f(t)) = [Ddiff

2 (f) +Dren
2 (f) + E−2 (f)]︸ ︷︷ ︸
≤0

+E+
2 (f)︸ ︷︷ ︸
≥0

,

where the entropy dissipation due to diffusion and the renewal terms are

Ddiff
2 (f) = −2C

∫ ∞
0

( ∂
∂x
f(t, x)

)2

dν(x),

Dren
2 (f) = −φ(0)

∫ ∞
0

{(
f(t, x)− 1

)2

−
(
f(t, 0)− 1

)2

− 2
(
f(t, 0)

)[
f(t, x)− f(t, 0)

]}
b(x, S̄)N(x)dx,

E−2 (f) = −φ(0)

∫ ∞
0

[
2
(
f(t, 0)− 1

)(
b(x, S)− b(x, S̄)

)]
−
fNdx

− 2

∫ ∞
0

[
(f(t, x)− 1)

[
d(x, S)− d(x, S̄)

]
f(t, x)

]
+
dν(x),

and the positive terms due to non linearities is given by

E+
2 (f) = 2φ(0)

∫ ∞
0

[(
f(t, 0)− 1

)(
b(x, S)− b(x, S̄)

)]
+
fNdx

+

∫ ∞
0

[
2(f(t, x)− 1)

[
d(x, S)− d(x, S̄)

]
f(t, x)

]
−
dν(x).

The proof of this lemma is a direct computation (application of Theorem 2.2).
Now, we are ready to prove the Proposition 4.

Proof of Proposition 4. We recall that we denote g = f − 1. Using that b (resp. d)
decreases (resp. increases) with respect to S, we notice that[(

f(t, 0)− 1
)(
b(x, S)− b(x, S̄)

)]
+

=
[
− |b(x, S)− b(x, S̄)

S − S̄
|(S − S̄)

(
g(t, 0)

)]
+

=
[
|b(x, S)− b(x, S̄)

S − S̄
|(S − S̄)

(
g(t, 0)

)]
−
,

and[
2(f(t, x)− 1)

[
d(x, S)− d(x, S̄)

]]
−

=
[
2g(t, x)(S − S̄)|d(x, S)− d(x, S̄)

S − S̄
|
]
−
.

Thus, we have,

E+
2 (f) = 2φ(0)

∫ ∞
0

[(
f(t, 0)− 1

)(
b(x, S)− b(x, S̄)

)]
+
fNdx

+

∫ ∞
0

[
2(f(t, x)− 1)

[
d(x, S)− d(x, S̄)

]
f(t, x)

]
−
dν(x)

= 2φ(0)

∫ ∞
0

∣∣b(x, S)− b(x, S̄)

S − S̄
∣∣[(S − S̄)

(
g(t, 0)

)]
−
fNdx

+

∫ ∞
0

∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣[2g(t, x)(S − S̄)f(t, x)

]
−
dν(x).
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Since, for all a, b ∈ R, we have8 : (ab)− ≤ (a−b)2, then, using the Jensen inequality,
we obtain that(∫

β(x, y)g(t, y)g(t, x)N(y)dy
)
−

∫
β(x, y′)N(y′)dy′∫
β(x, y′)N(y′)dy′

≤
(
g(t, x)−

∫
g(t, y)

β(x, y)N(y)∫
β(x, y′)N(y′)dy′

dy
)2
∫
β(x, y′)N(y′)dy′

≤
∫

(g(t, x)− g(t, y))2β(x, y)N(y)dy,

(44)

with g = f − 1. Therefore, we have∫ ∞
0

∣∣b(x, S)− b(x, S̄)

S − S̄
∣∣( ∫ β(x, y)N(y)g(t, y)g(t, 0)dy

)
−
f(t, x)N(x)dx

≤ 2

∫∫ ∣∣b(x, S)− b(x, S̄)

S − S̄
∣∣β(x, y)N(y)

(
g(t, x)− g(t, 0)

)2

f(t, x)N(x)dxdy

+ 2

∫∫ ∣∣b(x, S)− b(x, S̄)

