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Highlights

• We argue that behavior must be considered in evaluations of public health policies.

• We base our claim on the example of mandatory MMR vaccination.

• In this case, behavior may cause major welfare transfers between generations.

• We provide a computational tool to analyze individual behavior in epidemiology.
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Abstract

In a vaccination game, individuals respond to an epidemic by engaging in preven-

tive behaviors that, in turn, influence the course of the epidemic. Such feedback loops

need to be considered in the cost effectiveness evaluations of public health policies.

We elaborate on the example of mandatory measles vaccination and the role of its an-

ticipation. Our framework is a SIR compartmental model with fully rational forward

looking agents who can therefore anticipate on the effects of the mandatory vaccina-

tion policy. Before vaccination becomes mandatory, parents decide altruistically and

freely whether to vaccinate their children. We model eager and reluctant vaccination-

ist parents. We provide numerical evidence suggesting that individual anticipatory

behavior may lead to a transient increase in measles prevalence before steady state
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eradication. This would cause non negligible welfare transfers between generations.

Ironically, in our scenario, reluctant vaccinationists are among those who benefit the

most from mandatory vaccination.

Keywords: MMR, behavior, vaccination, game theory, backward induction, vac-

cination game, vaccination policy.

1 Introduction

In economic evaluations of disease control policies, health authorities verify whether

the expected benefits of a decision outweigh its costs. Costs and benefits may be expressed

as money or well-being and may be direct or indirect. In order to do that, tools were

developed to reckon, measure, and add up a wide range of – sometimes subjective – aspects

of a disease, from physical and psychological pain to the monetary cost of missing work

(Weinstein et al., 2009; Sassi, 2006). Cost effectiveness analysis is now a routine procedure

in public health (see Drummond et al. (2015) for a comprehensive textbook on the subject).

What modern economic evaluation methods have yet in common, at least in applied

contexts and despite a very large academic literature on the topic, is their limited account

of individual responses to the outcomes of a public health policy. Some studies look

retrospectively upon individual behaviors insofar as they were directly affected by a policy

(see Walker (2003); Lorenc et al. (2011) for instance). Other authors, like DePasse et al.

(2017), attempt to anticipate the effects of individual responses to policies but individual

decisions are either random or assumed ad hoc in their models. Besides, they only focus

on responses to the direct effects of a policy, and not on responses to indirect incentive

changes implied by this policy. As a rule, in applied cost effectiveness analyses, individual

behavioral responses to incentive changes are overlooked a priori.

We see two reasons explaining why such individual behaviors are not considered by
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health authorities in cost effectiveness analyses before policy implementation. First, we

think that they may be implicitly deemed inconsequential without further consideration.

Second, considering feedback loops between individual behaviors and epidemics can be a

complex task, especially when it comes to forward looking behaviors influencing the future

spread of the disease. Let us elaborate on those two explanations.

It might first be argued that individual behavior is not always relevant to disease

control. Some real life examples might even be brought up. However, this does not imply

that behaviors should be disregarded in all cases. Measles is a typical example of a disease

whose spread hinges essentially, at least in developed countries, on individual behaviors.

This has been dramatically illustrated by the MMR vaccine controversy (McIntyre and

Leask, 2008). Measles is a highly contagious1 infectious disease with potentially severe

complications (Orenstein et al., 2004; Centers for Disease Control and Prevention, 2015).

An effective vaccine against measles has been available in developed countries since the

1960’s and has been included in routine immunization programs since the 1980’s. In some

countries such as France and the United Kingdom, vaccination expenses are covered by

the state or health insurances. Yet, despite the apparent incentives to vaccinate and low

vaccination costs, a fraction of the population still refuses vaccination, allowing for sporadic

epidemics (World Health Organization, 2017).2 The first objective of this article is to

illustrate with an internally consistent epidemiological model assuming realistic parameter

values, how individual behaviors can substantially influence disease dynamics, and show

that they can be relevant to economic evaluation. In order to meet this objective, we

study the example of measles vaccination in France, where MMR vaccination was made

mandatory for all children born after January 1st 2018. Recent studies of the possible
1The reproduction number ranges from 12 to 18 (see Guerra et al. (2017)), and high levels of immu-

nization (90 to 95%, see Nokes and Anderson (1988)) are necessary to reach herd immunity.
2Examples of such epidemics include the 2014–2015 California outbreak (Clemmons et al., 2015; Halsey

and Salmon, 2015), and the 2018 epidemics in Ireland, Italy (WHO Europe, 2018), and southwestern
France (Santé Publique France, 2018).
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benefits of mandatory measles vaccination (Trentini et al., 2019) overlook the effects of

individual behaviors. We use numerical simulations to show that individual anticipatory

behaviors may give rise to substantial generational effects. Also, we show that reluctant

vaccinationists may be among those who benefit the most from mandatory vaccination.

