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Abstract
In this paper, we propose a new methodology for solving stochastic inversion problems through computer experiments, the
stochasticity being driven by a functional random variables. This study is motivated by an automotive application. In this
context, the simulator code takes a double set of simulation inputs: deterministic control variables and functional uncertain
variables. This framework is characterized by two features. The first one is the high computational cost of simulations. The
second is that the probability distribution of the functional input is only known through a finite set of realizations. In our
context, the inversion problem is formulated by considering the expectation over the functional random variable. We aim
at solving this problem by evaluating the model on a design, whose adaptive construction combines the so-called stepwise
uncertainty reductionmethodologywith a strategy for an efficient expectation estimation. Two greedy strategies are introduced
to sequentially estimate the expectation over the functional uncertain variable by adaptively selecting curves from the initial
set of realizations. Both of these strategies consider functional principal component analysis as a dimensionality reduction
technique assuming that the realizations of the functional input are independent realizations of the same continuous stochastic
process. The first strategy is based on a greedy approach for functional data-driven quantization, while the second one is
linked to the notion of space-filling design. Functional PCA is used as an intermediate step. For each point of the design built
in the reduced space, we select the corresponding curve from the sample of available curves, thus guaranteeing the robustness
of the procedure to dimension reduction. The whole methodology is illustrated and calibrated on an analytical example. It is
then applied on the automotive industrial test case where we aim at identifying the set of control parameters leading to meet
the pollutant emission standards of a vehicle.

Keywords Functional random variable · Karhunen–Loève expansion · Data reduction · Functional quantization · Set
estimation · Gaussian process models

1 Introduction

In recent years, computer models are omnipresent in engi-
neering and sciences, because the corresponding physical
experimentation is costly or even impossible to execute.
Indeed, numerical simulations are often used to replace phys-
ical experiments as underlined in Bect et al. (2012) and
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Chevalier et al. (2014b). Practitioners are interested not only
in the response of their model for a given set of inputs (for-
ward problem) but also in recovering the set of input values
leading to a prescribed value or range of the output of inter-
est. The problem of estimating such a set is called hereafter
inversion problem.

We will consider a system that evolves in an uncertain
environment. The uncertainties appear, for example, due to
manufacturing tolerances or environmental conditions. The
numerical simulator modelling the system, denoted f , takes
two types of input variables: a set of control variables x ∈ X,
and a set of uncertain variables v ∈ V . Without any dis-
tributional assumptions for the uncertain variable v, robust
inversion (see Chevalier 2013) consists in seeking the set of
control variables x ∈ X such that supv∈V f (x, v) is smaller
than a threshold c. Then, the difficulty of solving the robust
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inversion problem strongly depends on the uncertainty set
V . In our setting, V is a functional space, and we con-
sider instead the inversion problem under uncertainty as a
stochastic inversion problem, assuming that the uncertainty
has a probabilistic description. Let V denote the associated
random variable, valued in V , modelling the uncertainty.
In our framework, we are interested in recovering the set
Γ ∗ := {x ∈ X , g(x) = EV[ f (x,V)] ≤ c}, with c ∈ R. The
functional random variable V is only known through a set of
realizations, and the expectation has to be estimated. More-
over, the simulations are time-consuming, and thus, the usual
Monte Carlo method to estimate the expectation ought to be
avoided. Many reviews have been published to address this
issue (see, e.g. L’Ecuyer and Lemieux 2005; L’Ecuyer and
Owen 2009).Among the numerous techniques, the paperwill
focus on the ones based on the choice of a finite representa-
tive set of realizations of V, among the ones available. More
precisely, these approaches aim at minimizing the expected
distance between a random draw from the probability distri-
bution of V and this finite set. In the case of vector-valued
random variables, this type of methods, introduced in Flury
(1990) as principal points, was employed in various statis-
tical applications, including quantizer design (Luschgy and
Pagès 2015; Pagès 2014) and stratified sampling. It is increas-
ingly used for many engineering applications, where we are
often faced with the challenge of working with big data. It is
then necessary to reduce big data to manageable data. As for
the case of functional random variables, various studies have
been done in the Gaussian case (see Luschgy et al. 2010;
Pagès and Printems 2005 and references therein). Here, we
work in the special casewhere the functional variableV could
be non-Gaussian and is only known through a finite sample
of realizations. This paper proposes two new methodologies
to perform this data reduction or quantization for functional
random variable, and we investigate their performance in
terms of integration errors.

Inversion problems have already been carried out in many
applications, notably reliability engineering (see, e.g. Bect
et al. 2012; Chevalier et al. 2014b), climatology (see, e.g.
Bolin and Lindgren 2015; French and Sain 2013) and many
other fields. In the literature, one way to solve the problem
is to adopt a sequential sampling strategy based on Gaus-
sian process emulators. The underlying idea is that Gaussian
process emulators, which capture prior knowledge about the
regularity of the unknown function g : x �→ EV[ f (x,V)],
make it possible to assess the uncertainty aboutΓ ∗ given a set
of evaluations of g. More specifically, these sequential strate-
gies for the estimation of an excursion set are closely related
to the field of Bayesian global optimization (see, e.g. Cheva-
lier andGinsbourger 2013). In the case of inversion problems,
stepwise uncertainty reduction (SUR) strategies based on set
measures were introduced in Vazquez and Bect (2009).More
recently, a parallel implementation of these strategies has

been proposed in Chevalier et al. (2014b) and applied to the
problem of recovery of an excursion set. Briefly, the strat-
egy SUR gives sequentially the next location in the control
space where to estimate the function g in order to minimize
an uncertainty function. The key contribution of the present
paper is to propose a data-driven adaptation of that procedure
in the presence of functional uncertainties.

