A BAG OF FACIAL SOFT BIOMETRICS FOR PERSON RECOGNITION

Antitza Dantcheva Prof. Jean-Luc Dugelay, Prof. Petros Elia *Multimedia Communications Department, EURECOM, Sophia Antipolis, France*

OUTLINE

- What are Soft Biometrics?
- Person recognition a la Bertillon using soft biometrics
- A bag of facial Soft Biometrics (BoFSB)
 - General Setting
 - Novel questions regarding the BoFSB
 - Extraction of BoFSB
 - Reliability of a BoFSB for person recognition

WHAT ARE SOFT BIOMETRICS?

• Soft biometrics are weak biometric identifiers

- Are not as permanent and distinctive as classical biometrics, but have several advantages, such as:
 - Can be sensed from a distance,
 - can be applied to unknown individuals,
 - o do not require enrolment,
 - o human compliant,
 - o non intrusive, etc.
- Examples: eye or hair color, presence of glasses or beard
- Applications
 - Person recognition
 - Pruning the search for face recognition

PERSON RECOGNITION USING SOFT BIOMETRICS PRIMARY IDEA: BERTILLON, 19TH CENTURY

Subjects in an authentication group

• Size of authentication group

λ...Number of soft biometric traits
μ...trait-instances
Number of overall categories the system is endowed with: ρ = Π^λ_{i=1} μ_i

GENERAL SETTING

• All over categories:

• General:

$$\rho = \prod_{i=1}^{n} \mu_i$$

λ

• Symmetric case:

$$\rho = \mu^{\lambda}$$

 The all over categories number increases polynomially with the number of traits instances (e.g. color categories) and

λ \μ	2	3	4	5	6	7	
2	4	9	16	25	36	49	
3	8	27	64	125	216	343	
4	16	81	256	625	1296	2401	
5	32	243	1024	3125	7776	16807	
6	64	729	4096	15625	46656	117649	
7	128	2187	16384	78125	27993 6	823543	

exponentially with the number of soft biometric traits (e.g. glasses, moustache, facial shapes,...)

- Our bag of facial soft biometrics BoFSB includes the following six traits:
 - Hair color
 - Eye color
 - Skin color
 - Beard
 - Moustache
 - Glasses

European Project ACTIBIO Unobtrusive authentication using ACTIvity related and soft BIOmetrics

www.actibio.eu

EXTRACTION

Viola & Jones Face and features detector

- Glasses: line detection between the eyes
- Color face soft biometrics: ROI finding and GMM color classification
- Beard and moustache: comparison of color of ROI's color with skin and hair color

Soft biometric trait	Algorithm	Traits instances		
Skin color	Derived from [1]	3		
Hair color	Derived from [2]	5		
Eye color	Own developed	4		
Beard	Own developed	2		
Moustache	Own developed	2		
Eye glasses	Derived from [3]	2		

- [1] P. Kakumanua, S. Makrogiannisa, and N. Bourbakis, "A survey of skin-color modeling and detection methods", *Pattern Recognition*, vol. 40, issue 3, March 2007.
- [2] M. Zhao, D. Sun, and H. He, "Hair-color Modeling and Head Detection," in *Proc. WCICA*, 2008, pp.7773-7776.
- [3] X. Jiang, M. Binkert, B. Achermann, and H. Bunke, "Towards Detection of Glasses in Facial Images," *Pattern Analysis & Applications*, Springer London, vol. 3, pp. 9-18, 2000.