Let us now turn to the complexity argument for overlooking individual behavior in

economic evaluations, and the second objective of the present study. Arguably, individuals

vaccinate if the risk of getting infected outweighs their vaccination cost. This cost encom-

passes vaccination expenses, but also medical visit inconvenience, religious and political

motives, or the fear of side effects.3 As for the risk of ever getting infected, it depends

on the present and future number of infectious individuals, which in turn depends on how

many people got vaccinated in the past, and will in the future. Analyzing the complex

feedback loop between individual behaviors and disease dynamics can be technically chal-

lenging, even more so with cost effectiveness analysis in view. The second objective of this

article is to show how this can be done and provide a tool to do so. The interplay between

vaccination behaviors and the spread of a disease has been formalized as vaccination games.

We refer our readers to Funk et al. (2010); Manfredi and D’Onofrio (2013); Chen and Tox-

vaerd (2014); Verelst et al. (2016); Wang et al. (2016) for literature reviews. As will be

seen, a meaningful vaccination game analysis cannot, in many cases, rely only on steady

states; we will need to compute fully time-dependent solutions. Computing such solu-

tions is nontrivial, especially when agents are assumed to be forward-looking – that is able

to anticipate. In France, mandatory vaccination was clearly announced during the 2017

French presidential campaign, that is several months before implementation, so it could be

anticipated and agents could act accordingly. In order to overcome the difficulty of includ-

ing this feature in the model and meet our second objective, we will use the framework

proposed by Flaig et al. (2018).4 This study was among the firsts to solve a vaccination
3See Kata (2010) for a review of anti-vaccination arguments.
4The similar work by Salvarani and Turinici (2018) applied to the case of flu is also worth mentioning.
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game with fully rational intertemporal utility maximizing agents, a measles-like complex

disease, simulation over a long time horizon, and vital dynamics. Most previous studies of

vaccination games considered simplified epidemiological models amenable to analytic work

or without vital dynamics, or focused on steady states only. Finally, we want to emphasize

that solving the vaccination game is not the sole technical difficulty faced by the analyst

(think of the estimation of population parameters, for instance) but these are left outside

the scope of this study.

Our model is presented in Section 2. Simulation results are analyzed in Section 3. First,

we show the effect of anticipatory behaviors on the dynamics of measles (Section 3.1). Then,

we compare the welfare of the different generations and sub-populations (Section 3.2).

Section 4 concludes.

2 Model

2.1 Epidemiological assumptions

We describe measles dynamics with a SIR compartmental model with homogeneous

mixing and vaccination. Individuals are born Susceptible. Following infection, individuals

remain Infectious for five days on average.5 Then, they Recover and stay immunized for

the rest of their lives. Birth and death rates are low and equal, which is characteristic of

developed countries. We overlook passive immunity through maternal antibodies. While

most infants are born immune to measles, they usually become susceptible several months

before scheduled vaccination. Also, studies have found that children lose immunity earlier

where measles is not endemic. For a recent review of this topic, see Guerra et al. (2018).

Real life vaccination schedules vary depending on the vaccine and from one country
5Infected individuals are infectious four days before rash onset (Centers for Disease Control and Pre-

vention, 2015). Our assumption is that sick individuals are (self-)quarantined after five days of positive
infectiousness.
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to another (World Health Organization, 2017). We model a MMR-like vaccine, with a

simplified vaccination schedule. We assume that children have access to vaccination when

they are 14 months (420 days) old. Hence, two age categories are relevant for our study:

younger and older than 14 months. Vaccination is only offered as part of routine vaccination

schedules, and has an efficacy of 97% (Centers for Disease Control and Prevention, 2015).

Figure 1 sums up the epidemiological assumptions.

Susceptible Infected Recovered

Vaccinated Susceptible Infected Recovered

Age < 14 mo.
Age > 14 mo.

Figure 1: Compartmental model for measles with vaccination. Gray arrows: births and
deaths. Aging is probabilistic.

2.2 Behavioral assumptions

Being healthy brings instantaneous utility (or benefit), while being sick has a relative

cost. Since state changes after infection are independent of all vaccination decisions, we can

assume that the intertemporal cost of being sick is paid immediately upon infection. For

the sake of simplicity, we made the further assumption that this intertemporal discounted

cost is equal to the total undiscounted cost of being sick. This simplifying assumption is

made possible by the short duration of the symptoms, and the low discount rate value of 3%

annually. Costs and utilities are in QALDs (1 QALD is 1/365 QALY). Sick individuals incur

a total cost of 7 QALDs (Thorrington et al., 2014). This figure includes symptoms, time

off school or work, hospitalization, and missed days of work by parents of sick children.6

Vaccination has a cost too (monetary, logistical, ideological, etc.) that must be paid when
6Notice here that individuals consider their personal costs, and not a social cost of being sick.
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vaccination is voluntary, but also when it is mandatory. We use this cost to model two types

of individuals: reluctant and eager vaccinationists. Both types of agents make vaccination

decisions based on an individual cost benefit analysis. We only assume that reluctant

vaccinationists have a higher vaccination cost than eager vaccinationists. Notice that we

do not specify whether vaccination costs are objective in any sense or only perceived; they

can be both for both types of individuals. Also, we assume that the cost of being sick

is the same for both agent types and both age classes. This is an approximation, see

Thorrington et al. (2014). When vaccination is voluntary, individuals (at 14 months of

age) freely choose whether they want to get vaccinated based on a personal intertemporal

and far-sighted cost benefit analysis. When vaccination is mandatory, all susceptible 14

month old children get vaccinated.