S − S̄
∣∣β(x, y)N(y)

(
g(t, x)− g(t, y)

)2

f(t, x)N(x)dxdy, (45)

and∫ ∞
0

∣∣b(x, S)− b(x, S̄)

S − S̄
∣∣( ∫ β(x, y)N(y)g(t, y)g(t, 0)dy

)
−
f(t, x)N(x)dx

≤
∫∫ ∣∣b(x, S)− b(x, S̄)

S − S̄
∣∣β(x, y)N(y)

(
g(t, y)− g(t, 0)

)2

f(t, x)N(x)dxdy. (46)

Moreover, using (44), we find∫ ∞
0

∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣( ∫ β(x, y)g(t, y)g(t, x)N(y)dy

)
−
f(t, x)dν(x)

≤
∫∫ ∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣f(t, x)(g(t, x)− g(t, y))2β(x, y)N(y)dydν(x).

Since, g(t, x)− g(t, y) =
∫ x
y

∂
∂sg(t, s)ds, we have (Poincare inequality)∫ ∞

0

∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣( ∫ β(x, y)g(t, y)g(t, x)N(y)dy

)
−
f(t, x)dν(x)

≤
∫ ( ∂

∂s
g(t, s)

)2

[ ∫ s

0

∫ ∞
s

|x− y|β(x, y)N(y)dy
∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣f(t, x)dν(x)

]
ds,

and, using Fubini Tonelli theorem, we have∫ ∞
0

∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣( ∫ β(x, y)g(t, y)g(t, x)N(y)dy

)
−
f(t, x)dν(x)

≤
∫ ( ∂

∂s
g(t, s)

)2[ ∫ ∞
s

∫ s

0

|x−y|β(x, y)N(y)dy
∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣f(t, x)dν(x)

]
ds.

(47)

8(ab)− ≤ (a−b)2, if sgn(ab) > 0 and (ab)− ≤ (a−b)2−(|a|2+|b|2) ≤ (a−b)2, if sgn(ab) ≤ 0.
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Moreover, we find∫∫ ∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣f(t, x)(g(t, x)− g(t, y))2β(x, y)N(y)dydν(x)

≤ 2

∫
(g(t, x)− g(t, 0))2

[ ∫ ∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣f(t, x)β(x, y)N(y)dy

]
dν(x)

+ 2

∫
(g(t, x)− g(t, 0))2

[ ∫ ∣∣d(y, S)− d(y, S̄)

S − S̄
∣∣f(t, y)β(y, x)N(x)dν(y)

]
dx. (48)

Then, using (46)-(47), we find

E+
2 (g)≤φ(0)

∫ (
g(t, y)− g(t, 0)

)2

[
2

∫ ∣∣b(x, S)− b(x, S̄)

S − S̄
∣∣β(x, y)N(y)f(t, x)N(x)dx

]
dy

+ 2

∫∫ ∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣f(t, x)(g(t, x)− g(t, y))2β(x, y)N(y)dydν(x),

or,

E+
2 (g)≤φ(0)

∫ (
g(t, y)− g(t, 0)

)2

[
2

∫ ∣∣b(x, S)− b(x, S̄)

S − S̄
∣∣β(x, y)f(t, x)N(x)dx

]
N(y)dy

+

∫ ( ∂
∂s
g(t, s)

)2

[
2

∫ ∞
s

∫ s

0

|x− y|β(x, y)N(y)dy
∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣f(t, x)dν(x)

]
ds,

or, using (45)-(47), we find

E+
2 (g) ≤ φ(0)

∫ (
g(t, x)− g(t, 0)

)2

∣∣b(x, S)− b(x, S̄)

S − S̄
∣∣[4 ∫ β(x, y)N(y)dy

]
f(t, x)N(x)dx

+

∫ ( ∂
∂s
g(t, s)

)2[
4φ(0)

∫ ∞
s

∫ s

0

|x− y|β(x, y)N(y)dy
∣∣b(x, S)− b(x, S̄)

S − S̄
∣∣fNdx]ds

+

∫ ( ∂
∂s
g(t, s)

)2

[
2

∫ ∞
s

∫ s

0

|x− y|β(x, y)N(y)dy
∣∣d(x, S)− d(x, S̄)

S − S̄
∣∣f(t, x)dν(x)

]
ds.

