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Abstract One of the most used criterion for evaluating
space-filling design in computer experiments is the minimal
distance between pairs of points. The focus of this paper is
to propose a normalized quality index that is based on the
distribution of the minimal distance when points are drawn
independently from the uniform distribution over the unit
hypercube. Expressions of this index are explicitly given in
terms of polynomials under any L p distance. When the size
of the design or the dimension of the space is large, approx-
imations relying on extreme value theory are derived. Some
illustrations of our index are presented on simulated data and
on a real problem.

Keywords Minimal distance · Maximin · Space-filling
design · Computer experiments · Extreme value theory

1 Introduction

In the field of computer experiments, simulation of designs
replace the real data generating process.Under a lack of infor-
mation on how inputs are linked to outputs, one strategy is to
spread points evenly throughout the experimental region to
cover all the input space. This technic is called space-filling
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design (Sacks et al. 1989; Santner et al. 2003). Many mea-
sures are available to quantify this property, as for example
distance based criteria, discrepancies or entropy (Fang et al.
2005; Pronzato and Muller 2012). In this paper we focus on
the minimal distance between points of a design.

It is very common to iterate a few times the procedure for
finding a design and to keep as the “best” one, the design
with the maximum minimal distance (mindist). When it is
maximized in the context of space-filling design, it is called
the maximin criterion. Due to its simplicity, it is by far the
most commonly used.

The minimal distance is dependent on both the number of
input factors and the number of points present in the design.
Thus, by itself, its value is not informative.

The aim of this paper is then to propose a quality index
normalized between 0 and 1 for the minimal distance. This
index allows a better comparison between designs involving
different sizes or dimensions rather than looking at the order,
for which mindist would be sufficient. The use of our index
does not replace a maximin procedure. It is a measure of
the quality of space-filling design through a natural common
scale of reference. It also gives an idea of the cost of the
design: more precisely as this index is based on a probabil-
ity, it specifies the difficulty of obtaining the same minimal
distance. The quality index will thus assist the user in her/his
decision to keep the design or to generate a better one.

The paper is organized as follows. Section 2 introduces the
new index. Section 3 provides probabilistic characteristics of
the distance between two random points independently and
uniformly sampled in the unit hypercube. Section 4 states
some approximations for the previous distribution and for
the distribution of the minimal distance among all the pairs
of a design. Finally, in Sects. 5 and 6, we illustrate the use of
the index as a measure of quality through a simulation study
and on a real example in engine calibration.
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2 New index of quality

Let x = {x1, . . . , xN } be a set of N points in a d-dimensional
hypercube, assumed to be [0, 1]d without loss of generality.
In the field of computer experiments, x is referred to as a
design. The minimal distance between pairs of x is defined
as

δx,p = δx,p(N , d) := min
1≤i �= j≤N

Dp,d(xi , x j ) ,

where, for any positive real p, Dp,d stands for the L p distance
in Rd .

In particular D1,d is the Manhattan distance, D2,d the
Euclidean distance and D∞,d the Chebyshev distance. More
generally, recall that for a finite value of p,

Dp,d(u, v) =
(

d∑
k=1

|u(k) − v(k)|p
)1/p

where u(k) is the kth coordinate of the vector u, and that

D∞,d(u, v) = max
k=1,...,d

|u(k) − v(k)| .

The main idea of our quality index for a design x is to give
a probability, and thereby a standardized index, of obtaining
aminimal distance that is less than or equal to δx,p. The refer-
ence law for evaluating this probability is the distribution of
the minimal distance between N points independently drawn
from the uniform distribution over the hypercube [0, 1]d .
More precisely, this means that all components of all the
points of the reference design are independent and iden-
tically distributed from the uniform distribution on [0, 1].
Throughout this paper, we call such design a uniform ran-
dom sampling.

To make the definition of the index rigorous, let us denote
by Hp,N ,d the cumulative distribution function (c.d.f.) of the
L p minimal distance for a uniform random sampling. Then,
we define the quality index by

Ip(x) := Hp,N ,d(δx,p) . (1)

As a probability, the index Ip(x) will give a number
between 0 and 1. This common scale will enable the user to
compare different designs independently from their number
of points. Note however that our index depends crucially on
the particular chosen distance. Consequently, the minimal
L p distance δx,p of observed designs has to be quantified
through Ip(x) for the same p.

