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Highlights
• We study the problem of voluntary vaccination for a transmittable disease outbreak.

• We consider vital dynamics, vaccine efficacy waning and far-sighted individuals.

• We also obtain results when part of the population has an anti-vaccination stance. 1
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Abstract

Vaccination is one of humanity’s main tools to fight epidemics. In most countries
and for most diseases, vaccination is offered on a voluntary basis. Hence, the spread of
a disease can be described as two interacting opposite dynamic systems: contagion is
determined by past vaccination, while individuals decide whether to vaccinate based
on beliefs regarding future disease prevalence. In this study, we show how the interplay
between such anticipating behavior and the otherwise biological dynamics of a disease
may lead to the emergence of recurrent patterns. We provide simulation results for
i) a Measles-like outbreak, ii) canonical fully rational and far-sighted individuals, iii)
waning vaccine efficacy and vital dynamics, and iv) long periods of time, i.e. long
enough to observe several vaccination peaks. For comparison, we conducted a similar
analysis for individuals with adaptive behavior. As an extension, we investigated the
case where part of the population has an anti-vaccination stance.

Keywords: epidemics, behavior, vaccination, game theory, forward-backward sys-
tem, backward induction.
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1 Introduction

Vaccination is one of the most efficient tools humanity possesses to fight epidemics.

The collective consequences of vaccination depend on its cost, its effectiveness, and disease

dynamics. Many theoretical works have studied the optimal vaccination policies (from

Hethcote and Waltman (1973) to Laguzet and Turinici (2015a)). When vaccination, as is

often the case, is administered on a voluntary basis, a further mechanism comes into play:

the interaction between disease dynamics and human behavior—a now widely aknowledged

fact (see Funk et al. (2010, 2015)). On the one hand, disease dynamics has an impact on

human behavior through prevalence, individual beliefs about future course of the epidemic,

and spreading of information or beliefs about it. On the other hand, human actions such

as vaccination, social distancing, treatment adherence, or even fleeing, influence disease

dynamics. Observations of the strong impact of human behavior on disease dynamics

include Philipson (1996); Jansen et al. (2003); Riley et al. (2003); Nishiura (2007); Bayham

et al. (2015).

It is all the more crucial to investigate human behavior in the case of vaccination decision

as vaccination contributes to herd imunity. Yet individual vaccination decisions may not

be aligned with social interests: individuals make their decisions out of self-interest while

their actions also bear on the whole population. Herd immunity is merely an externality

of vaccination decisions, and therefore the result of voluntary vaccination is generally not

socially optimal in this respect. Besides, it can be readily understood how in the long run

this discrepancy between private and social interests may give rise to recurrent epidemic

patterns—low prevalence may lead to low vaccination rates, which in turn may lead to

high contagion, higher vaccination rates, and again low prevalence.

Theoretical modelling of vaccination behavior, however, remains a challenge. When

faced with a transmittable disease, an individual may decide on a course of action based

on his beliefs regarding future developments of the epidemic. That is, each individual

may anticipate developments to come. Now, if all individuals do this, the very evolution

of the epidemic is modified. Ultimately, the spread of a disease can be described as two

entangled yet conflicting dynamical systems. The spread of a disease restricted to its
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biological1 features evolves forward in time: future developments are only determined by

the current state of the epidemic. On the other hand, individuals base their vaccination

decision at least in part on backward reasoning: they act now upon what might happen

in the future. The spread of a disease is influenced by individual decisions while in turn

influencing these decisions.

In order to solve this problem, several approaches have been proposed. Some authors

tackled the problem with a full consideration of the forward-backward dimension described

above. Yet these studies, in order to obtain tractable results, had to decrease the complexity

of other dimensions. Other authors simplified, the dynamics system, at least compared to

the model we will present here: Geoffard and Philipson (1996); Chen and Cottrell (2009)

studied SI models, and Geoffard and Philipson (1997); Laguzet and Turinici (2015b) studied

SIR models without waning vaccine efficacy. Others restricted the scope of their study.

Geoffard and Philipson (1996, 1997), for instance, produced a qualitative description of

some features of the solution. In the same vein, Chen and Cottrell (2009) investigated

equilibrium existence, uniqueness, and potential coexistence of two equilibria in a given

setting. Finally, Reluga and Galvani (2011) restricted themselves to the study of stationary

states.