Since, we have,

Dren
2 (g) = −φ(0)

∫ ∞
0

(
g(t, y)− g(t, 0)

)2

b(y, S̄)N(y)dy,

Ddiff
2 (g) = −2C

∫ ∞
0

( ∂
∂s
g(t, s)

)2

dν(s),

both conditions (42) and (43) leads to the decay of the entropy and, so, to the
convergence of f to 1 as t→∞.
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4. Conclusion. We show in this paper that the GRE is a powerful method to
study the dynamic of solutions of evolution equations (from positive semigroups)
which appears in biology (where population stays positive). We prove that the
study of the kernel of the entropy dissipation is the key to study the dynamic.
We see that the variation of the entropy can be decomposed in a negative part
which participates to the convergence to the equilibrium (containing the linear part
around the equilibrium) and the positive part which participates to the oscillations
(coming form the nonlinear part of the evolution equation). The difficulties (and
so the assumptions that would be find), to prove the convergence, come from the
comparison between these two effects : oscillation versus back to the equilibrium.
We do not claim that assumptions we give here are optimal but are sufficient to
obtain the convergence in each models. It could be interesting to study optimal
assumption in order to have the convergence and so to compare more accurately L2

norms which appear in the GRE computation.

5. Annex.

5.1. Proof of Theorem 2.2.

Proof. Using the main equation (10), we have

d

dt
n = L(〈N,ψ〉)n+

L(〈n, ψ〉)− L(〈N,ψ〉)
〈n, ψ〉 − 〈N,ψ〉

n〈(n−N), ψ〉.

Now, noticing that (L(〈N,ψ〉)N) = 0, we get

d

dt
nN−1 =

[
L(〈N,ψ〉)n

+
L(〈n, ψ〉)− L(〈N,ψ〉)
〈n, ψ〉 − 〈N,ψ〉

n〈(n−N), ψ〉
]
N−1 − (L(〈N,ψ〉)N)nN−1N−1.

Let H̃ : z 7→ H(z − 1) a C1, function, we find

d

dt
H̃(nN−1) = H̃ ′(nN−1)

[[
L(〈N,ψ〉)n

+
L(〈n, ψ〉)− L(〈N,ψ〉)
〈n, ψ〉 − 〈N,ψ〉

n〈(n−N), ψ〉
]
N−1 − (L(〈N,ψ〉)N)nN−2

]
.

Then, we have directly

d

dt
〈H̃(nN−1)N,φ〉 = 〈H̃ ′(nN−1)

[[
L(〈N,ψ〉)n

+
L(〈n, ψ〉)− L(〈N,ψ〉)
〈n, ψ〉 − 〈N,ψ〉

n〈(n−N), ψ〉
]
N−1 − (L(〈N,ψ〉)N)nN−2

]
N,φ〉

− 〈H̃(nN−1)N,L(〈N,ψ〉)∗φ〉+ 〈H̃(nN−1)L(〈N,ψ〉)N,φ〉,

and replacing nN−1 by f we find

d

dt
〈H̃(f)N,φ〉 = 〈H̃ ′(f)

[
L(〈N,ψ〉)(fN)− (L(〈N,ψ〉)N)f

]
, φ〉

− 〈H̃(f)N,L(〈N,ψ〉)∗φ〉+ 〈H̃(f)L(〈N,ψ〉)N,φ〉

+ 〈H̃ ′(f)
L(〈fN,ψ〉)− L(〈N,ψ〉)

〈(f − 1)N,ψ〉
(Nf)〈(f − 1)N,ψ〉, φ〉,
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and finally we obtain

d

dt
〈H̃(f)N,φ〉 =

〈L(〈N,ψ〉)
((
H̃ ′(f(x))(f(y)− f(x)) + H̃(f(x))− H̃(f(y))

)
N(y)

)
, φ(x)〉

+ 〈H̃ ′(f)
L(〈fN,ψ〉)− L(〈N,ψ〉)

〈(f − 1)N,ψ〉
(Nf)〈(f − 1)N,ψ〉, φ〉.

with 〈H̃ ′(f)L(〈fN,ψ〉)−L(〈N,ψ〉)
〈(f−1)N,ψ〉 (Nf)〈(f−1)N,ψ〉, φ〉 = (EH)L+(f−1)+(EH)L−(f−1).