An index close to 0 indicates that the minimal distance
between the points of the observed design is easily reachable
by a random uniform sampling. The reader should be aware
that, in space-filling design, one will be mostly interested in

values of the quality index very close to 1. In most cases, the
probability of having aminimal L p distance less than or equal
to δx,p will be so close to 1 that direct numerical calculations
will give exactly 1. In that case, the corresponding design is
unlikely to come from a uniform random sampling, and may
result from an optimization process. Consequently, to keep
it meaningful in this situation, the index should be rewritten
as

Ip(x) := 1 − 10−I
′
p(x)

with I′p(x) defined accordingly as

I
′
p(x) = − log10(1 − Ip(x)) .

Obtaining a tractable form or a numerical evaluation of
Hp,N ,d , the aforementioned c.d.f. that appears in (1), is the
central topic of the following two sections. More details on
the organization of the paper can now be stated. In Sect. 3,
we shall evaluate Gp,d the c.d.f. of Dp,d(Xi ,X j ) which
denotes the random L p distance between Xi and X j (two
points extracted from a uniform random sampling). Even if
{Dp,d(Xi ,X j ), 1 ≤ i �= j ≤ N } are clearly not independent
under uniform randomsampling, since each point contributes
to N − 1 distances, independence approximation is investi-
gated in Sect. 4.1. A strong link between the c.d.f. Hp,N ,d

and Gp,d will be then deduced. Finally, useful approxima-
tions for Hp,N ,d that are based on extreme value theory will
be provided in Sect. 4.2.

3 Distribution of the distance of a pair

Recall that Gp,d denotes the c.d.f. of the distance between
a pair taken from a uniform random sampling. Let gp,d
stands for the associated probability density function (p.d.f.
for short). In dimension d = 1, these functions are all the
same whatever the choice of p. Specifically, one gets

gp,1(t) = (2 − 2t)1[0,1](t)

and

Gp,1(t) = (2t − t2)1[0,1](t) + 1t>1 .

3.1 Polynomial forms on [0, 1]

The aim of the next proposition is to give exact expres-
sions for Gp,d(t) when t is restricted to the interval [0, 1].
Indeed, the whole support of these distributions is the inter-
val [0, d1/p] but they have polynomial forms on the first unit
interval.
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Proposition 1 (Under L p distance) For any dimension d
greater than or equal to 2, and for any finite positive real p,
the c.d.f. of the distance of a pair extracted from a uniform
random sampling has the expression:

G p,d(t)1[0,1](t) =
2d∑

�=d

a(�)
p,d t

�1[0,1](t)

where

a(�)
p,d = (−1)�−d

(
d

� − d

) (
2

p

)d
Γ (1/p)2d−�Γ (2/p)�−d

Γ (�/p + 1)
.

Proof This formula can be established by recursion. Denot-
ingby f p,d the p.d.f. of the randomvariable (Dp,d(Xi ,X j ))

p,
we have for d = 1

f p,1(t) = 2

p

(
t1/p−1 − t2/p−1

)
1[0,1](t) ,

and one can use the recurrence rule

f p,d(t) =
∫ t

0
f p,d−1(u) f p,1(t − u)du .

The p.d.f. of interest is deduced from

gp,d(t) = pt p−1 f p,d(t
p) ,

and the c.d.f. comes as a primitive.
Let us introduce the beta function

B(x, y) =
∫ 1

0
t x−1(1 − t)y−1dt .

The formula for a(�)
p,d is easily checked for d = 2 since

Gp,2(t) = 2

p
b1,1t

2 − 8

3p
b2,1t

3 + 1

p
b2,2t

4

where bi, j = B
(

i
p ,

j
p

)
. Assume that the formula is true

until d − 1. By application of the recurrence rule, we get the
equality

f p,d(t) =
2(d−1)∑
�=d−1

�

p
a(�)
p,d−1

∫ t

0
u�/p−1 f p,1(t − u)du.

The primitive of u�/p−1 f p,1(t − u) can be expressed as a
difference of two beta functions, which leads to

f p,d(t) =
2(d−1)∑
�=d−1

2�

p2
a(�)
p,d−1

(
t

�+1
p −1b�,1 − t

�+2
p −1b�,2

)
.

Since B(x, y) = Γ (x)Γ (y)

Γ (x + y)
and Γ (x + 1) = xΓ (x), we

get, after some simplifications, the expected form for the
coefficient a(�)

p,d . ��

Comments

1. We start with the observation that the first term a(d)
p,d t

d in
Gp,d(t) is exactly the volume of a hypersphere of radius
t in dimension d, as soon as d is greater than or equal
to 2.