An alternative stream of literature somehow decreases the complexity of the coupled

system by disregarding backward reasoning in human behavior. Bauch et al. (2003); Bauch

and Earn (2004) sparked renewed interest in vaccination policy and individual choices with

one period (i.e. static) models. Further instances of one period models were provided by

Reeling and Horan (2015); Codeço et al. (2007); Shim et al. (2012). In order to introduce

dynamic decision-making in this framework, Bauch (2005) (followed by Reluga et al. (2006);

d’Onofrio et al. (2011); Fu et al. (2011); Yang et al. (2016)) proposed models with imitation

behavior. Just as the spread of a transmittable disease when individual behavior is ignored,

imitation only depends on past and current states of the epidemic: imitation dynamics

goes forward in time. This outlook on the problem was also adopted by Fenichel et al.

(2011). They assumed that individuals falsely believe that the current epidemiological

state will persist (Voinson et al. (2015) added cognitive biases to this framework). Similarly,
1We describe epidemics as biological insofar as they do not depend on human behavior. As will be

made clear later, this distinction depends on problem specification: some parameters may or may not be
modelled as decision variables. Consider for instance the contact rate between individuals.
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Buonomo et al. (2008); Epstein et al. (2008); Coelho and Codeço (2009); Funk et al. (2009);

Bhattacharyya et al. (2015) all modelled information and/or beliefs with forward dynamics

in time.

At this point, we must emphasize that we by no mean argue that real life vaccination

decision (or for that matter any other behavior pertaining to the study of epidemics) is

only driven by backward reasoning. Nor do we claim that imitation or past evolution

of an epidemic are irrelevant to our case. However, we believe that there is currently a

need for modelling the entangled backward and forward dynamics described above in all

their complexity with canonical—though somehow unrealistic—perfectly informed, fully

rational and far-sighted individuals. Simulation results are to be used as benchmarks to

better evaluate the weight of the different factors that can influence decision-making in

populations faced with a transmittable disease. This is to be done by measuring how real

life data departs from the predictions of the canonical model proposed here.

In the present paper, we address the challenge of coupled forward-backward dynamics

posed by canonical modelling of vaccination decision-making. We consider

• a SIVR (Susceptible, Infectious, Vaccinated, Removed) epidemiological dynamic

model with vital dynamics and waning vaccine efficacy, and

• backward reasoning by far-sighted, fully rational, and selfish individuals.

Close to our work are Reluga (2010) and Reluga (2013) in the context of social distancing.

The main difference between these studies and ours is that, since we consider waning

immunity and vital dynamics with growing population, our set of equations is larger and

convergence is more difficult to obtain. Indeed, the set of vaccinated individuals is not

constrained to always grow in our model, which increases dramatically the array of possible

vaccination strategies. We solve this complex system, and we believe that we are the first

to obtain recurrent behavioral patterns (in our case, vaccination peaks) with a canonical

forward-backward model and full complexity of population dynamics.

We describe our model in Section 2. Section 3 is dedicated to the results of our model

for a Measles-like disease and a vaccine with waning efficacy. Our base case (Section 3.1)

involves a population of identical individuals. For comparison, we provide results in the

case of adaptive behavior (Section 3.2). Finally, we investigate populations in which some
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Figure 1: Illustration of the SIRV model with epidemiological transitions in black and vital
dynamics transitions in gray.

individuals have an anti-vaccination stance, that is higher vaccination cost (Section 3.3).

Section 4 concludes.

2 Model

We consider a SIR model with vaccination and vital dynamics (see Figure 1). Indi-

viduals can be either susceptible (S), infected (I) or recovered (R). In addition, susceptible

individuals have the possibility to access vaccination on a voluntary basis and become

vaccinated (V). The disease is transmitted under the assumption of homogeneous mixing

of the population. Vaccination has a waning efficacy so that vaccinated individuals can

become susceptible after some time. Birth and death rates can differ and hence do not

necessarily imply constant population size.