Here we assume that individuals decide for themselves even though they are 14 months

old. This assumption is equivalent to considering perfectly altruistic parents making the

decision of having their child vaccinated considering his best interest (Ramsey, 1928). This

assumption seems to be in line with observations in the case of MMR vaccination decision

making (Brown et al., 2010).

We also assume that individuals either accept both vaccination and the recommended

vaccination schedule, or they refuse vaccination altogether and never have the opportunity

to catch up. That is, individuals do not decide when to vaccinate but merely whether or not

to vaccinate. This simplifying assumption is in line with our focus on routine vaccination,

however it may have to be relaxed in other applications of our approach. We refer our

readers to Flaig et al. (2018) for a case where individual also decide when to vaccinate.

Timing is as follow: before time 0, individuals believe that voluntary vaccination will

last forever and they behave accordingly. We start our simulations at time 0 with the

epidemic steady state corresponding to this behavior. At time 0, authorities announce

that vaccination will be made mandatory at time tmv > 0. Hence, between time 0 and tmv,
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vaccination is still voluntary but individuals can anticipate the future effects of mandatory

vaccination.

2.3 Equations

Let sa,j (resp. ia,j, ra,j, va,j) denote the susceptible (resp. infected, recovered, vacci-

nated) population

• in age class a ∈ {y, o}: younger or older than 14 months,

• of type j ∈ {ev, rv}: eager or reluctant vaccinationists.

V o
S denotes the value of being susceptible and older than 14 months, and Λj ∈ [0, 1]

the vaccination decision of individuals of type j ∈ {ev, rv}. A description of the input

parameters with their values is given in Table 1. For all time t between 0 and final time

T , the system is governed by Equations (1)–(8).

d

dt
sy,j(t) =αjνno(t)−

(
1

l
+ β

i(t)

n(t)

)
sy,j(t) (1)

d

dt
so,j(t) =

1

l
(1− θΛj(t)) sy,j(t)−

(
µ+ β

i(t)

n(t)

)
so,j(t) (2)

d

dt
iy,j(t) =β

i(t)

n(t)
sy,j(t)−

(
1

l
+ γI

)
iy,j(t) (3)

d

dt
io,j(t) =β

i(t)

n(t)
so,j(t) +

1

l
iy,j(t)− (µ+ γI) io,j(t) (4)

d

dt
ry,j(t) =γIiy,j(t)−

1

l
ry,j(t) (5)

d

dt
ro,j(t) =

1

l
ry,j(t) + γIio,j(t)− µro,j(t) (6)

d

dt
vo,j(t) =

1

l
θΛj(t)sy,j(t)− µvo,j(t) (7)

− d

dt
V o

S (t) =ug −
(
δ + µ+ β

i(t)

n(t)

)
V o

S (t) + β
i(t)

n(t)

(
V̄V − C

)
(8)
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where i(t) is the total number of infected individuals,

i(t) =
∑

a∈{y,o}
j∈{ev,rv}

ia,j(t),

no(t) is the total population of individuals older than 14 months,

no(t) =
∑

j∈{ev,rv}
so,j(t) + io,j(t) + ro,j(t) + vo,j(t),

and n(t) is the total population at time t,

n(t) =
∑

a∈{y,o}
j∈{ev,rv}

sa,j(t) + ia,j(t) + ra,j(t) + va,j(t).

Equations (1)–(7) govern the evolution of the population in each compartment. A

proportion αrv of the νno(t) children born at time t are reluctant vaccinationists (or equiv-

alently, have reluctant vaccinationist parents), and a proportion αev = 1 − αrv are eager

vaccinationists (Equation 1). We set αrv to 4%.7 Under homogeneous mixing assumption,

susceptible individuals (Equations 1 and 2) are infected with probability β× i(t)/n(t)× dt

at time t. Infected individuals (Equations 3 and 4) recover at rate γI . Aging is proba-

bilistic in our model. At each time, individuals younger than 14 months (Equations (1),

(3), and (5)) grow older than 14 months with probability (1/l).dt. Individuals older than

14 months (Equations (2), (4), (6), and (7)) die with probability µ.dt. We assume that

infected individuals do not have a higher death rate (instead, for the sake of simplicity,

this probability is included in the cost of being infected).

Equation (8) is the Bellman equation (also known as adjoint equation, see Bellman
7Results are similar for higher values of αrv. We provide results for αrv = 1% in Appendix C as a

robustness check.