2. The expression of the coefficient a(�)
p,d is now given under

the most commonly used distance, that is the Euclidean
distance:

a(�)
2,d = (−1)�−d

(
d

� − d

)
π(2d−�)/2

Γ (�/2 + 1)
.

3. The expressions of Gp,d(t) are generally not polynomial
when t is greater than 1. When p = 2, expressions of
Gp,d(t) involve trigonometric functions, as can be seen
in Philip (2007) and (2010)who give detailed expressions
for d = 2, 3 and 4.

4. Under L1 distance, the support of G1,d is the interval
[0, d] and its c.d.f. is a polynomial on every unit sub-
interval of the form [i − 1, i]. We have g1,1(t) = 2(1 −
t)1[0,1](t) and the recurrence rule g1,d(t) =
⎧⎪⎨
⎪⎩

∫ t
0 g1,d−1(u)g1,1(t − u)du, if t ∈ [0, 1],∫ t
t−1 g1,d−1(u)g1,1(t − u)du, if t ∈ [i − 1, i],∫ d
t−1 g1,d−1(u)g1,1(t − u)du, if t ∈ [d − 1, d],

so that exact calculations (not shown here) can be done
with any symbolic manipulation software.

5. Numerical approximations of Gp,d(t) can still be eas-
ily obtained for any L p distance and any dimension d:
repeatedly draw a large enough number of times two
points from a random uniform sampling and take their
distance.

The next proposition is given for completness. It relies on
the simple fact that G∞,d(t) = (G1,1(t))d by independence
of the components of the points from a uniform random sam-
pling.

Proposition 2 (Under L∞ distance) For any dimension d
greater than or equal to 2, the c.d.f. of the L∞ distance of
a pair extracted from a uniform random sampling has the
expression:

G∞,d(t) = (2t − t2)d1[0,1](t) + 1(1,∞)(t) .
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3.2 Gaussian approximation

As already mentioned, there is no closed form expression
of the c.d.f. Gp,d on the whole interval [0, d1/p] as soon
as d ≥ 5, see Philip (2010). Moreover, from Proposition 1,
one knows that when restricted to the interval [0, 1], Gp,d(t)
involves the values of d + 1 coefficients. As the dimension d
increases, the number of terms increases and their numerical
evaluations (involving high power of t)may become difficult.

A Gaussian approximation is possible under any L p dis-
tance, when p is finite. It is worth mentioning that this
approximation is true everywhere and not only on the interval
[0, 1]. Furthermore, it allows easy computation of quantiles
which is not true in the case of the exact polynomials and
recursive expressions described in Sect. 3.1.

Proposition 3 Let Φ stands for the standard normal c.d.f.
For any finite value of p, as d tends to infinity,

∀t ∈ R, Gp,d(t) ∼ Φ

(
t p − dμp√

dσp

)
(2)

with μp = 2
(p+1)(p+2) and σ 2

p = μ2p − μ2
p.

Proof (of Proposition 3) Let X and Y be two independent
uniform random variables on [0, 1]. One can see that the
scaled and powered distance 1

d D
p
p,d is given by the empirical

mean of i.i.d. terms of the form |X − Y |p. The asymptotic
normality follows easily from Central Limit Theorem, and
the asymptotic constants are obtained by μp = E[|X −Y |p]
and σ 2

p = Var[|X − Y |p]. ��
Figure 1 illustrates the Gaussian approximation under L2

distance.
The presentation is done through the density point of view

since differences are much more emphasized this way. Two
cases are provided: d = 10 (top) and d = 20 (bottom). On
the first figure, the true density is displayed on [0, 1], follow-
ing the result from Proposition 1. The second curve comes
from the empirical density estimation obtained froman inten-
sive simulation. It can be considered as the true density on
the whole domain. Finally, the third estimate illustrates the
Gaussian approximation. Its performance increases with the
value of d, as required by the theory. For the sake of simplic-
ity, the corresponding illustration under L1 distance is not
provided. The Gaussian approximation is even more accu-
rate under L1 distance compare to the one achieved under L2.
Moreover, it is good even for reasonably small dimensions.
To summarize, one should prefer the Gaussian approxima-
tion:

– When d is large, by simplicity of the expression ;
– When quantile estimates are needed, to avoid complex
numerical solutions;

Fig. 1 Gaussian approximation in dimension d = 10 (top) and d = 20
(bottom). several plots of the density of the L2 distance of a pair: exact
expression on [0, 1] from Proposition 1, estimation from an intensive
simulation (106 repetitions) and Gaussian approximation from Propo-
sition 3

– When one focuses on the distribution outside the interval
[0, 1].