A susceptible individual is assumed to base his decision to vaccinate on a rational

far-sighted cost-benefit analysis. Hence, vaccination decision depends on the values the

individual expects from being vaccinated and from remaining susceptible, and on the im-

mediate cost (monetary, psychological, logistical, etc.) of vaccination. Formally, the prob-

lem of finding an individual’s optimal vaccination policy over time can be solved by ways

of dynamic programming via Bellman equations. Solving Bellman equations yields the

intertemporal value function of individuals in each health status. Given his current health

status, an individual’s value function is the discounted future value he expects to get if

he follows his optimal policy. Since we consider waning vaccine efficacy, both the value of

remaining susceptible and the value of getting vaccinated at a given time depend on pre-
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dictions about future epidemiological states. A vaccinated individual may lose immunity

and get the value of being sucseptible with non zero probability. To our knowledge, we are

the first to solve the canonical forward-backward problem with four value functions, two

of them depending on contagion dynamics.

Also, we consider for the sake of realism that individuals cannot vaccinate at any time:

in real life, only a fraction of them has access to vaccination simultaneously. This feature

is represented by rate α (see Table 1) in our model.2 In contrast to models where vaccine

is available at once to the whole population, individuals in our model anticipate that not

vaccinating when they have a chance implies waiting until the next opportunity to do so.

This, however, does not remove the game theoretical dimension of our problem even though

individuals do not play against each other in each instant. We have a sequential game in

which Nature randomly picks the playing order in each moment, and allows a maximum

αdt zero-measure set of individuals to vaccinate.

For numerical tractability, and yet certainly as a realistic assumption, we use the con-

cept of smoothed best response (Fudenberg and Levine (1998)). When facing a choice be-

tween two alternatives leading to intertemporal values V1 and V2 respectively, an individual

chooses V1 with probability
e(V1/ε)

e(V1/ε) + e(V2/ε)
, or introducing function χε : x 7→ 1

1 + e−x/ε
for

all ε ∈ R+, he chooses V1 with probability χε(V1 − V2).3 In Figure 2, we show function

χε for the different values of ε used in our simulations.4 Notice that as ε tends to 0, the

probability of playing any strategy that is not a best response goes to 0.

For a given ε, the epidemiological side—strictly speaking—of our model is governed by

Equations 1a–1d. T is the final time, sε(t) (resp. iε(t), vε(t), rε(t)) denotes the number

of susceptible (resp. infected, vaccinated, recovered) individuals at time t in [0, T ]. For

concision, we introduced nε(t) = sε(t) + iε(t) + vε(t) + rε(t) and function ξε : x 7→ xχε(x)

2We performed a sensitivity analysis on α. Dividing α by two does not bear upon short term epidemi-
ological results and vaccination decision. While the epidemic is not affected in the long run, the long term
vaccination decision changes noticeably, as shown in Figure C.3.

3The same approach was used by Xu and Cressman (2014, 2016) with individuals making decisions
based only on the present state of the epidemiology.

4 We used two different ε values so as to ease equation solving for some of our simulations. This,
however, is of little consequence as to our results. Consider for instance the difference in utility between
being sick and being healthy for the average duration of the infectious period (see Table 1 for parameter
values). This difference in utility is 5 × (10 − 2) = 40 on average, ignoring the discount factor for this
short period. It can readily be made sure that χ1/20(40) and χ1/600(40) are both close enough to 1 for our
purpose.χ between 0 and 1 will denote indifference in our model.
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Figure 2: χε for relevant values of ε.

for x in R. The individual decision process is described by Equations 2a–2d, where V ε
S (t)

(resp. V ε
I (t), V ε

V (t), V ε
R(t)) is the value function of a susceptible (resp. infected, vaccinated,

recovered) individual at time t in [0, T ].

d

dt
sε(t) =− sε(t)

[
αχε(V

ε
V (t)− V ε

S (t)− c) + λ
iε(t)

nε(t)
+ µ

]
+ νnε(t) + γV v

ε(t) (1a)

d

dt
iε(t) =− iε(t)

(
γI − λ

sε(t)

nε(t)
+ µ

)
(1b)

d

dt
vε(t) =− vε(t)(γV + µ) + αsε(t)χε(V

ε
V (t)− V ε

S (t)− c) (1c)

d

dt
rε(t) =− rε(t)µ+ γIi

ε(t) (1d)

