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Abstract

Recently, asymmetric 3D-2D face recognition has been
paid increasing attention. It enrolls in textured 3D faces and
performs identification using only 2D facial images, there-
fore it generally achieves a better result than 2D algorithms
do, and avoids inconvenience of data acquisition and com-
putation of 3D methods as well. In this paper, a biological
vision-based facial representation, namely Oriented Gradi-
ent Maps (OGMs), is introduced for such an application. It
simulates the response of complex neurons to gradient in-
formation within a pre-defined neighborhood, and thus can
describe local texture changes of 2D faces and local geome-
try variations of 3D faces at the same time. Due to its prop-
erty of being highly distinctive, these OGMs improve accu-
racies of both matching steps of asymmetric face recogni-
tion, i.e. (1) 3D-2D matching using Canonical Correlation
Analysis (CCA); (2) 2D-2D matching using LBP histogram
based features and Sparse Representation Classifier (SRC).
Some comparative experiments are carried out on the com-
plete FRGC v2.0 database, and the achieved results clearly
highlight the effectiveness of the biological vision-based fa-
cial description and its successful application to asymmet-
ric face recognition.

1. Introduction
Face recognition is a critical and popular topic in the area

of computer vision and pattern recognition for its wide ap-
plication potential and scientific challenges. However, de-
spite the great progress made in this domain [23], as a typ-
ical biometric feature, 2D facial images do not remain reli-
able when affected by changes of illumination, pose, facial
expression, etc. Recently, 3D face recognition has emerged
as a major alternative to deal with these unsolved issues in
2D domain, i.e. lighting and pose variations [19, 4]. Unfor-
tunately, 3D based approaches are currently limited by their
acquisition, registration and computation cost.

More recently, asymmetric 3D-2D face recognition [18,

8, 9, 17, 22] has been attracting increasing interests, since it
is expected to limit the use of 3D data where it really helps
to improve face recognition accuracy. Unlike the traditional
2D, 3D and multi-modal face recognition approaches that
require gallery and probe face data to own similar proper-
ties: 2D/3D, color/gray, or even to be captured by the same
type of camera sensors, asymmetric 3D-2D face recognition
methods assume that the gallery set consists of 3D face data,
whilst the probe set only contains 2D facial images, which
makes them more likely to be used in real-time environment
than 3D based ones.

In contrast to a large number of investigations and con-
tributions made within the field of 3D and textured 3D face
recognition [14, 6, 2, 16, 3, 13, 10, 11, 12, 20], to the best of
our knowledge, so far only a few tasks in the literature have
addressed the problem on asymmetric 3D-2D face recogni-
tion. Rama et al. [17] presented the Partial Principle Com-
ponent Analysis (P2CA) for feature extraction and dimen-
sionality reduction on both the cylindrical texture represen-
tation (3D) in the gallery and 2D images in the probe. How-
ever, their 3D face data still only conveyed texture informa-
tion rather than shape clues. In [18], Riccio et al. employed
several control points to compute geometrical invariants for
2D/3D face recognition. Nevertheless, it brought in another
difficulty in accurately locating these fiducial points on both
the 2D and 3D facial data. Yang et al. [22] implemented a
patch based Kernel CCA to learn the mapping between fa-
cial range and texture images in the gallery and probe sets
respectively. But their gallery set only contained shape in-
formation, and the original intensity and depth information
(pixel values in the facial range and texture image) cannot
comprehensively describe variations of facial appearances.
Furthermore, all the tasks above partially relied on 2D faces,
and none of them provided reliable performance when light-
ing condition or pose status changes.

In the previous study [8], we introduced to enroll in tex-
tured 3D face models, each of which includes a depth face
map and its corresponding 2D texture counterpart, and the
resulting framework of asymmetric 3D-2D face recognition

1



was thereby composed of two separate matching steps, i.e.
2D-2D and 3D-2D face matching. In the former step, SRC
[21] was exploited to LBP histogram based facial features,
while in the latter one, CCA was utilized to learn the map-
ping between facial range and texture images in LBP feature
space. Both the similarity measures were combined to make
the final decision. In addition, we designed a preprocessing
pipeline [9] to improve its robustness to lighting and moder-
ate pose changes. This asymmetric 3D-2D face recognition
method achieved better results than 2D image based ones
while keeping the computational cost under control. Taking
into account its advantages, we follow this framework.