4 Minimal distance between pairs of a design

The minimal distance among the set of pairs of points of a
design is bounded (see Van Dam et al. 2009) and depends
on both the number of points N and the dimension d. Note
that in dimension d = 1, it is well known from the theory of
uniform spacing that

Hp,N ,1(t) = 1 − (1 − (N − 1)t)N .
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We refer to David (1980) for more details on this equality.

4.1 Independence approximation

In this section, we assume d ≥ 2. The distances
{Dp,d(Xi ,X j ), 1 ≤ i �= j ≤ N } are clearly not independent
random variables. However, one can check that the indepen-
dence assumption yields a good approximation when taking
the minimum. This is accurate as soon as the value of N is
not too small with respect to d, e.g. N = 30 points in d = 10
dimensions.

One can thus compute the c.d.f. Hp,N ,d of the minimal
distance thanks to the c.d.f. Gp,d of the distance of a pair by

Hp,N ,d(t) ∼
N
1

1 − (
1 − Gp,d(t)

)N (N−1)/2
. (3)

In terms of densities, it corresponds to

h p,N ,d(t) ∼
N
1

Ñ gp,d(t)
(
1 − Gp,d(t)

)Ñ−1
,

where, for ease of notation, Ñ = N (N − 1)/2. The formal
definition (1) of the quality index is therefore simplified to

Ip(x) ∼
N
1

1 − (
1 − Gp,d(δx,p)

)Ñ
. (4)

To assess the quality of the approximation (3), we com-
pare, for several values of the dimension d, the p.d.f h2,100,d
obtained by an intensive simulation (1000 runs) and the
one derived from the independence assumption. The pat-
terns are illustrated in Fig. 2. Other number of points (but
large enough) or other choice of distance would give similar

Fig. 2 Independence approximation. Density h2,100,d obtained from
intensive simulation (solid line) and its approximations from Eq. (3)
(dashed line)

results. One can see that this approximation is very accurate
for any value of d: the dotted curves match very closely the
solid lines. However when N is small, differences are large
enough to be noticed.

4.2 Other approximations

We focus in this section on simplified expressions of the c.d.f.
Hp,N ,d in specific situations: the dimension d becomes large,
the size N increases, or both d and N tends to be at a high
level.

4.2.1 Gumbel approximation

Note that the independence approximation (3) combinedwith
Proposition 3 leads to

Hp,N ,d(t) � 1 −
(
1 − Φ

(
t p − dμp√

dσp

))Ñ

. (5)

Recall now that on the one hand the accuracy of the indepen-
dence approximation (3) increases with N , whereas on the
other hand, that of the Gaussian approximation (2) comes
with d. Consequently, while looking at the approximation
(5) one should have in mind that both N and d are large.
Therefore, (5) can be approximated by

1 − exp

[
− exp

(
αÑ

{
t p − dμp√

dσp
− βÑ

})]
, (6)

with αÑ =
√
2 log(Ñ ) and

βÑ = −αÑ +
(
log log Ñ + log(4π)

)
2αÑ

.

The justification comes from the fact that the minimum of
independent Gaussian random variables is asymptotically
Gumbel (minimum) distributed.

4.2.2 Weibull approximation

Focusing on the expansion given by (3), it is natural to won-
der whether it simplifies when Gp,d(t) is close to zero, that
corresponds obviously to t close to zero. Since one should
think that t stands for the minimal distance among pairs of
a design, this occurs naturally when N is large with respect
to d. From polynomials expressions stated in Proposition 1,
Gp,d(t) is thereby given by a(d)

p,d t
d , the smallest monomial.

Indeed, due to the finite precision of numbers in comput-
ers, Gp,d(t) will numerically be reduced to its first term as
soon as it is less than or equal to a relative accuracy depend-
ing on the computer. If we take the relative accuracy to be
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ε = 2 × 10−16, for usual L2 distances it gives t � 0.05
for d = 10 and t � 0.001 for d = 5. This can happen
when the number of points of the design N is relatively large
compared to d.