− d

dt
V ε
S (t) =ug − (δ + µ)V ε

S (t) + λ
iε(t)

nε(t)
(V ε

I (t)− V ε
S (t)) + αξε(V

ε
V (t)− V ε

S (t)− c) (2a)

− d

dt
V ε
I (t) =ub − (δ + µ)V ε

I (t) + γI(V
ε
R(t)− V ε

I (t)) (2b)

− d

dt
V ε
V (t) =ug − (δ + µ)V ε

V (t) + γV (V ε
S (t)− V ε

V (t)) (2c)

− d

dt
V ε
R(t) =ug − (δ + µ)V ε

R(t) (2d)
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A detailed description of the parameters is given in Table 1. The construction of

Equations 1a–2d is made explicit by the alternative formulation in Appendix A.

Equations 1b and 1d are the same as in usual SIR models. We assume that the death

rate µ is the same for healthy and infected individuals. Infected individuals are recovering

at rate γI . Equation 1a too, is very similar to the equation describing the susceptible

population in a SIR model: each day, a susceptible individual has an average λ encounters

in which he could potentially get infected. A proportion i(t)/n(t) of these encounters

occur with an infected individual. Also, individuals are born susceptible at rate ν. Our

model departs from SIR models in that susceptible individuals decide whether or not to

vaccinate based on a cost-benefit analysis. At time t, the higher the net value to vaccinate

V ε
V (t)−V ε

S (t)− c, the closer to 1 the probability of deciding to vaccinate given by function

χε.

Let us now elaborate on Equations 2a–2d satisfied by the value functions. Again, an

alternative formulation of these equations is provided in Appendix A for the interested

reader. ug and ub are the instantaneous utilities of being in good and bad health respec-

tively. Individuals are forward-looking, hence the value functions decrease at rate ug or ub
(depending on the considered health status) with time. δ is the time discount factor and

we normalize the value of being dead to 0, so all value functions increase at rate (δ + µ).

That is the value of being say, susceptible, at time t decreases by (δ + µ) × (0 − VS(t)).

Similarly, the value of being in a given health status decreases by the net value of each

health status transition weighted by the rate of this transition.

Existence and uniqueness of a solution to Equations 1a–2d follows from Theorem 1.5

Theorem 1

The system of Equations 1a–2d has a unique solution for any ε > 0.

Proof. See Appendix B.
5Notice that in a related study, Chen and Cottrell (2009) found possible multiple equilibria. This is

due to the way they modelled imperfect vaccine efficacy, and in particular to the independance of vaccine
failure at each encounter. Indeed, in their study, when vaccine efficacy is low, a high prevalence implies a
high infection probability at each encounter and hence an incentive not to vaccinate balancing the incentive
to vaccinate.
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3 Results

3.1 Base case: population of identical individuals

Base parameter values are summarized in Table 1. We use parameter values that are

characteristic of Measles. Measles is a widely studied disease whose epidemiological features

allow for rich modelling in our framework. Also, Measles vaccine is offered on a voluntary

basis, and has recently been in the spotlight due to alleged side effects deterring part of the

population from vaccinating. We model a vaccine that is efficient for 10 years on average

and costs 10.6 Vital dynamics is characteristic of a developing country.7

Our base case features a perfectly mixed population of identical individuals. That is,

all individuals have the same vulnerability to the disease and rate of recovery, have the

same preference for being healthy over being sick, and face the same vaccination cost.

Equations 1a–2d are solved numerically using techniques close to fixed-point iterations.8

We set initial conditions for Equations 1a–1d, and final conditions for Equations 2a–2d.

Notice that from Equation 2d,

V ε
R =

(
V ε
R(T )− ug

δ + µ

)
e−(δ+µ).(T−t) +

ug
δ + µ

, (3)

and then V ε
I (Equation 2b), can be solved analytically. In our model, recovered individuals

stay recovered for the rest of their life, and ug, δ and µ do not depend on time, so V ε
R does

not depend on time. Consequently, V ε
I does not depend on time either, and we can set

both V ε
R and V ε

I to their respective stationary values. We then use the stationary values

of V ε
R and V ε

I to set the final value of V ε
S and V ε

V .
9 For all simulations, we make sure that

final time T is large enough so that the influence of final conditions on the result is null.10

In Figures 3–4, we show the output of our model (Equations 1a–2d) for ε = 1/600

6This cost represents 1/4 of the cost of being sick on average, disregarding epidemiological changes after
infection (see calculation in Footnote 4).