This paper presents a new biological vision-based facial
description, namely Oriented Gradient Maps (OGMs). The
OGMs simulate the response of complex neurons to gradi-
ent information within a given neighborhood, and are able
to describe local texture changes of 2D facial maps and local
shape changes of 3D facial maps at the same time. Due to its
property of being highly distinctive, the OGMs improve the
performance of both face matching steps of the asymmetric
3D-2D face recognition. Specifically, in 3D-2D matching,
these OGMs of 2D and 3D facial images are used to replace
2D and 3D LBP faces as the input of CCA, while in 2D-
2D matching, instead of extracting LBP histograms directly
from original 2D facial images, a set of OGMs are gener-
ated as distinctiveness enhanced intermediate facial descrip-
tions, their LBP histogram-based features are then fed into
SRC. Finally, the holistic 3D-2D matching score of CCA is
fused with that of feature-based 2D-2D matching for iden-
tification. Moreover, almost all the previous approaches for
asymmetric 3D-2D face recognition were evaluated either
on small private datasets or subsets of public ones; as a re-
sult, it is difficult to compare the performance and test their
robustness as a comprehensive database is utilized. In con-
trast, all the experiments designed in this paper are carried
out on the complete FRGC v2.0 database, and the results
clearly illustrate the effectiveness of the biological vision-
based facial representation as well as its successful applica-
tion to asymmetric 3D-2D face recognition.

The remainder of this paper is organized as follows: the
proposed biological vision-based facial representation is in-
troduced in section 2, and section 3 presents the asymmetric
3D-2D face recognition approach. Experimental results are
described and analyzed in section 4. Section 5 concludes
the paper.

2. Oriented Gradient Maps
To increase the distinctiveness of human faces, we intro-

duce in this section a biological vision-based facial repre-
sentation, which can be applied to describe both range and
texture facial images.

This facial description is inspired by the study of Edel-
man et al. [5], who proposed such a conception of the com-

plex neuron in primary visual cortex. The complex neurons
respond to a gradient at a particular orientation and spatial
frequency, but the location of the gradient is allowed to shift
over a small receptive field rather than being precisely local-
ized. Recently, it has been successfully exploited for multi-
modal face recognition in [11] and has proved its discrimi-
native power to represent both types of face data, i.e. facial
range and texture images. In this work, we further investi-
gate it in asymmetric 3D-2D face recognition, which makes
use of these two types of data but in a different manner.

2.1. Representation of the complex neuron response

The proposed facial representation aims to simulate the
response of complex neurons. It is based on a convolution
of gradients in specific directions in a given circular neigh-
borhood, and its radius value can be changed. The precise
radius value R of the circular neighborhood region needs to
be fixed experimentally for different applications.

Specifically, the response of a complex neuron at a given
pixel location (x, y) is its gradient map of every orientation
convolved with a Gaussian kernel. Given a raw input image
I , a certain number of gradient maps G1, G2,..., Go, one
for each quantized direction o, are first computed. They are
formally defined as:

Go =

(
∂I

∂o

)+

(1)

where the ’+’ sign means that only positive values are kept
to preserve the polarity of the intensity changes, while the
negative ones are set to zero.

Each gradient map describes gradient norms of the in-
put image in a direction o at every pixel location. We then
simulate the response of complex neurons by convolving its
gradient maps with a Gaussian kernelG. The standard devi-
ation of the Gaussian kernel G is proportional to the radius
of the given neighborhood area, R, as in (2).

ρRo = GR ∗Go (2)

The purpose of the convolution with Gaussian kernels is
to allow the gradients to shift within a neighborhood with-
out abrupt changes.

At a given pixel location (x, y), we collect all the values
of the convolved gradient maps at that location and build
the vector ρR(x, y) thus having a response value of complex
neurons.