Combining this first term expansion with the indepen-
dence approximation (3), one gets the convergence

Hp,N ,d

(
t

Ñ 1/d

)
∼−−−−→

N→∞

(
1 − exp

(
−a(d)

p,d t
d
))

1t>0 ,

where we recall that Ñ denotes N (N − 1)/2. This expo-
nential limit is the well-known reversed Weibull distribution
with shape and scale parameters respectively equal to d and(
a(d)
p,d

)−1/d
.

Consequently, as soon as N is large in comparison to the
value of d, the minimal distance is small, the independence
approximation is reasonable and the c.d.f. is approximated
by

Hp,N ,d(t) ∼
0+ 1 − exp

(
−a(d)

p,d Ñ td
)

. (7)

4.2.3 Illustration on quantile estimates

Since our goal is to compare a given design to a very good one
that comes from a uniform random sampling, it is important
to obtain accurate estimates of high quantiles of the minimal
distance distribution under uniform random sampling. Let us
end this section with estimates of the quantile of order 0.99
of the distribution Hp,N ,d obtained from previous approxi-
mations. These quantiles are summarized in Table 1.

Depending on the value of N , Fig. 3 displays two cases:
N = 10 (top) and N = 20 (bottom).

Table 1 Quantile summary

General formula

H←
p,N ,d (pr)

Independence approximation

G←
p,d (1 − (1 − pr)1/Ñ )

Independence and Gaussian approximations(
dμp + √

dσpΦ
←(1 − (1 − pr)1/Ñ )

)1/p
Gumbel approximation(
dμp + √

dσp

{
1

αÑ
log(− log(1 − pr)) + βÑ

})1/p
Weibull approximation(

− log(1 − pr)

a(d)
p,d Ñ

)1/d

Computing the quantile of order pr of Hp,N ,d with previous approxi-
mations

Fig. 3 Other approximations. For the size N = 10 (top) and N = 100
(bottom) of a design, quantile of order 0.99 of the minimal distance
distribution is given as a function of the dimension: estimated from an
intensive simulation, deduced from (3), computed from (5), (6) or (7)

In these figures, five estimates of the quantile of order
0.99 of the minimal distance distribution are available. On
both figures, these estimations are plotted as functions of the
dimension d. The intensive simulation result might be con-
sidered as the true value. When available, the value obtained
from (3) and Proposition 1, called in the legend “Indep.
Approx. and Prop. 1” is always the best estimate. On these
graphs, it has been computed until d = 10 only. Most of
the estimates from approximation (5), referred as “Indep.
Approx. and Prop. 3”, increase in precision with the value of
d. This was also expected since it is the mixture of two accu-
rate approximations, as already mentionned in Sects. 3.2 and
4.1 respectively. For large N , the corresponding quantiles do

123



Stat Comput

not appear when d is too small. Under L2 distance and for
N = 100, the computation of quantiles based on (5) gives
positive estimates only from d = 14.

It is understandable that Weibull approximation is not
informative for N = 10. Indeed, to get small minimal dis-
tance among pairs of a design, N cannot be of the same order
than d. Consequently, the main message is again that when
d is small in comparison to N , the approximation is accu-
rate. This explains why the Weibull approximation is very
informative on the left part of the bottom figure.

Finally, Gumbel estimates appear more and more precise
with large N and d, as suggested by the theory.

5 Numerical simulations

Our index for space-filling designs allows comparisons
between different designs and can be used in two ways: first,
it gives a standardized evaluation of quality, independent of
the number of points and of the dimension of the input space;
secondly, as a probability, it can be interpreted as a cost: if the
design had been randomly generated, how many simulations
would have been needed to obtain the same minimal distant?
In this section, following this secondpoint of view,wediscuss
the relevance of optimization procedure for design construc-
tion and comparemaximin-based optimizationmethods with
uniform random sampling. Indeed, optimization procedures
are often time consuming and difficult to tune, whereas ran-
dom samplings are very simple to put into practice.

In a first part, we seek reference values of the index above
which the design should ensure user’s satisfaction: designs of
various index values are compared through different space-
filling criteria. In a second part, we show that in case of high
number of points and high dimensions, it can be more effi-
cient to generate uniform random samplings until the desired
index is observed rather than to run an optimization routine.