10

                  



Notation Value Description Source

Epidemiology
β 2.8 Contact rate Guerra et al. (2017)
γI 1/5 Rate of recovery Wearing et al. (2005);

Centers for Disease
Control and Prevention
(2015)

θ 97% Vaccine efficacy Moss and Griffin (2012);
Centers for Disease
Control and Prevention
(2015)

Decision making
ug 1 Utility of being in good

health
Normalized

C 7 Total cost of being sick Thorrington et al. (2014)
cev 1.02× 10−3 Vaccination cost for ea-

ger vaccinationists
Calibrated

crv 9.41× 10−3 Vaccination cost for re-
luctant vaccinationists

Calibrated

αev 96% Proportion of eager vac-
cinationists

Set

αrv 4% Proportion of reluctant
vaccinationists

1-αev

δ 8.1× 10−5 Discount rate Set
ε 105 Slope parameter of the

sigmoid χε
Set

Vital dynamics
ν 3.42× 10−5 Birth rate INSEE (2018)
µ 3.42× 10−5 Death rate µ for stationary popula-

tion
1/l 1/420 Aging rate French vaccination

schedule

Table 1: Input parameter values. Time unit: day. Costs and utility in QALD.
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(1957)) governing the value function V o
S . Remember that individuals are forward-looking:

value functions are (future) expected utilities. Therefore, if ug is the utility of being in

good health during one day, V o
S decreases by ug each day spent susceptible as one day of

good health is past. In other words, V o
S decreases at rate ug. The same reasoning goes

for compartment transitions. As time passes and transitions are forgone, their net value

is subtracted from the value of being susceptible. The value of being dead is normalized

to 0. Then, the value of dying at time t for a susceptible old individual is −V o
S (t). Since

vaccination provides lifelong immunization, VV is equal to its steady state value V̄V =

ug/(δ + µ). Recovered individuals also enjoy lifelong immunization so we have the net

value of getting infected at time t by V̄V − C − V o
S (t), where C is the total cost of being

sick. The discount rate δ stands for time preferences. See Section A in Appendix for a

more formal derivation of the Bellman equation.

As long as vaccination is not mandatory, children decide to vaccinate by comparing

the value V o
S of being susceptible (Equation 8) with the value VV of being vaccinated. We

represent decision making by a smoothed best response function (Fudenberg and Levine,

1998; Xu and Cressman, 2014). We use the sigmoid χε : x 7→ 1

1 + exp [−εx]
as smoothed

best response function. If the value difference between two alternatives, say 1 and 2, is

∆V = V1−V2, then alternative 1 of value V1 is chosen with probability χε (∆V ). Let Λj(t)

denote the proportion of children of type j who reach 14 months at time t, and who receive

the vaccine. With tmv ∈ [0, T ] standing for the date at which mandatory vaccination comes

into force, Λj is given by

Λj(t) =





χε
(
θ
(
V̄V − V o

S (t)
)
− cj

)
if t < tmv

1 otherwise

where θ is the efficacy of the vaccine. In the following simulations, ε = 105. For this value,

locally, a change of 1/25, 000 QALD corresponds to a 100% change in vaccination decision.
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2.4 Solution method

We solve Equations (1)–(8) numerically using a functional fixed-point iteration algo-

rithm. Technical information about our solution procedure is provided in Section B in

Appendix. For proofs of existence and uniqueness of a solution, see Flaig et al. (2018).

Since birth and death rate are equal, the total population is constant. This allows us

to solve with the total population older than 14 months set to its steady state value

n̄o = 1/(1 + νl).

In order to solve, we need initial conditions for Equations (1)–(7), and a final condition

for Equation (8). By final time T , vaccination is mandatory. We choose T so that solutions

to Equations (1)–(7) are reasonably close to their steady state by time T under Λev = Λrv =

1. We then set V o
S (T ) to the steady state value of V o

S obtained by solving Equations (1)–(8)

with the left-hand sides set to zero and Λev = Λrv = 1.

Initial conditions of Equations (1)–(7) are set to the steady state that is reached when

(i) vaccination is available on a voluntary basis, and (ii) mandatory vaccination has not

yet been announced. This initial state depends on the proportion αrv of reluctant vacci-

nationists in the population, and on the respective vaccination costs cev and crv of eager

and reluctant vaccinationists. After setting αrv, we adjust cev and crv so as to obtain a

steady state corresponding to an incidence of 250 measles cases per year in a population of

6×107 persons, that is the approximate population of France.8 Measles incidence may vary

greatly from one year to another. 250 cases correspond to the 2014 incidence in France.

This steady state incidence level serves as benchmark in the welfare analysis.
8In practice, solutions are computed for a total population normalized to 1.
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3 Results

3.1 Epidemiology

Figure 2 shows the vaccination decisions for four different values of tmv under the

assumption that a proportion αrv = 4% of the population is reluctant to vaccination. In

the initial steady state, before mandatory vaccination is announced, 100% of the eager

vaccinationists (dashed black lines) and 25% of the reluctant vaccinationists (dashed gray

lines) vaccinate. The corresponding instantaneous prevalence is shown in Figure 3.

(a) tmv = 0 (b) tmv = 6 months

(c) tmv = 5 years (d) tmv = 10 years

Figure 2: Vaccination decisions. Black: vaccination decision by eager vaccinationists.
Gray: vaccination decision by reluctant vaccinationists. Dashed: initial steady state.
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(a) tmv = 0 (b) tmv = 6 months

(c) tmv = 5 years (d) tmv = 10 years

Figure 3: Instantaneous prevalence per 6 × 107 persons. Gray vertical line: tmv. Dashed:
initial steady state.

In Figures 2a and 3a, mandatory vaccination immediately comes into force upon an-

nouncement at time 0 – the solid black and gray lines showing vaccination decisions in

Figure 2a are overlapping at 100% from time 0 onwards. All children reaching 14 months

are vaccinated against measles, and the prevalence drops to eradication levels, as shown

by the solid black line in Figure 3a.