7All parameter values are only illustrative and do not reflect any specific real life case. A ±10%
sensisitivity analysis on all parameters is shown in Figure C.4

8Rather than shooting techniques, as is done in Reluga (2010). Source code is available on request.
9We know that the value of being vaccinated V εV and the value of being susceptible V εS are both higher

than the value of being infectious V εI , but lower than the value of having recovered V εR. In practice, the
final value of V εS and V εV is set to V εI or (V εI + V εR)/2 depending on the simulation, with no consequence as
for the results presented here.

10Typically, T is taken larger than 350 years.
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Parameter Base value Description
Epidemiology

λ 2.8 Contact rate.
α 0.0068 Potential vaccination rate.
γV 2.74× 10−4 Vaccination efficacy waning rate.
γI 0.2 Rate of recovery.

Decision making
ug 2 Instantaneous utility to be in good health.
ub 10 Instantaneous utility to be in bad health.
δ 8.1× 10−5 Time discount rate.
c 10 Cost of vaccination.

Vital dynamics
µ 5.48× 10−5 Death rate.
ν 8.22× 10−5 Birth rate.

Initial State
sε(0) 0.99× nε(t) Initial number of susceptible individuals.
iε(0) 0.01× nε(t) Initial number of infectious individuals.
vε(0) 0 Initial number of vaccinated individuals.
rε(0) 0 Initial number of recovered individuals.

Table 1: Parameter list and base values (all time dimensions in days, utility and cost are
dimensionless).
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Figure 3: Epidemiological results and vaccination decision (ξε(V ε
V (t)− V ε

S (t)− c)) over the
first quarter of the epidemic, with ε = 1/600 and nε(0) = 1.
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Figure 4: Epidemiological results and vaccination decision (ξε(V ε
V (t)− V ε

S (t)− c)) over the
first 20 years of the epidemic, with ε = 1/600 and nε(0) = 1.
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over the first quarter and over the first 20 years of the epidemic.11 In the first days

of the outbreak, individuals anticipate that the prevalence of the disease will be high

and hence vaccinate. At epidemic peak, more than 70% of the population is infectious

and all individuals that have access to vaccination vaccinate. After that, as the pool of

susceptible individuals decreases, the disease prevalence drops, and when it is low enough

(and anticipated to remain so for a long time), individuals stop vaccinating. Because of

vital dynamics and waning vaccination efficacy, the pool of susceptible individuals grows

again and a second wave of vaccination is observed about five years after the introduction of

the disease. Vaccination dynamics is then strongly damped and has an increasing frequency

over time. A state is finally reached where a portion of the individuals that have access to

the vaccine vaccinate at all time.

3.2 Individuals with adaptive behavior

So as to draw a parallel with the existing literature, we model the same disease as

in Section 3.1 in the case where individuals adopt an adaptive behavior. Individuals with

adaptive behavior do not anticipate the evolution of the epidemic at an aggregate level, even

though they do anticipate the evolution of their own health status. Susceptible individuals

with adaptive behavior, for instance, anticipate the loss of utility corresponding to being

sick for about 5 days—the average length of infection—, but mistakenly expect disease

prevalence to remain unchanged in the future. Hence, in this model, value functions

are stationary and solution of Equations 2a–2d under
d

dt
V ε
S (t) =

d

dt
V ε
I (t) =

d

dt
V ε
V (t) =

d

dt
V ε
R(t) = 0 at any time t.12 The system dynamics only goes forward in time.