5.1 Designs comparison for different indices

Let us first visualize several designs with different indices
in order to give an idea of the link between indices and pat-
terns. For illustration purposes, four designs with 25 points
in dimension 2 are plotted in Fig. 4. The top-left design with
the lowest index (I2 = 1−10−1) is deficient since it contains
several empty areas. The top-right design that corresponds
to I2 = 1−10−5 is better since it spreads out the points. It is
as well the case of the Sobol low-discrepancy sequence (see
Niederreiter 1987) drawn at bottom-left of Fig. 4. The latter
has an index equal to I2 = 1−10−3.3. The 5×5 grid, plotted
at bottom-right, corresponds to the optimal maximin design
(I2 > 1− 10−16). Compared to the others, it is highly struc-
tured (see Pronzato and Muller 2012 and references therein
for maximin designs in dimension 2 and 3).

0.0 0.4 0.8

0.
0

0.
4

0.
8

I = 1−10−1

0.0 0.4 0.8

0.
0

0.
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0.
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0.0 0.4 0.8
0.

0
0.

4
0.

8

Sobol

0.0 0.4 0.8

0.
0

0.
4

0.
8

maximin

Fig. 4 Index influence on patterns. Designs on [0, 1]2 with N = 25
points: I2 = 1 − 10−1 (top left), I2 = 1 − 10−5 (top right), Sobol
sequence with I2 = 1 − 10−3.3 (bottom left) and maximin optimal
design with I2 > 1 − 10−16 (bottom right)

Table 2 Index influence on criteria

I2 mindist discr
Mean (SD) Mean (SD)

1 − 10−1 0.05 (10−5) 0.13 (0.03)

1 − 10−3 0.08 (10−4) 0.10 (0.02)

1 − 10−5 0.11 (10−3) 0.09 (0.02)

Sobol 1 − 10−3.3 0.09 0.04

Maximin >1 − 10−16 0.25 0.14

Comparison of two criteria for designs with 25 points in dimension 2

Now, let us again consider designs with several values
of the index. In order to collect designs with I2 say in
{1− 10−1, 1− 10−3, 1− 10−5}, 106 simulations of uniform
random samplings have been run, and empirical quantiles
of the minimal distance guides the selection. We propose
to evaluate on these designs, the two most frequently used
criteria: the minimal distance among pairs and the centered
discrepancy Fang et al. (2005). Note that discrepancy criteria
measures the distance between empirical and uniform distri-
butions. On each design that has been selected, the previous
two criteria have been computed. The distribution of these
measures are summarized in Table 2 (see column mindist
and discr respectively). The mean and standard deviation
are based on 20 repetitions of the experiment.

Let us now analyze the results from Table 2:
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– As expected, mindist increases with the quality index
whereas discr slowly decreases. It can be noticed that
the distributions of discr overlap each other, the standard
deviation sd remains at a high level whatever the value
of the index.

– The maximin optimal design (the 5 × 5 grid) has the
highest index of quality (numerically equal to 1) but does
not seem appropriate. It has too numerous points at the
edges, and several alignments. This is reflected by a high
discrepancy.

– On the contrary, the Sobol sequence whose index is not
very high (1 − 10−3.3) has a good covering (very low
discrepancy).

– It can be noticed that, because we invert the empirical
c.d.f., standard deviation for mindist is not null but very
small.

As a conclusion, it can be sufficient to look for a design
with a high value of the quality index, say between 1− 10−3

and 1 − 10−5, but not extremely high.

5.2 Efficiency of optimization methods versus uniform
random sampling

In this context, what is the most efficient procedure: run-
ning an optimization routine called strategy 1, or generating
uniform random samplings called strategy 2? It is a fair ques-
tion because optimization routine are sometimes difficult to
parametrize and to handle for the user.

We address this issue through numerical simulations. The
objective is to compare the distribution of the necessary num-
ber of iterations under strategy 1 and strategy 2 to achieve
the same desired quality.

Let Nopt be the number of iterations under strategy 1 (opti-
mization approach) that is required to produce such a design.
Note that we consider an optimization routine based on sim-
ulated annealing which is famous in the context of computer
experiments (see Jin et al. 2005; Auffray et al. 2012; Damblin
et al. 2013). The result of the optimization routine is ran-
dom. Randomness comes from: (i) the initial configuration,
(ii) the exchange procedure and (iii) the reject or acceptation
of the new design. The point (ii) is now described in more
details: at each step of the algorithm, one point of the design is
randomly chosen and its exchange with another randomly-
chosen point of the domain is examined. If this exchange
involves an improvement, it is accepted. Otherwise, it can be
accepted with a non null probability that slowly decreases to
zero.