Things turn out differently when mandatory vaccination is announced before coming

into force. In Figures 2b and 3b, mandatory vaccination is announced 6 months in advance.

Before mandatory vaccination comes into force, reluctant vaccinationists anticipate that
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measles will ultimately be eradicated thanks to mandatory vaccination. This means that

they will enjoy eradication for most of their life, whether vaccinated or not. Consequently,

they engage in free riding and do not vaccinate. Between time 0 and tmv, 0% of reluctant

vaccinationists receive the vaccine. They do not pay the vaccination cost, yet they will

benefit from the constrained effort of those who will vaccinate under mandatory vaccina-

tion. To some extent, eager vaccinationists free ride too but only right before tmv. The

drop in vaccination between time 0 and tmv leads to a slight increase in prevalence.

This increase in prevalence amplifies as mandatory vaccination is announced earlier

(Figures 3c and 3d). Indeed, the longer the interval between time 0 and tmv, the longer

the drop in vaccination can last. At some point, the increase in prevalence makes free

riding suboptimal for eager vaccinationists. Besides, as mandatory vaccination is put off

to a later time after announcement, eradication is also delayed and it becomes optimal for

some reluctant vaccinationists to vaccinate their children after policy announcement.

Figure 4 displays the same results as Figures 2 and 3 for all values of the implementation

date tmv ranging from 0 to 10 years (y-axes). The green lines show when mandatory

vaccination is implemented (tmv). The figure shows how a spike in measles cases (Figure 4c)

develops as mandatory vaccination is announced earlier before implementation, due to the

decrease of vaccination coverage among reluctant vaccinationists (Figure 4b). All eager

vaccinationists vaccinate for all values of tmv. The spike in prevalence and the eventual

eradication of the disease imply that individuals will fare very differently depending on

their birthdate and their vaccination status at a given date. Hence we must look into

intertemporal effects by undertaking a full welfare evaluation.

3.2 Welfare

Let us turn to welfare analysis. In order to be comprehensive, we need to consider the

welfare of (i) individuals who are born after the announcement of mandatory vaccination (at

16

                  



(a) Vaccination decision by eager vaccinationists (b) Vaccination decision by reluctant vaccina-
tionists

(c) Instantaneous prevalence

Figure 4: Vaccination decisions and prevalence for a mandatory vaccination date (tmv)
between 0 and 10 years. Green: current date t = tmv.

time 0), and (ii) individuals that were born before that time. For each of these categories,

we compare

1. the value of being susceptible9 at each time between 0 and T when vaccination

becomes mandatory at time tmv, with

2. the value of being susceptible under a benchmark scenario where vaccination is vol-

untary, that is under our initial epidemic steady state conditions.
9Since we consider lifelong immunity after successful vaccination or recovery, only susceptible individuals

have their welfare depending on health policies. See Section A in Appendix.
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(a) Eager vaccinationists (b) Reluctant vaccinationists

Figure 5: Value difference between mandatory vaccination scenario and benchmark scenario
for children born after time 0 as a function of the birthdate and the mandatory vaccination
implementation date tmv. Green: birthdate t = tmv.

We denote by V y,j
S (t), j ∈ {ev, rv}, the value of being susceptible, younger than 14

months, and of type j at time t. V̄ y,j
S is the steady state of the same value function before

policy announcement. We show how to compute V y,j
S (t) in Section A in Appendix. Figure 5

displays the welfare gains V y,j
S (t)− V̄ y,j

S associated with mandatory vaccination for children

depending on their birthdate t, their stance toward vaccination, and policy implementation

date tmv. The green lines show when mandatory vaccination is implemented.

All individuals born after measles eradication benefit from mandatory vaccination (light

blue area on the right of each graph). This illustrates an instance where state intervention

solves the vaccination public good problem. This scenario and the corresponding welfare

gain are well-known (Bauch et al., 2003). Usually, cost effectiveness analyses provide

precisely this welfare gain as only measure of the impact of mandatory vaccination.

However, individuals who are born when prevalence is peaking – when mandatory

vaccination is announced long enough before implementation – are worse-off (Figure 5).

Indeed, newborns spend 14 months without having access to vaccination, which makes them

especially vulnerable to infection. During this period, only herd immunity is protecting
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them.

The individuals benefiting the most from mandatory vaccination are those who will

not be obliged to vaccinate and who still see many others undergo this obligation. The

first of those two effects will be stronger for reluctant vaccinationists because they have

a higher cost to vaccinate. The second effect will be stronger if mandatory vaccination is

implemented quickly after its announcement so that there is not enough time for free riding

to translate into a spike in measles cases. In this case, reluctant vaccinationists who are able

to free ride are among those who benefit the most from mandatory vaccination (Figure 5b).

Namely, reluctant vaccinationists in this situation benefit around six times more from

mandatory vaccination than eager vaccinationists born after eradication. Obviously, the

specific magnitude of this transfer of welfare between sub-populations and generations

depends on many parameters. Yet, we argue that it cannot be overlooked a priori in a

cost effectiveness analysis.