The paper is divided into five sections. Following this
introduction, Sect. 2 is devoted to the introduction of two new
adaptivemethods to choose the finite representative set of the
functional random variable for a reliable expectation estima-
tion. In Sect. 3, we highlight the integration performance of
our methods comparing to the standard Monte Carlo and to
an existing method based on a probabilistic modelling with
truncated principal component analysis (PCA). In Sect. 4, we
introduce the Bayesian framework and fundamental notions
for SUR infill strategies in the context of computationally
costly simulations. In Sect. 5, we introduce the new proposed
data-drivenmethodology for stochastic inversion under func-
tional uncertainties and describe our algorithm. Finally, in
Sect. 6, we illustrate the overall procedure on an analytical
example and then apply it to an industrial test case.

2 Functional data reduction

In this section, we introduce new data reduction strategies
for functional data in a greedy fashion. The first one is based
on notion coming from functional quantization. The second
one is related to notion of space-filling design. In this paper,
data reduction aims at reducing the integration error when
computing E[ f (x,V)]. Therefore, we focus in Sect. 3 on the
performance in terms of integration error of our strategies,
comparing to standard procedures.

Context We consider the space H = L
2(Ω,F ,P;V )

of random processes V with realizations V(, ω) = v in the
space of deterministic square-integrable functions defined on
[0, T ] denotedwithV = L

2([0, T ]) and equippedwith norm
||v|| = (

∫ T
0 v(t)2dt)1/2. The random variables V(t, .) = η

lie in L2(Ω), the space of random variables with finite mean
and variance, defined on (Ω,F ,P) and equipped with norm
||η||L2(Ω) = (

∫
Ω

η2dP)1/2. All random processes discussed
in this paper lie inH which is equipped with norm

||V||L2 = (
E[||V||2])1/2 =

(

E

[ ∫ T

0
V(t)2dt

])1/2

, (1)

for any V ∈ H . The vast majority of realistic engineering
problems can be addressed within this set of assumptions.
Wewill consider a centred stochastic process with finite vari-
ance. We aim at summarizing the distribution of V through a
finite collection of deterministic functions {v j }l

j=1 and cor-

responding weights {w j }l
j=1. Many reviews have been done
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on functional quantization (Pagès and Printems 2005, 2009;
Luschgy et al. 2010). For instance, Luschgy et al. (2010)
propose different strategies for Gaussian processes.

An optimal quantization ofV consists in finding the subset
A ⊂ V with card(A) ≤ l that minimizes

(

E

[
min
a∈A

||V − a||2
])1/2

. (2)

Such a set is called an optimal l-quantizer. Lets us denote as
A = {a1, . . . al}.Wedefine a neighbour projection associated
with A as:

πA :=
l∑

i=1

ai1Cai (A), (3)

where ∀i ∈ {1, . . . , l} Cai (A) is the Voronoi partition
induced by A and associated with ai :

Cai (A)={v ∈ V | ∀h ∈ {1, . . . , l}, ||v−ai || ≤ ||v−ah ||}.
(4)

The A-quantization of V is defined by:

V̂l := πA(V). (5)

The projection πA transforms V into its nearest neighbour in
the set A. Voronoi partition is optimal in the sense that, for
any random variable V′

l : Ω → A, one has E||V − V′
l ||2 ≥

E||V − V̂l ||2 (see, Pagès and Printems 2009). Finally, the
l-quantization error of V is defined by

el(V) = inf{(E||V − V̂l ||2
)1/2

,

V̂l : Ω → V , card(V̂l(Ω)) ≤ l}.
(6)

From a computational point of view, the cost of minimiz-
ing the error defined in Eq. (6) is not negligible. Even in
the finite-dimensional space Rm , the numerical search of an
optimal solution leads to an increasing computational cost
when l or m grows (see Levrard 2014). Luschgy, Pagès pro-
pose in Luschgy and Pagès (2015) a greedy version of the
L
2-quantization problem for U an R

m valued random vec-
tor. The greedy quantization is easier to compute in terms
of complexity but provides a possible sub-optimal quan-
tizer {û1, . . . , ûl}. The authors in Luschgy and Pagès (2015)
prove that the L

2-quantization error at level l induced by
{û1, . . . , ûl} goes to 0 at rate l−1/m . The idea of such a pro-
cedure is to determine sequentially the sequence (ûl)l≥1. The
first vector û1 achieves the error e1(U). Then, for l ≥ 2,

∀l ≥ 2, ûl ∈ argmin
u∈Rm

(
E||U − Ûl ||2

)1/2
, (7)

where Ûl is the l-quantization induced by {û1, . . . , ûl−1} ∪
{u}. In other words, the authors replace an optimization in
dimension l × m with l optimizations in dimension m.