In Figures 5–6 we display results for a population of individuals with adaptive behavior

over the first 20 years and the first quarter of the epidemic, and for ε = 1/600.13 The first

peak of vaccination lasts more that twice longer for adpative individuals since they do not

anticipate the very low prevalence to come for the following 5 years. Still, in the case of our

Measles-like disease, this difference yields qualitatively almost no difference in prevalence

for the first quarter of the epidemic. Indeed, the speed of contagion is so fast that when
11Results for ε = 1/20 are provided in Appendix C.
12That is, the value functions do depend on time. Numerically, we solve this system for each date,

subject to the current state of the epidemic.
13In Figure C.5 in Appendix, we show the same results for ε = 1/20.
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Figure 5: Epidemiological results and vaccination decisions over the first quarter of the
epidemic, with ε = 1/600 and nε(0) = 1 – Individuals with adaptive behavior.
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Figure 6: Epidemiological results and vaccination decisions over the first 20 years of the
epidemic, with ε = 1/600 and nε(0) = 1 – Individuals with adaptive behavior.
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decision differ, almost all individuals, far-sighted or with adaptive behavior have already

been infected.

In the long run, the vaccination dynamics of adaptive individuals is very different

from that of far-sighted individuals. While after the sixth year a portion of the latter

vaccinates at all times, the former have a more polarized vaccination behavior. Either all

adaptive individuals or none of them want to vaccinate. Adaptive individual vaccination

peaks occur with increasing frequency. Anticipation of future epidemiological states by

far-sighted individuals flattens vaccination decisions.

While we are not making policy recommendations in the present article, we can expect

the selected modelling approach to have policy implications. In the case shown here, for

instance, a model with adaptive agents would predict that the demand for vaccination

never settles, when our model with rational expectation would predict that with time,

individuals become close to indifferent to vaccination.

3.3 Populations with different costs to vaccinate

The population we have been modelling so far was made of identical individuals. Pref-

erences, notably, were the same for all individuals. Yet we expect real life individuals to

have differentiated preferences. Besides, as we are considering far-sighted individuals who

need to anticipate the future of the epidemic, we need to take into account the fact that an

individual’s decision may be influenced by his knowledge of others’ preferences and hence

their influence on future epidemiological states.

In this section, we model two populations —still homogeneously mixed— only differing

in their attitude toward vaccination. Different attitudes toward vaccination are modelled

by different costs to vaccinate. Population 0 has the same vaccination cost c = 10 as

the population modelled to this point (Sections 3.1–3.2). Population 1 has a more anti-

vaccination stance and a cost to vaccinate c = 12.14 Obviously, the vaccination behavior

of individuals in Population 1 is different from that of individuals in Population 0. This

disparity influences the course of the epidemic, which is anticipated by individuals in

Population 0, in turn modifying their behavior compared to the case where they were
14This difference can be accounted for by ideology but it can also be interpreted more materialistically:

individuals may face different insurance policies, more expensive access to medical services, etc.
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the only individuals in the population. Similarly, individuals in Population 1 anticipate

decisions made by individuals in Population 0.

We investigate the effects of vaccination cost heterogeneity by varying the proportion

of the whole population belonging to Population 1 between 0% (all individuals are in

Population 015), and 100% (all individuals are in Population 1). In each simulation, 1% of

Population 0 and 1% of Population 1 is initially infected.

Results are displayed in Figures 7–8.16 Individuals in Population 0 vaccinate more that

individuals in Population 1. Indeed, the former have a lower cost to vaccinate than the

latter and yet face the same disease prevalence at all times.

Individuals in each population tend to vaccinate more as the ratio of individuals in

Population 1 increases. Indeed, more individuals in Population 1 implies a lower overall

vaccination rate. Because higher prevalence is then anticipated by all individuals, more

people vaccinate in each population. This reasoning fails at some points in time since the

whole dynamics of the epidemic is modified by the change in vaccination policy of both

populations. Indeed, a change in vaccination policy may influence the waveform of the

disease dynamics and hence the lack of coherence between both cases may imply shifted

local maxima and local minima of vaccination decisions.

4 Conclusion

Investigating the interplay between strictly speaking biological dynamics of an epidemic,

and individual vaccination decision-making, is certainly critical to the design of operational

health policies. In this line, there is a need for an appropriate benchmark. We claim that

this benchmark is to be provided by the behavior of canonical fully rational and far-sighted

individuals. The resulting forward-backward system of equations, however, is difficult to

solve: it is computationally challenging to obtain the functional fixed-point of the system.