To be exhaustive in our evaluation, we also need to take into account the population that

was born before time 0. Figure 6 shows the difference between the value of being susceptible

at time 0 and the value of being susceptible in our benchmark steady state voluntary

vaccination scenario. V̄ o
S denotes the steady state of V o

S before policy announcement; other

notations are the same as above.

At time 0, individuals are indifferent to mandatory vaccination when it comes late after

the announcement (in our instance, more than about 5 years after announcement). This

is due to time discounting, and to the fact that a larger increase in prevalence offsets the

benefits of subsequent eradication.

Susceptible individuals who are older than 14 months at time 0 (blue curve in Figure 6)

are either those who refused vaccination, or those whose immune system did not respond

to vaccination. From their point of view, the sooner mandatory vaccination is implemented

the better. the less significant the spike in prevalence following the announcement and the
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Figure 6: Value difference at time 0 for susceptible children born before time 0. Blue:
individuals older than 14 months (V o

S (0) − V̄ o
S ). Green: eager vaccinationists younger

than 14 months (V y,ev
S (0)− V̄ y,ev

S ). Red: reluctant vaccinationists younger than 14 months
(V y,rv

S (0)− V̄ y,rv
S ).

sooner the eradication – hence the lower the infection probability.

Since we model aging as a Poisson process, it is equivalent for a child to be younger than

14 months at time 0, or to be born exactly at time 0. Then, the green and red curves in

Figure 6 corresponding to children younger than 14 months at time 0 can be read directly

on Figure 5 with 0 x-axis value. Interpretation is the same as above.

4 Conclusion

We draw on the example of mandatory measles vaccination to support our claim that

disregarding individual behaviors in cost effectiveness evaluations is a priori problematic.

Our study is based on numerical simulations, and on the restricting (yet relevant) as-

sumption that individuals are rational and far-sighted. We show that when mandatory
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vaccination is announced in advance, while measles is eradicated in the long run after

policy implementation, individual anticipatory behaviors may cause major transition ef-

fects. As some individuals anticipate eradication, they do no vaccinate their children before

mandatory vaccination comes into force. This leads to a transient increase in prevalence

and, consequently, to generational welfare differences. Reluctant vaccinationists are among

the ones benefiting the most from mandatory vaccination in this scenario. The transient

increase in prevalence can be avoided by implementing mandatory vaccination quickly after

it has been announced. Investigating transient effects due to policy announcement as well

as possible ways to mitigate them requires not only to take individual behaviors into ac-

count endogenously, but also to compute fully time-dependent scenarios. This is not done

in most current cost effectiveness analyses. We believe that our simulations allow to high-

light effects whose magnitude calls for empirical investigations and possibly reconsideration

of some public health policy recommendations. As of today, data is still largely missing

to investigate the full extent of these phenomena associated with “rational” behavior and

their welfare implications in the real world.

While this study focuses on measles vaccination decision, we use a framework that is

relevant for all types of infectious diseases and anticipatory behaviors involving strategic

interactions. Also, the effects we bring out are not conditional on considering a sub-

population of reluctant vaccinationists – free riding can also occur in an homogeneous

population. Therefore, our approach is ultimately intended as a tool for public health

professionals to be used in many different settings.

However, we want to highlight a limitation of our study and of the computational

methods used here in general. The model developed in this article is deterministic. This

implies that we cannot convincingly and precisely study disease eradication in our setting

(Houy (2015)). When vaccination is voluntary, the incentive to vaccinate decreases with

decreasing prevalence and eradication is not achievable. Therefore in this case, determin-
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istic simulations can be deemed reasonable. However, when vaccination is mandatory, we

expect to witness eradication. Eradication is relevant to our discussion if it implies changes

in long-term control policy that could modify the cost effectiveness analysis. For instance,

at the extreme, vaccination against a disease could be safely removed from the vaccina-

tion schedule as soon as the disease is confirmed eradicated. In a deterministic model,

this policy would imply a recurrence of the epidemic that would not occur in a stochastic

model. Hence, investigating eradication properly would require to implement our model in

a stochastic setting. But then, agents’ anticipations would be over probability distributions

and it would then be necessary to work with approximate heuristics in order to deal with

the dimensionality of this problem.
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A Welfare computation

A.1 Value of being a susceptible and more than 14 months old

The probability tree in Figure A.1 displays the possible transitions for a susceptible

individual older than 14 months.

V oS

1− µdt− β i
ndt

V̄V − C
β i
ndt

0

µdt

Figure A.1: Probability tree for individuals older than 14 months and susceptible.

From the probability tree in Figure A.1, we derive Equation 9.

V o
S (t) = ugdt+ (1− δdt)

[
β
i(t)

n(t)

(
V̄V − C

)
dt+

(
1− β i(t)

n(t)
dt− µdt

)
V o

S (t+ dt)

]
. (9)

A.2 Value of being a susceptible and less than 14 months old

Under the mandatory vaccination scenario, the value of being susceptible and older

than 14 months is given by V o
S , the solution of Equation (8). We compute the value of

being susceptible, younger than 14 month, and of type j ∈ {ev, rv} at time t ∈ [0, T ] as
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V y,j
S (t) = ugdt+ (1− δdt)

[
β
i(t)

n(t)

(
ug + V̄V/l

δ + 1/l
− C

)
dt

+
1

l
Λj(t)θ

(
V̄V − cj

)
dt

+
1

l
Λj(t) (1− θ) (V o

S (t+ dt)− cj) dt

+
1

l
(1− Λj(t))V

o
S (t+ dt)dt

+

(
1− β i(t)

n(t)
dt− 1

l
dt

)
V y,j

S (t+ dt)

]
. (10)

The probability tree in Figure A.2 may clarify Equation (10).