ρR(x, y) =
[
ρR1 (x, y), · · · , ρRO(x, y)

]t
(3)

This vector, ρR(x, y), is further normalized to unit norm
vector, which is called in the subsequent response vector
and denoted by ρR.



Figure 1. An illustration of the oriented gradient maps for each of
the quantized orientations o.

2.2. Facial description by response vectors

Now both facial range and texture images can be repre-
sented by the values of complex neurons according to the re-
sponse vectors. Specifically, given a facial range or texture
image I , we generate an Oriented Gradient Map (OGM) Jo
using complex neurons for each orientation o defined as:

Jo(x, y) = ρR
o
(x, y) (4)

Figure 1 illustrates such a process. In our work, we gen-
erate eight OGMs for eight quantized directions. Instead of
the original facial range and texture images, the OGMs are
further fed to the following steps for face matching.

2.3. The properties of distinctness and invariance

The proposed OGM based facial description potentially
offers high distinctiveness because it highlights the details
of local shape and texture changes. See Fig. 2 for some ex-
amples. Meanwhile, it also possesses the property of being
robustness to affine lighting and shape transformations.

When applied to 2D facial texture images, the proposed
OGMs display the property of being robust to affine lighting
transformations. Indeed, an OGM Jo is simply the normal-
ized convolved facial gradient map at orientation o accord-
ing to (4), while a brightness change usually adds a constant
intensity value, so it does not affect the gradient computa-
tion. Furthermore, a change in image contrast in which the
intensities of all the pixels are multiplied by a constant will
result in the multiplication of gradient calculation; however,
this change of contrast will be cancelled by the normaliza-
tion of the response vector. Similarly, the OGMs of facial
range images are also invariant to affine geometric transfor-
mations.

The proposed OGMs can be made even rotation invariant
if we choose to quantize directions starting from the princi-
pal direction of all gradients within the given neighborhood.
But we do not perform such rotation normalization for sav-

Figure 2. The eight OGMs of a range face and its corresponding
texture.

ing computational cost as face data are generally in an up-
right frontal position in user cooperative applications.

3. Asymmetric 3D-2D Face Recognition

Recall that we follow the asymmetric 3D-2D face recog-
nition framework proposed in [8, 9], which makes uses of
two types of face data in the gallery set, i.e. facial range and
texture images; while only 2D facial images are regarded as
probes. Therefore, two independent face matching steps are
contained: 3D-2D and 2D-2D. After facial representation,
each range or texture face is described by its OGMs, de-
noted as {JR1, JR2, ..., JRo} or {JT1, JT2, ..., JTo}; where
o is the number of quantized orientations.

3.1. 3D-2D Face Matching (ASY)

In this step, probe 2D faces are matched with the range
faces in the gallery set. For a probe 2D facial image PT , its
similarity with a gallery range face GT is calculated by first
computing the score SAsy

i between each OGM pair of cer-
tain quantized direction: JP

Ti and JG
Ri, i = {1, 2,..., o}, inde-

pendently, and then combining them with a fusion scheme.
CCA [7] is a powerful analysis method especially useful

for relating two sets of variables, by maximizing correlation
in the CCA subspace. In this paper, it is introduced to learn
the mapping between each range and texture OGM pair (JTi

and JRi).
Given N pairs of samples (xi, yi) of (X,Y ), i = 1, 2, ...,

N , where X ∈ JT , Y ∈ JR, with the mean value of zero.
The goal of CCA is to learn a pair of directions wx and wy

to maximize correlation between x = wT
xX and y = wT

y Y .
In the context of CCA, the two projections: x and y are also
referred as canonical variants. Formally, the two directions



can be calculated as the maxima of the function:

ρ =
E[wT

xXY
Twy]√

E[wT
xXX

Twx]E[wT
y Y Y

Twy]
(5)

To test new pairs of variables, we first project them into
CCA subspace x′ = wT

xX
′; y′ = wT

y Y
′; and then their sim-

ilarity is computed by (6), where a bigger value indicates a
higher similarity.