The problem is even harder to solve over long time horizon, with vital dynamics, and

with waning vaccine efficacy—in this case several vaccination peaks arise, which increases

dramatically the complexity of decision-making. It is even more challenging when we
15This corresponds in fact to the base case presented in Section 3.1.
16Figures D.8–D.9 in Appendix show more details. Figures D.6–D.7 and Figures D.10–D.11 in Appendix

display the same results for vaccination cost in Population 1 of c = 11 and c = 15 respectively.
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Figure 7: Vaccination decisions for two perfectly mixed populations with different costs to
vaccinate. Population 0: c = 10, Population 1: c = 12. ε = 1/20 and nε(0) = 1. Color
scale indicates the proportion of individuals in Population 1.
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Figure 8: Epidemiological results for two perfectly mixed populations with different costs
to vaccinate. Population 0: c = 10, Population 1: c = 12. ε = 1/20 and nε(0) = 1. Color
scale indicates the proportion of individuals in Population 1.
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consider individuals with different preference types.

In this study, we exposed the evolution of such an epidemiological system taking into

account 1) the forward dynamics of an epidemic, and 2) the backward individual decision-

making process. We simulated a Measles-like outbreak in this setting. We obtained several

vaccination peaks in the long run due to vital dynamics and waning vaccine efficacy. We

compared the results of our canonical candidate benchmark with those of another possible

benchmark found in the literature: adaptive vaccination decision-making. As a first ex-

tension of our model, we also modelled heterogeneous preferences in the simple case where

two populations with a different stance toward vaccination coexist. Once adapted for more

complex epidemic models, we believe that our approach will be able to produce benchmark

results for real life epidemics in cases where vaccination is offered on a voluntary basis.
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A Alternative formulation of the problem

In Equations 4a–5d, we provide an alternative formulation of Equations 1a–2d making

the construction of the model more apparent.

sε(t+ dt) =sε(t)

[
1− αχε(V ε

V (t+ dt)− V ε
S (t+ dt)− c)dt− λ i

ε(t)

nε(t)
dt− µdt

]

+ νnε(t)dt+ γV v
ε(t)dt (4a)

iε(t+ dt) =iε(t)

(
1− γIdt+ λ

sε(t)

nε(t)
dt− µdt

)
(4b)

vε(t+ dt) =vε(t)(1− γV dt− µdt) + αsε(t)χε(V
ε
V (t+ dt)− V ε

S (t+ dt)− c)dt (4c)

rε(t+ dt) =rε(t)(1− µdt) + γIi
ε(t)dt (4d)

V ε
S (t) =ugdt+ (1− δdt)

{
λ
iε(t)

nε(t)
V ε
I (t+ dt)dt+ αξε(V

ε
V (t+ dt)− V ε

S (t+ dt)− c)dt

+

(
1− µdt− λ i

ε(t)

nε(t)
dt

)
V ε
S (t+ dt)

}
(5a)

V ε
I (t) =ubdt+ (1− δdt) {γIV ε

R(t+ dt)dt+ (1− µdt− γIdt)VI(t+ dt)} (5b)

V ε
V (t) =ugdt+ (1− δdt) {γV V ε

S (t+ dt)dt+ (1− µdt− γV dt)V ε
V (t+ dt)} (5c)

V ε
R(t) =ugdt+ (1− δdt)(1− µdt)V ε

R(t+ dt) (5d)

for t in [0, T ].

B Proof of Theorem 1

Without loss of generality, Equations 1a–2d can be normalized by introducing

∆ε
V S(t) = V ε

V (t)− V ε
S (t), ∆ε

IR(t) = V ε
I (t)− V ε

R(t), ∆ε
IS(t) = V ε

I (t)− V ε
S (t),

sε(t) = sε(t)/nε(t), iε(t) = iε(t)/nε(t), vε(t) = vε(t)/nε(t), rε(t) = rε(t)/nε(t).
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For all t in [0, T ] we get
d

dt
sε(t) =− sε(t)

(
αχε(∆

ε
V S(t)− c) + λiε(t) + ν

)
+ ν + γV vε(t) (6a)

d

dt
iε(t) =− iε(t) (γI − λsε(t) + ν) (6b)

d

dt
vε(t) =− vε(t) (γV + ν) + αsε(t)χε(∆

ε
V S(t)− c) (6c)

d

dt
rε(t) =− rε(t)ν + γIiε(t) (6d)

and

− d

dt
∆ε
V S(t) =− (δ + µ+ γV )∆ε

V S(t)− αξε(∆ε
V S(t)− c)− λiε(t)∆ε

IS(t) (7a)