RESULTS ON FERET WITH THE BOFSB

• Facial color soft biometrics

	Eye color	Skin color	Hair color
True positive rate	72.6%	79.2%	70.08%

• Confusion matrices: Eye, Hair and Skin color:

Real\detected	1	2	3	4	5	Real\detected	1	2	3	4	5				
Black (1)						Black (1)									
Brown (2)						Brown (2)						Real\detected	1	2	3
Blue (3)						Red (3)						Skin color 1(1)			
Gray (4)						Blond (4)						Skin color 2(2)	-		
Green (5)						Gray (5)						Skin color 3(3)			

• Facial binary soft biometrics

SB trait	Detection rate	\mathbf{FPR}	\mathbf{FNR}
Glasses	87.17%	7.17%	5.66%
Beard	80.7%	8.1%	11.2%
Moustache	72.8%	12.7%	14.5%

CORRELATIONS OF FSB IN THE FERET DATABASE

Pearson's correlation coefficients:

- r (eye, hair) = -0.1964
- r (eye, skin) = 0.3770
- r (hair, skin) = -0.1375
- r (moustache, beard) = 0.6359

Non – uniform distribution of categories

A BAG OF FACIAL SOFT BIOMETRICS FOR PERSON RECOGNITION

- Collision (=any two subjects belong to the same category) probability of subjects in a group of N:
 - p[N]... probability for collision within a group of N subjects
 - q[N]...probability of a specific person to collide with one of the N-1 subjects

BIRTHDAY PARADOX

Birthday paradox:

• p[N]... probability for collision within a group of N subjects

- Uniform case:

$$p(N;\rho) = 1 - \left(1 - \frac{1}{\rho}\right) \left(1 - \frac{2}{\rho}\right) \dots \left(1 - \frac{N-1}{\rho}\right)$$

$$= 1 - \frac{\rho!}{\rho^n(\rho - N)!}$$
- Non uniform case:

$$p(N;\rho) = 1 - \sum_{\alpha \neq \beta \neq \dots \neq \omega} P(\varphi_\alpha) P(\varphi_\beta) \dots P(\varphi_\omega)$$

• q[N]...probability of a specific person to collide with one or more of the N-1 subjects $(\rho - 1)^{N}$

$$q(N) = 1 - \left(\frac{\rho - 1}{\rho}\right)^{r}$$

- A. DasGupta, "The matching, birthday and the strong birthday problem: A contemporary review" *Journal of Statistical Planning and Inference*, vol. 130 (1-2), pp. 377-389, March 2005.
- S. E. Ahmed and R. J. Mcintosh, "An asymptotic approximation for the birthday problem," *Crux Mathematicorum*, vol. 26, pp. 151-155, Apr. 2000.

$\mathsf{P}(\mathsf{N})$ and $\mathsf{Q}(\mathsf{N})$ for the bag of facial soft biometrics

FULL BODY SOFT BIOMETRICS

 Creation of a virtual database containing face and body features. Body features were weight and color of clothes.

RELIABILITY AND SCALING LAWS

- Effective categories
- Interference / Collision
- Reliability / Probability of error for the interference limited scenario
- Asymptotic bounds on interference

$$P(\operatorname{err}|\mathbf{v}) = 1 - \frac{F}{N}$$

	ϕ_1	ϕ_2	ϕ_3	F	$P(\operatorname{err} \mathbf{v})$
v ₁	10	1	1	3	3/4
\mathbf{v}_2	4	4	4	3	3/4
\mathbf{v}_3	10	2	0	2	5/6

- Annotation: v...N-tuple of subjects
 - F...effective categories
 - ϕ ...specific category

SUMMARY

- A. Dantcheva, C. Velardo, A. D'angelo, J.-L. Dugelay, "Bag of soft biometrics for person identification : New trends and challenges," Mutimedia Tools and Applications, Springer, October 2010.
- A. Dantcheva, J.-L. Dugelay, P. Elia, "Person recognition using a bag of soft biometrics (BoFSB)," in Proc. of MMSP 2010.
- A. Dantcheva, J.-L. Dugelay, P. Elia, "Soft biometrics systems: Reliability and asymptotic bounds," in Proc. of BTAS 2010.
- M. Ouaret, A. Dantcheva, R. Min, L. Daniel, J.-L. Dugelay, "BioFACE, a biometric face demonstrator," in Proc. of ACM MM 2010.
- A. Dantcheva, N. Erdogmus, J.-L. Dugelay, "On the reliability of eye color as a soft biometric trait," to appear in Proc. of WACV 2011.

THANK YOU FOR YOUR ATTENTION