S(x′, y′) =
x′ · y′

‖x′‖ ‖y′‖
(6)

3.2. 2D-2D Face Matching (SYM)

In this step, 2D face images in the probe set are matched
with the ones in the gallery set. Considering that the simi-
larity measurement of 3D-2D matching and the one of 2D-
2D matching will be further combined for the final decision,
the matching scores of both parts are expected to be comple-
mentary to each other. Since the score achieved in 3D-2D
face matching is calculated in a holistic way, in this sub-
section, we exploit a feature-based approach, LBP, for face
matching.

LBP is employed in the same manner as in [1], by firstly
dividing the whole face into several sub-regions from which
LBP based histograms are extracted; then combining all the
local histograms to form a global one as the final facial rep-
resentation. Unlike [1], LBP is not applied to original 2D
facial images, but on its OGMs instead, because OGMs im-
prove their distinctiveness. Furthermore, we use SRC [21]
to compute similarity scores between LBP histogram based
features of two faces, since it has proved that SRC is much
more effective than Chi-square distance for classification of
histogram based features [9].

Similarly, the score SSym
i is calculated based on LBP

features of JP
Ti and JG

Ti, i = {1, 2,..., o}, using SRC inde-
pendently; then they are combined with a fusion scheme.

3.3. Score Fusion

Because the proposed biological vision-based facial de-
scription generates an OGM for each quantized gradient ori-
entation, either for 2D-2D or 3D-2D face matching, the sim-
ilarity measurement FSSym or FSAsy combines the ones
of all o OGMs (SSym

i or SAsy
i ). The final similarity score

of asymmetric 3D-2D face recognition, F , is achieved by
further fusing FSSym or FSAsy .

All fusion steps in this paper are computed according to a
simple sum rule to highlight the effectiveness of this asym-
metric face recognition framework, and more powerful fu-
sion strategies can be explored for a further improvement.
Before that, all the scores are normalized to the interval of
[0, 1] by using min-max normalization and different polari-
ties should be reversed.

4. Experimental Results
The experiments were carried out on the complete FRGC

v2.0 database [15]. It is one of the most comprehensive and
popular databases, made up of 4007 textured 3D face mod-
els of 466 subjects. The preprocessing pipeline [9], consist-
ing of Logarithmic Total variation (LTV) based illumination
normalization and Active Appearance Model (AAM) based
pose correction, was exploited. 11 out of 64 landmarks pro-
vided by AAM were selected to register 3D face models in
the gallery set. All the facial range and texture images were
converted to the pre-defined mean shape. The first 3D face
model with a neutral expression from each subject formed
a gallery set of 466 samples. The remaining texture faces
(4007-466=3541) were treated as probes. All the facial im-
ages were further cropped to 175×190 pixels as input of the
subsequent experiments.

We designed three experiments: the first one is to eval-
uate the proposed facial representation both in 2D-2D and
3D-2D face matching; the second is to analyze the impact
of the neighborhood area radiusR of OGMs on each match-
ing step; and the last is to show the result of the asymmet-
ric 3D-2D face recognition when combining the similarity
scores of both separate face matching steps.

4.1. Performance based on OGMs

In this sub-section, we executed both 2D-2D and 3D-2D
face matching on the OGMs of facial range and texture im-
ages to show their efficiency. Recall that, each facial range
or texture image was already represented by a set of OGMs;
therefore, as described in Section 3, both the 2D-2D and
3D-2D face matching steps were applied on the OGMs of
facial range and texture images instead of the original ones.
To calculate OGMs, we set the radius value of OGMs at 1.
In the LBP operator, we used uniform pattern, and the num-
ber of sampling points was set to 8 while the distance be-
tween the central pixel and its neighboring points was fixed
at 2 (LBPU2

(8,2)) as did in [8].
Table 1 demonstrates that in 2D-2D face matching, using

each OGM of the original 2D facial images (after prepro-
cessing pipeline), PCA based features achieve better results
than LBP based ones do. However, when combining these
similarity scores of all OGMs to calculate a final accuracy,
LBP slightly outperforms PCA. To both types of features,
i.e. PCA and LBP based ones, operating on each OGM and
then fusing all the similarity measurements generates much
better performance than directly applying them on original
2D faces, which indicates that the proposed OGMs improve
the distinctiveness of original 2D facial images, leading to
higher performance in 2D-2D matching.