− d

dt
∆ε
IS(t) =(ub − ug)− (δ + µ+ λiε(t))∆ε

IS(t)− αξε(∆ε
V S(t)− c)− γI∆ε

IR(t) (7b)

− d

dt
∆ε
IR(t) =(ub − ug)− (δ + µ+ γI)∆IR(t) (7c)

By definition, sε(t) + iε(t) + rε(t) + vε(t) = 1. Hence we can write Equations 6a–7c as

fixed-point problem

(sε(t), iε(t), vε(t),∆ε
V S(t),∆ε

IS(t),∆ε
IR(t)) = Φ(sε(t), iε(t), vε(t),∆ε

V S(t),∆ε
IS(t),∆ε

IR(t)).

After some computation on the integral version of Equations 6a–7c, we have

sup
[0,t]

‖Φ(u)− Φ(v)‖(t) ≤ Cε(t) sup
[0,t]

‖u− v‖(t),

where

Cε(t) ≤ t max




α(1 +
1

4ε
) + 2λ+ ν + γV ,

γI + 2λ+ ν,

γV + ν + α(1 +
1

4ε
),

δ + µ+ γV + 3α + λ,

δ + µ+ 2λ+ 3α + γI




.

Let M = Cε(T ) + 1. Then

sup
t∈[0,T ]

‖(Φ(u)− Φ(v))e−Mt‖(t) ≤ Cε(T )

M

(
1− e−MT

)
sup
t∈[0,T ]

‖(u− v)e−Mt‖(t).

Hence, by contraction mapping theorem on C0([0, T ]), there exists a unique solution to

Equations 6a–7c and hence to Equations 1a–2d.
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C Additional figures: base case and adaptive agents

D Additional figures: heterogenous cost to vaccinate
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Figure C.1: Net value of health status transistion for vaccination cost c = 10, ε = 1/600,
and nε(0) = 1.
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Figure C.2: Epidemiological results and vaccination decisions with ε = 1/20 and nε(0) = 1.

Figure C.3: Sensitivity to α of the long term vaccination decision in our base case model
for ε = 1/20.
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Figure C.4: Sensitivity analysis of the stationary values of i/n and v/n in our base case
model for ε = 1/20, and a ±10% variation of each parameter.
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Figure C.5: Epidemiological results and vaccination decisions with ε = 1/20 and nε(0) = 1
– Individuals with adaptive behavior.
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Figure D.6: Vaccination decisions for two perfectly mixed populations with different costs
to vaccinate. Population 0: c = 10, Population 1: c = 11. ε = 1/20 and nε(0) = 1. Color
scale indicates the proportion of individuals in Population 1.
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Figure D.7: Epidemiological results for two perfectly mixed populations with different costs
to vaccinate. Population 0: c = 10, Population 1: c = 11. ε = 1/20 and nε(0) = 1. Color
scale indicates the proportion of individuals in Population 1.
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Figure D.8: Vaccination decisions for two perfectly mixed populations with different costs
to vaccinate. Population 0: c = 10, Population 1: c = 12. ε = 1/20 and nε(0) = 1. Color
scale indicates the proportion of individuals in Population 1.
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Figure D.9: Epidemiological results for two perfectly mixed populations with different costs
to vaccinate. Population 0: c = 10, Population 1: c = 12. ε = 1/20 and nε(0) = 1. Color
scale indicates the proportion of individuals in Population 1.
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Figure D.10: Vaccination decisions for two perfectly mixed populations with different costs
to vaccinate. Population 0: c = 10, Population 1: c = 15. ε = 1/20 and nε(0) = 1. Color
scale indicates the proportion of individuals in Population 1.
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Figure D.11: Epidemiological results for two perfectly mixed populations with different
costs to vaccinate. Population 0: c = 10, Population 1: c = 15. ε = 1/20 and nε(0) = 1.
Color scale indicates the proportion of individuals in Population 1.
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