This proves that d
dtH(f − 1) = DLH(f − 1) = DLinearH (f − 1) + (EH)L−(f − 1) +

(EH)L+(f − 1). Since H is convex, positive and H(0) = 0 we have directly that

(H ′(f(x))f(s))+ ≤ H ′(f(x))f(s) +−H(0) +H(f(x))−H ′(f(x))f(x)︸ ︷︷ ︸
≤0

−H(f(s))︸ ︷︷ ︸
≤0

=
(
H ′(f(x))(f(s)− f(x)) +H(f(x))−H(f(s))

)
,

and so (EH)L+(g) ≤ NDNon linear
H (g).

5.2. Proof of Corollary 1.

Proof. Let C > 0 and H : x 7→ ((x− C)+)2, then, we have directly that(
2(g(x)− C)+(g(y)− g(x)) + ((g(x)− C)+)2 − ((g(y)− C)+)2

)
= −

(
(g(x)− C)+ − (g(y)− C)+

)2 − 2(g(x)− C)+(g(y)− C)−,

and (g(s)H ′(g(x)))− = 2(g(x)− C)+g(s)−. Therefore, we find

DLinearH (g) := 〈Leq
((
H ′(g(x))(g(y)− g(x)) +H(g(x))−H(g(y))

)
N(y)

)
, φ(x)〉

= −
〈
Leq
((

(g(x)− C)+ − (g(y)− C)+

)2
N(y)

)
, φ(x)

〉
− 2〈Leq

(
(g(y)− C)−N(y)

)
(g(x)− C)+, φ(x)〉,

and

(EH)L+(g) := 〈|∆Lg|(N(g + 1))(x)〈(g(s)H ′(g(x)))−N(s), ψ(s)〉, φ〉
= 2〈|∆Lg|(N(g + 1))(x)(g(x)− C)+, φ〉〈(g(s)−N(s), ψ(s)〉.

Since g ≥ −1, we have (g(y) − C)− ≥ Cg−(y), therefore, we obtain the following
inequality,

C〈g(s)−N(s), ψ(s)〉 ≤ 〈(g(y)− C)−N(s), ψ(s)〉
and so we find
(EH)L+(g) ≤ 2〈|∆Lg|(N (g+1)

C )(x)(g(x)− C)+, φ〉〈(g(s)− C)−N(s), ψ(s)〉.

Under assumption (18), we have

〈|∆Lg|(N 2(g+1)
C )(x), (g(x)−C)+φ〉 ≤ 〈

Leq

(
(g(y)−C)−N(y)

)
〈(g(s)−C)−N(s),ψ(s)〉 , (g(x)−C)+φ(x)〉. Now,

we assume that g(t = 0, .) < C and we let

T ∗ = sup
t>0
{g(s, .) ≤ C, ∀s ∈ [0, t[}.
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Assuming that T ∗ < ∞, then in a neighbourhood of T ∗ : ]T ∗ − µ, T ∗ + µ[, 0 ≤
(g − C)+ ≤ ε ≤ 1 and so

d

dt
〈(g(x)−C)2

+N,φ〉 ≤ −〈|∆Lg|(N
(g + 1)

C
)(x), (g(x)−C)+φ〉 ≤ 0, ∀t ∈ [0, T ∗+µ[,

which means that g(t, .) ≤ C, for all t ∈ [0, T ∗+µ[ (absurd) and so we have T ∗ =∞.
For the convergence result, with H(z) = z2, it suffices to notice that under

assumption (19), we have

DLinearH (f − 1) +NDNonlinearH (f − 1) ≤ 0,

and so, using the inequality (17) we have the decay of the entropy and the conver-
gence to the equilibrium f = 1 (LaSalle’s principle).