In 3D-2D matching, as illustrated in Table 2, the result
based on LBPU2

(8,2) is not as good as that of original faces,
which contradicts the conclusion in [8]. The reason is prob-
ably that the database used in [8] was only a small subset of



2D-2D Matching Accuracy
(Sym01) OGM1 + LBP Histograms 0.8114
(Sym02) OGM2 + LBP Histograms 0.8082
(Sym03) OGM3 + LBP Histograms 0.8018
(Sym04) OGM4 + LBP Histograms 0.8116
(Sym05) OGM5 + LBP Histograms 0.8068
(Sym06) OGM6 + LBP Histograms 0.8150
(Sym07) OGM7 + LBP Histograms 0.8130
(Sym08) OGM8 + LBP Histograms 0.8170
(Sym09) OGM1 + PCA 0.8879
(Sym10) OGM2 + PCA 0.8924
(Sym11) OGM3 + PCA 0.8834
(Sym12) OGM4 + PCA 0.8743
(Sym13) OGM5 + PCA 0.8772
(Sym14) OGM6 + PCA 0.8848
(Sym15) OGM7 + PCA 0.8577
(Sym16) OGM8 + PCA 0.8786
(Sym17) OGMs (Sym01-08) + LBP Histograms 0.9390
(Sym18) OGMs (Sym09-16) + PCA 0.9365
(Sym19) Original Face + LBP Histograms 0.7995
(Sym20) Original Face + PCA 0.7854

Table 1. The results of 2D-2D face matching based on different
facial features using SRC.

3D-2D Matching Accuracy
(Asy01) OGM1 + PCA 0.8772
(Asy02) OGM2 + PCA 0.8726
(Asy03) OGM3 + PCA 0.8582
(Asy04) OGM4 + PCA 0.8644
(Asy05) OGM5 + PCA 0.8630
(Asy06) OGM6 + PCA 0.8690
(Asy07) OGM7 + PCA 0.8421
(Asy08) OGM8 + PCA 0.8582
(Asy09) LBPU2

(8,1) Image + PCA 0.6461
(Asy10) LBPU2

(8,2) Image + PCA 0.7636
(Asy11) LBPU2

(8,3) Image + PCA 0.8128
(Asy12) LBPU2

(8,4) Image + PCA 0.8328
(Asy13) LBPU2

(8,5) Image + PCA 0.8492
(Asy14) LBPU2

(8,6) Image + PCA 0.8585
(Asy15) LBPU2

(8,7) Image + PCA 0.8540
(Asy16) LBPU2

(8,8) Image + PCA 0.8571
(Asy17) OGMs (Asy01-Asy08) 0.9404
(Asy18) MS-LBP (Asy09-Asy16) 0.8700
(Asy19) Original Face + PCA 0.8170

Table 2. The results of 3D-2D face matching based on different
facial features using CCA.

FRGC v2.0. We further varied the radius value of the LBP
operator from 1 to 8 pixels to observe the changes of perfor-

Different Fusion Recognition Rate
(F01): (Sym17) + (Asy17) 0.9537
(F02): (Sym17) + (Asy18) 0.9274
(F03): (Sym17) + (Asy19) 0.9325
(F04): (Sym18) + (Asy17) 0.9396
(F05): (Sym18) + (Asy18) 0.9192
(F06): (Sym18) + (Asy19) 0.9291
(F07): (Sym19) + (Asy17) 0.9297
(F08): (Sym19) + (Asy18) 0.8769
(F09): (Sym19) + (Asy19) 0.8128
(F10): (Sym20) + (Asy17) 0.9359
(F11): (Sym20) + (Asy18) 0.9017
(F12): (Sym20) + (Asy19) 0.8901

Table 3. Final results of the asymmetric 3D-2D face recognition
by combining 2D-2D and 3D-2D matching steps.