The empirical c.d.f. of Nopt obtained for different dimen-
sions or numbers of points or indices are displayed on Fig. 5.
As expected, the number of iterations increases with I (green
compared to black). It can also be seen that for the same
index of quality I = I2 = 1− 10−1, the number of iterations
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Fig. 5 Optimization efficiency. Influence of the quality index I ∈ {1−
10−1, 1 − 10−3}, the dimension d ∈ {2, 10} and the number of points
N ∈ {100, 500} on the distribution of the number of iterations under
strategy 1

increases with the dimension and the number of points (blue
and red compared to black). Indeed, the problem consists in
optimizing the d coordinates of the N points of the design.

To formalize the problem under strategy 2, let us write the
index as I = 1 − 10−I

′
for some positive real I′ and denote

by δI the corresponding minimal distance among pairs of
such design. Let also Nrnd be the number of uniform random
samplings that must be generated before one has a minimal
distance higher than δI. The theoretical probability distribu-
tion of Nrnd is a geometric law of parameter 1− I. The mean
of the distribution is then 10I

′
and the quantile of order 1−α

is

Nrnd,1−α = log(α)

log(1 − 10−I′)
.

In otherwords, the probability ofwaitingmore than Nrnd,1−α

simulations before observing a design of index 1 − 10−I
′

is α. Note that this probability is independent of both the
dimension d and the number of points of the design N .

It can be seen inFig. 6 that the number of iterations, needed
to achieve the requested quality, is increasing with I (black
corresponds to I = 1 − 10−1 and purple to I = 1 − 10−3),
whatever the strategy (dashed line for strategy 1, referred to
as optim and solid line for strategy 2, named random). One
can see that strategy 2 performs better than strategy 1 for
I = 1 − 10−1 (weak quality requirement). In this case, the
expectation of Nrnd is 10 whereas the number of iterations
of the optimization routine is distributed between 0 and 500
for N = 100. When I = 1 − 10−3, it is the opposite: the
c.d.f. of Nopt reaches the value 1 faster than the geomet-
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Fig. 6 Optimization versus random. Distributions of the number of
optimization iterations (dashed line) and uniform random sampling iter-
ations (solid line) for I ∈ {1−10−1, 1−10−3}, with d = 2 and N = 100

ric distribution. Note that the comparison is less favorable
when the dimension or the number of points is high, i.e.
when the optimization problem is more complex (cf. Fig. 5).
When I = 1 − 10−5, the use of an optimization method
is inescapable: the expectation of the corresponding law for
Nrnd being extremely large, equal to 105. This case is not
represented on Fig. 6.

In conclusion, if the requested quality of the space-filling
design is not too high, it is not efficient to run an optimiza-
tion procedure, especially when the optimization problem is
difficult (high dimension or high number of points).

5.2.1 Additional comment

Different routines exist in R, Matlab, Python etc. to gener-
ate maximin-designs. One should pay attention to the related
strategy of each of them. For example in R,maximinlhs from
package lhs Carnell (2012) corresponds exactly to strategy 2
whereasmaximinSA_LHS (see Jin et al. 2005; Damblin et al.
2013) from package DiceDesign Franco et al. (2015) cor-
responds to strategy 1. Note that these routines have been
implemented in conjunction with Latin Hypercube Sam-
pling, a well knownmethod sinceMckay et al. (1979), which
ensures uniform distribution of the margins but has no space-
filling qualities.

6 Real example

Some of the major challenges for the automotive industry are
the reduction of greenhouse gas emissions, fossil fuel depen-
dency and local pollution. In many cases, phenomenological

models are not predictive enough for approximating these
responses. This is why these objectives rely on what is called
engine calibration, which consists in two steps. In the first
one, the optimal tuning of parameters used by engine control
strategies, for example for achieving low consumption or low
pollution is determining experimentally. Indeed, in order to
get a usable description of the engine under study, automotive
industrials launch experimental studies on test benches. In the
second step, the obtained experimental results are approxi-
mated by polynomials in very simple cases, and by Gaussian
surrogate models otherwise (see Santner et al. 2003; Sacks
et al. 1989). In this work, we are mainly interested by the first
part of this procedure.

Due to their increasing number, manual tuning of engine
parameters is now replaced by mathematically assisted cal-
ibration process, that is based on design of experiments.
The dimension of the input space for parameters is in our
example d = 11, among which we can find injection engine
speed, load, air flow rate, injectionparameters, as described in
Magand et al. (2011). To avoid unnecessary complications,
all the parameters are supposed to vary between 0 and 1.