V y,j
S

1− 1
l dt− β i

ndt

ug+V̄V/l
δ+1/l − Cβ i

ndt

V o
S

1− Λj

V o
S − cj1− θ

V̄V − cjθ

Λj

1
l dt

Figure A.2: Probability tree for individuals younger than 14 months old, susceptible and
of type j.

B Technical appendix

In order to find a solution to Equations (1)–(8), we first notice that the system (1)–(8)

could be rewritten in a system (11)–(12) coupled via a couple of functions (Λ0,Λ1) : the
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forward equation

d

dt




sy,0

sy,1

so,0

so,1

...

...

...

vo,0

vo,1




(t) = F




sy,0

sy,1

so,0

so,1

...

...

...

vo,0

vo,1




(t) +




0

0

−1
l
θΛ0(t)sy,0(t)

−1
l
θΛ1(t)sy,1(t)

0

...

0

1
l
θΛ0(t)sy,0(t)

1
l
θΛ1(t)sy,1(t)




(11)

and the backward equation





− d
dt
V o

S (t) = ug −
(
δ + µ+ β i(t)

n(t)

)
V o

S (t) + β i(t)
n(t)

(ug/(δ + µ)− C)

Λj(t) =





χε (θ (ug/(δ + µ)− V o
S (t))− cj) if t < tmv

1 otherwise

(12)

Therefore, we have to find a fixed point to the following operator

Γ : (Λ0,Λ1) ∈ C([0, T ], [0, 1]) 7→




sy,0

...

vo,1




solution to (11) 7→ V o
S solution to (12)

7→ (Λ̃0, Λ̃1) = (G0(V
o
S (t)), G1(V

o
S (t))) ∈ C([0, T ], [0, 1]), (13)

where

Λj(t) = Gj(V
o
S (t)) :=





χε (θ (ug/(δ + µ)− V o
S (t))− cj) if t < tmv

1 otherwise
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The operator Γ is compact on C([0, T ], [0, 1]) and, using the Schauder theorem, we

have the existence of a solution. Since Γ is not a contraction operator, a direct application

of the Banach-Picard theorem/algorithm is not possible. Nevertheless, we notice that by

construction Γ is decreasing (antitone, see Sommariva and Vianello (2000))

Λ0
0 ≤ Λ1

0 , Λ0
1 ≤ Λ1

1 ⇒ Γ(Λ0
0,Λ

0
1) ≥ Γ(Λ1

0,Λ
1
1),

and it is natural to use a relaxed algorithm, i.e., search a fixed point to the following oper-

ator Γε(Λ0,Λ1) = (1− ε)(Λ0,Λ1) + εΓ(Λ0,Λ1). The numerical algorithms is the application

of this principle to the discrete operator

ΓN : (ΛN
0 ,Λ

N
1 ) ∈ RTailleV ecteur × RTailleV ecteur 7→




sNy,0

sNy,1

sNo,0

sNo,1

iN

iN1

vNo,0

sNo,1




numerical solution to (11)

7→ V o
N,S numerical solution to (12)

7→ (Λ̃0, Λ̃1) = (G0(V
o
N,S), G1(V

o
N,S)) ∈ RTailleV ecteur × RTailleV ecteur (14)

where

• Numerical solutions to (11) are obtained by semi-implicit Euler method (with time
step equal to .5, time forward)

for (int i=0;i<TailleVecteur-1;i++)

{
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S_{y,0}[i+1]=(S_{y,0}[i]+dt*(1-alpha)*nu/(1+l*mu))/(1+dt*(1/l+lambda*(I[i])));

S_{y,1}[i+1]=(S_{y,1}[i]+dt*alpha*nu/(1+l*mu))/(1+dt*(1/l+lambda*(I[i])));

S_{o,0}[i+1]=(S_{o,0}[i]+dt*S_{y,0}[i]*(1-Theta*Soft_max_v[i])/l)/(1+dt*(mu+lambda*(I[i])));

S_{o,1}[i+1]=(S_{o,1}[i]+dt*S_{y,1}[i]*(1-Theta*Soft_max_nv[i])/l)/(1+dt*(mu+lambda*(I[i])));

I[i+1]=(I[i]-dt*(mu*I1[i]))/(1+dt*(gamma_I-lambda*

(S_{o,0}[i+1]+S_{o,1}[i+1]+S_{y,0}[i+1]+S_{y,1}[i+1])));

I1[i+1]=(I1[i]+dt*((lambda*(S_{o,0}[i]+S_{o,1}[i])+1/l)*I[i]) )/(1+dt*(mu+gamma_I+1/l));

}

• Numerical solutions to (12) are obtained by semi-implicit Euler method (with time
step equal to .5, time backward)

for (int i=TailleVecteur-1;i>=1;i--)

{

W[i-1]=(W[i] +dt*(I[i]*(C_calcul*lambda)))/(1.+dt*(delta+mu+lambda*I[i-1]));

}

where W [i] = ug/(δ + µ)− V o
S,N[i].