mance, and we can see that when the radius value is larger
than 3, LBP based accuracies are better than original face
based one. Because multi-scale LBP (MS-LBP) is regarded
as an effective solution for improved performance, all these
results based on single LBP operators (Asy09-Asy16) are
finally combined, and the resulted performance (Asy18) is
indeed much better than any of the single LBP based one.
On the other hand, the OGM based recognition rate by fus-
ing similarity scores of its eight directions (Asy01-Asy08)
is up to 94%, which is much better than that based on orig-
inal faces (Asy19), any single LBP faces (Asy09-Asy16),
and MS-LBP (Asy18). The great improvement on recogni-
tion rate suggests that the proposed OGM based facial rep-
resentation is more effective than LBP for 3D-2D matching.

4.2. Radius analysis of OGM neighborhood

Recall that complex neurons respond to gradient infor-
mation within a neighborhood which is defined as a circular
region in our implementation. In our experiments, we eval-
uated different values of radiusR and studied its impacts on
the performance of both 2D-2D and 3D-2D face matching.
In 2D-2D matching, the operator, LBPU2

(8,2), was utilized.
From Fig. 3, it can be seen that in both the 2D-2D and

3D-2D face matching, when we increase the radius value
of OGM neighborhood, the performance of each OGM and
their fusion degrades. The best results are achieved as the
radius value is set at 1 in both the matching steps.

4.3. Final combination of two face matching steps

To achieve the final performance of asymmetric 3D-2D
face recognition, both similarity scores of the two separate
matching steps, i.e., 2D-2D and 3D-2D face matching, were
fused. The results of different combinations are compared
in Table 3.

The last four rows (Sym17-Sym20) of Table 1 for 2D-2D
matching, and the last three rows (Asy17-Asy19) of Table 2



(a)

(b)
Figure 3. The performance curves based on different radii of each
OGM as well as their fusion accuracy: (a) 2D-2D matching; (b)
3D-2D matching.

for 3D-2D matching are utilized for final fusion. Comparing
all possible combinations of the similarity measurements in
two steps respectively, the best performance is achieved by
fusing (Sym17) and (Asy17). Specifically, the performance
of (Sym17) is based on LBP histogram based facial features
extracted from OGMs for 2D-2D matching, and (Asy17) is
computed by CCA using the OGMs of facial range and tex-
ture images. It proves once again that the OGM based fa-
cial representation is very effective to improve the distinc-
tiveness of original texture or depth faces. Moreover, two
different types of facial features in two face matching steps,
i.e. (1) local ones, LBP histograms in 2D-2D matching and
(2) holistic ones, PCA in 3D -2D matching are complemen-
tary to each other, and their fusion result is better than either

of them.
According to the achieved experimental results, the pro-

posed OGM-based method is competent in representing 2D
and 3D faces, leading to satisfying accuracies in both 2D-
2D and 3D-2D matching. Meanwhile, the rank-one recog-
nition rate of the entire asymmetric face recognition system
is up to 95.4% obtained on the entire FRGC v2.0 database,
which is better than those of most traditional 2D-2D face
recognition methods, and not far behind 3D-3D based ones
(range from 96% to 98%, precise numbers are omitted due
to limited space). On the other hand, it avoids the high on-
line cost of data acquisition and computation commonly oc-
curred in 3D-3D face recognition.

5. Conclusions
This paper presented an asymmetric 3D-2D face recog-

nition method based on a novel biological vision-based fa-
cial representation, namely OGMs. These OGMs simulate
the response of the complex neuron to gradient information
in a pre-defined neighborhood, and hence can describe lo-
cal texture changes of 2D faces and local shape variations of
3D face models. Due to its property of being highly distinc-
tive, OGMs improve the results of both matching steps of
asymmetric face recognition, i.e. (1) 3D-2D matching using
Canonical Correlation Analysis (CCA); (2) 2D-2D match-
ing using LBP histogram based features and Sparse Repre-
sentation Classifier (SRC). Some comparative experiments
were carried out on the complete FRGC v2.0 database, and
their results clearly demonstrate the effectiveness of the bio-
logical vision-based facial representation and its successful
application to asymmetric face recognition.
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