5.3. Proof of Proposition 3. In this section, we prove existence and uniqueness
result of solution to (31)–(32), (33) and (34). We use the same definition of weak
solution and follow the similar arguments which are used in [21] to prove the ex-
istence and uniqueness result to (31)–(32). We start with the following a priori
estimate of n.

Lemma 5.1. Assume that S(.) ∈ L∞loc(R+ × R+), then there exists a unique weak
solution n ∈ C

(
R+;L1(R+)

)
∩ L2

loc(R+;W 1,2(R+)) which solves (31). Moreover,
we have n ≥ 0, and∫ ∞

0

|n(t, x)|dx ≤ e||(B−d)+||∞t
∫ ∞

0

|n0(x)|dx. (49)

Theorem 5.2. Assume (35)− (37), then there is a unique weak solution

n ∈ C
(
R+;L1(R+)

)
∩ L2

loc(R+;W 1,2(R+))

solving (31).

Proof’s of Lemma 5.1 and Theorem 5.2 goes in similar lines that are given in
[21]. So we omit the proofs.

Now we prove the existence and uniqueness of (33) and (34). First we observe
that for a given S, we consider the associated eigenvalue problem of (33) and (34).

Before we prove Proposition 3, we prove some lemmas which are helpful. We
notice that for a given S̄ there exists (λS̄ , NS̄ , φS̄) solution to the eigenproblem (see
[1, 8] for details),

∂xNS̄ = C∆NS̄ − d(x, S̄)NS̄ − λS̄NS̄ ,

NS̄(0)− CN ′
S̄

(0) =

∫
B(x, S̄)NS̄(x)dx, NS̄ ∈W 1,2(R+),

−∂xφS̄ = C∆φS̄ − d(x, S̄)φS + φS̄(0)B(x, S̄)− λS̄φS̄ , φS̄ ∈W 1,2(R+),

φ′
S̄

(0) = 0 and

∫
φS̄NS̄(x)dx = 1.

(50)

Lemma 5.3. Assume (36) then we have

∂

∂S̄
λS̄ = −

∫ ( ∂

∂S̄
d
)
NS̄φS̄dx+ φS̄(0)

∫ ( ∂

∂S̄
B
)
NS̄dx < 0. (51)

Proof. The proof goes in similar lines that are given in [27, 28]. Therefore we skip
the proof.

Lemma 5.4. Assume (36), λ0 > 0, λ∞ < 0 and (38) then there exists a solution
to (33).
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Proof. Using that λ0 > 0, λ∞ < 0 and the decay (51), we have the existence of Γ
decreasing regular function defined on [0, S̄∗[ (with S̄∗ ∈ [0,∞]) so that {S̄ : λS̄ =
0} = {(S̄,Γ(S̄)) : S̄ ∈ R+} ⊂ R2

+ (1-dimension manifold).

Remark 2. It is easy to check that Proposition 3 is an immediate consequence of
Lemma 5.4. Notice that using (40), we have λ0 > 0, λ∞ < 0 are satisfied.

Uniqueness of U : Let U solution of the eigenproblem given by the Proposition 3
and V an another positive solution to

V ′ + d(x,

∫
V ψ)V = CV ′′, V (0)− V ′(0) =

∫
B(x,

∫
V ψ)V (x)dx

with
∫
V ψ 6=

∫
Uψ. Then there exists V̄ , φ̄, λ̄ solution to the eigenproblem

V̄ ′ + d(x,

∫
V ψ)V̄ = CV̄ ′′ − λ̄V̄ , V̄ (0)− V̄ ′(0) =

∫
B(x,

∫
V ψ)V̄ (x)dx

−φ̄′ + d(x,

∫
V ψ)φ̄ = Cφ̄′′ − λ̄φ̄+B(x,

∫
V ψ)φ(0), φ̄′(0) = 0

with λ̄ 6= 0 (since ∂
∂SλS < 0). Therefore by integration, we have λ̄

∫
V φ̄ = 0 and

hence V = 0.
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