To prevent the engine from going in forbidden regions,
some constraints (linear and non linear) have to be added,
and the final experimental area is not any longer hypercubic.
During the calibration process, while exploring the physical
limits of the engine, dependencies between the couple of
input speed and load and the other parameters are formalized.
They mostly result in linear constraints. But in some cases,
these relations can be too simple. For example, the limits
of the air loop parameter depend on injection parameters
values as well as speed and load. Some of these limits are
modeledwith low degree polynomials, others with non linear
functions (seeMagand et al. 2011). Eventually, more than 80
constraints have to be considered in this example.

Design in constrained domains is still an active domain
of research. Stinstra et al. (2003) and more recently Auf-
fray et al. (2012) propose performing strategies in con-
strained regions based on a simulated annealing algorithm.
Petelet et al. (2010) consider the case where linear con-
straints passing through the origin restrict the available
domain.

Here we propose the following strategy to compute the
index in a constrained domain. To calculate the volume of the
constrained region by Monte-Carlo simulations, we would
simply count the number N of points falling in the targeted
region out of a total number of draws Ntot , and the estimated
volume would be V = N/Ntot . Conversely, N points uni-
formly drawn in the experimental area should correspond
to N/V points in the unit hypercube, where V is the volume
of the constrained region. Then if δx is the minimal distance
obtained for the points in the experimental region, the prob-
ability that a uniform random design has a minimal distance
larger than δx in the unit hypercube is approximated by
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(1 − Gp,d(δx))
N/V (N/V−1)

2

where Gp,d has been defined in Sect. 3.
Under L2 distance In our real example, we have run a

large number of simulations of uniform random sampling
designs and counted the points falling in the targeted con-
strained region. We estimate the volume of this constrained
region by V = 0.23. With N = 250 points, the minimum L2

distance between pairs of such design is around δx = 0.33,
corresponding to an index I = 1 − 10−1.06 calculated with
an equivalent number of points equal to N/V . As previously
done by Jin et al. (2005) or Petelet et al. (2010), this first ini-
tial design can be improved by exchanging coordinates. After
this procedure, the minimal distance becomes δx = 0.395
and the index equals 1 − 10−6. As the cumulative distribu-
tion function is very steep, this small change in the distance
has an important impact on the index. Moreover, due to its
relatively high value, the user can now be confident about the
success of the procedure.

Under L1 distanceThe same calculations can be donewith
L1 distance for maximin designed as in Husslage (2006). We
find δx = 0.52 in the initial design and 0.98 after exchang-
ing coordinates. These values correspond to an index of
0.0137 = 1 − 10−0.006 for the initial design and 1 − 10−4

for the modified one. Note that these calculations are only
indicative here, since maximin designs depend on the cho-
sen distance.

In this section we have illustrated the use of the proposed
index on a real example. We have also shown how to deal
with difficulties occurring in concrete situations, such as con-
straints limiting the experimental domain.

7 Conclusion

In this paper, we propose a new index to measure the quality
of space-filling designs, based on the probability distribu-
tion of the minimal distance of N points drawn uniformly
in the unit hypercube of dimension d. As a probability mea-
sure, our index is normalized, and can thus be interpreted
independently from both the dimension and the number of
points. Its evaluation requires the knowledge of a c.d.f. that
can be very well approximated by polynomial forms in most
common situations.

However, when the number of points in the design is
large or under high dimension, some adequate approxima-
tions should be preferred, for their simplicity, in order to
evaluate the index. To sum it all up, we gather in Table 3 the
different ways of evaluating the index. Therein, the variable
t plays the role of the minimal L p distance δp,x among the
set of pairs of points of an observed design x.

Table 3 Index summary

General formula

Hp,N ,d (t)

Independence approximation

1 − (1 − Gp,d (t))Ñ

Independence and Gaussian approximations

1 −
(
1 − Φ

(
t p−dμp√

dσp

))Ñ

Gumbel approximation

1 − exp

[
− exp

(
αÑ

{
t p−dμp√

dσp
− βÑ

})]
Weibull approximation

1 − exp
(
−adp,d Ñ td

)
Computing the value of the index Ip , when the minimal distance is t ,
with several approximations provided in Sect. 4

The major conclusion of the simulation study is that, to
achieve particular values of our index, it is not always neces-
sary to run an optimization procedure. This depends on how
large the desired index is and how complex the optimization
procedure is.

The application of our index to an automotive industry
example reveals that our tools can be easily adapted to real
experimental domains.
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