The algorithm is then :

Let epsilon (here=1e-2 (in the function $\chi_\epsilon$))

Let relaxation (here=1e-3)

Let errMax (here errMax=1e-5)

while (error>errMax)

{

(Soft_max_v1,Soft_max_nv1)=Gamma^N(Soft_max_v,Soft_max_nv);

error=norm((Soft_max_v1,Soft_max_nv1)-(Soft_max_v,Soft_max_nv));

(Soft_max_v,Soft_max_nv)=relaxation*(Soft_max_v1,Soft_max_nv1)+(1-relaxation)*(Soft_max_v,Soft_max_nv);

}

As we see in Figure B.3, we have (as expected for a Banach Picard algorithm) a linear

convergence, i.e. log(error) ∼ p1Iter + p0 with p1 depending of the relaxation parame-

ter. Moreover, we expect that the speed rate parameter p(1) ∼ log(1 − relaxation) ∼

−relaxation which is the case for both cases given in Figure B.3. This is not a very fast
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method (about 5 minutes on a 3,4 GHz Intel Core i5 processor, using C++ language, for

a 10−5 precision, TailleV ecteur = 120000 and an ε = 102). Nevertheless, the lack of con-

traction (mostly due to the fact that max | d
dx
χε(x)| = 1/(4ε) >> 1) implies that a Newton

method is no more effective. A shooting method (trying to find V o
S (0) such that V o

S (T ) is

equal to some ad hoc value by changing time evolution from backward to forward in the

equation (12)) is theoretically possible, but changing time evolution makes this equation

“unstable” and so application of a shooting method needs to have a precision on V o
S (0)

smaller than the machine epsilon.

C Results for αrv = 1%

In this section, we provide results for αrv = 1% as a robustness check. We also performed

simulations for αrv as high as 12% but there was little qualitative difference with the case

αrv = 4% presented in the main text.

For αrv = 1%, calibration to a 250 cases per year per 6 × 107 individuals yields cev =

8.08×10−3 and crv = 1.14×10−2. Vaccination costs are higher than for αrv = 4% (Table 1).

Due to higher vaccination costs, less than 100% of the eager vaccinationists and 0%

of the reluctant vaccinationists vaccinate initially (Figure C.4). For the same reason,

vaccination by eager vaccinationists drops significantly before mandatory vaccination date

tmv. As a consequence, prevalence increases faster and is significant for a wider range of

tmv values (Figures C.5 and C.6c).

When vaccination is mandatory, both sub-populations have to pay a substantially

higher cost than for αrv = 4%, which reduces their welfare (Figure C.7). In the case

of reluctant vaccinationists (Figure C.7b), the herd immunity externality does not com-

pensate for this higher vaccination cost.

In Figure C.8, the value of being susceptible at time 0, when mandatory vaccination is
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announced, only increases as mandatory vaccination date tmv gets very close from 0. This

is because prevalence increases significantly even for relatively small values of tmv. The

spike in prevalence offsets the benefits of eradication if mandatory vaccination comes into

force more than a few months after announcement.

The value of being susceptible and less than 14 months (green and red curves on Fig-

ure C.8) is low or negative as children have a high probability of turning 14 months after

tmv. If they do, they have to pay their high vaccination cost. Their value increases as the

probability of turning 14 months after tmv decreases.
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Figure B.3: Speed of convergence. We plot the logarithm of the error with respect to
the number of iteration of the relaxed Banach-Picard algorithm. The up figure for the
relaxation parameter equal to 10−3 and the down figure for the relaxation parameter equal
to 10−2.
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(a) tmv = 0 (b) tmv = 6 months

(c) tmv = 5 years (d) tmv = 10 years

Figure C.4: Vaccination decisions for αrv = 1%. Black: vaccination decision by eager
vaccinationists. Gray: vaccination decision by reluctant vaccinationists. Dashed: initial
state.

35

                  



(a) tmv = 0 (b) tmv = 6 months

(c) tmv = 5 years (d) tmv = 10 years

Figure C.5: Instantaneous prevalence per 6× 107 persons for αrv = 1%. Gray vertical line:
tmv. Dashed: initial state.

36

                  



(a) Vaccination decision by eager vaccinationists (b) Vaccination decision by reluctant vaccina-
tionists

(c) Instantaneous prevalence

Figure C.6: Vaccination decisions and prevalence for a mandatory vaccination date (tmv)
between 0 and 10 years for αrv = 1%. Green: date t = tmv.
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(a) Eager vaccinationists (b) Reluctant vaccinationists

Figure C.7: Value difference between mandatory vaccination scenario and benchmark sce-
nario for children born after time 0 for αrv = 1%. Green: birthdate t = tmv.

Figure C.8: Value difference at time 0 for susceptible children born before time 0 for
αrv = 1%. Blue: individuals older than 14 months. Green: eager vaccinationists younger
than 14 months. Red: reluctant vaccinationists younger than 14 months.
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