In the present work, we propose a sequential strategy in a
high-dimensional setting under the assumption that the ran-
dom process V may not be Gaussian. In this framework,
Miranda andBocchini (2013, 2015) propose a one-shot algo-
rithm that produces anoptimal functional quantizer butwhich
depends on a simulation procedure for V. In the following,
we propose a greedy algorithm to compute a l-quantization of
V. In our framework, the functional random variable is only
known through a finite set of realizations. The specificity of
our procedure is first that it does not require a simulation
algorithm of the unknown process V (which is known only
from a finite set of realizations), and secondly our quantizer
can be sequentially increased in a greedy fashion. One ingre-
dient in our methodology is the PCA decomposition of V
(also known as Karhunen–Loève expansion).

Let us briefly recall theKarhunen–Loève expansionwhich
is the most commonly employed method to reduce the sta-
tistical complexity of random fields indexed over bounded
intervals, with continuous covariance function.

The Karhunen–Loève expansion Let V ∈ H be a random
process with zero mean and continuous covariance function
C(t, s). Then,

V(t) =
∞∑

i=1

uiψi (t), t ∈ [0, T ], (8)

where {ψi }∞i=1 are orthogonal and normalized eigenfunctions
in V of the integral operator corresponding to C :

λiψi (t) =
∫ T

0
C(t, s)ψi (s)ds. (9)

The {ui }∞i=1 denotes a set of uncorrelated random variables
with zero mean and variance λi , where λi is the eigenvalue
corresponding to the eigenfunction ψi . In our method, we
will truncate Eq. (8):

V(t) 
mK L∑

i=1

uiψi (t). (10)

Computational details for functional PCA The covariance
structure of the process V is unknown and has to be estimated
from the data. More precisely, C(s, t) is estimated from the
centred sample Ξ = {vi }N

i=1 by:

C N (t, s) = 1

N

N∑

i=1

vi (s)vi (t). (11)
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The eigenvalue problem defined by Eq. (9) is then solved
by replacing C by C N (see, e.g. Cardot et al. 1999
for convergence results). That approximated eigenvalue
problem is solved, e.g. by discretizing the trajectories
{vi }i=1,...,N on [0, T ] : κ = {vi (t j )} j=1,...,NT

i=1,...,N . It leads to

the empirical covariance matrix defined as C̃ N = 1
N κ�κ .

We then have to solve a classical multivariate PCA with NT

variables given by a sample of size N . Standard PCA involves
an O(min(N 3

T , N 3)) search for directions of maximum vari-
ance. In the case of discretized curves NT � N , thus the
complexity of PCA is O(N 3).

Other approaches to implement functional PCA can be
found in the literature. In Ramsay (2006), e.g. the authors
propose to expand the curves as linear combinations of spline
basis functions, and to apply PCA to the coefficients of the
curves on the spline basis. There are several criteria for
the choice of the truncation argument mK L (Jackson 1993).
One can cite the Kaiser-Guttman criterion which consists of
choosing the first componentswith eigenvalues higher than 1.
Instead of using the absolute value of the explained variance,
as indicated by the eigenvalue, the choice of mK L could be
based on the “percentage of variance” given by the proportion

λi∑N
i=1 λi

. By this way, we choose mK L so that the percent-

age of variance explained by the first components exceeds a
certain threshold. Often to avoid the arbitrary choice of the
threshold, we display the eigenvalues in a downward curve
and extract the components on the steep slope.

What is important to note is that functional PCA is done
once for all, as an offline pre-processing step in our global
inversion procedure.

L
2-Greedy functional quantization (L2-GFQ) Now, we

aim at optimally exploring the range of variations of Vwith a
fewelements inΞ . LetG = {(〈v, ψ1〉, . . . , 〈v, ψmK L 〉)T, v ∈
Ξ} = {ui }N

i=1, with ui = (〈vi , ψ1〉, . . . , 〈vi , ψmK L 〉)T, be
the set of the first mK L coefficients in KL expansion (see
Fig. 1).Since we place ourselves in a finite space G ⊂ R

mK L ,
a first step consists in an efficient and sequential strategy for
the selection of a vectorial l-quantizer. A first solution is to
apply the greedy vectorial quantization procedure described
by Eq. (7). Let U be a random vector with discrete uniform
distribution on G . The sequential construction is detailed as
follows

D̂1 = {û1} where û1 is a solution of e1(U) from Eq. (6)

∀l ≥ 2 , D̂l = D̂l−1 ∪ {ûl}
where ûl ∈ argmin

u∈G
(
E||U − Ul ||2

)1/2
,

l = l + 1,

and Ul is the l-quantization induced by {û1, . . . , ûl−1}
∪ {u}.

(12)

Fig. 1 Ξ is a sample of 100 realizations of V (left) and G the cor-
responding representation in the truncated space of coefficients with
mK L = 2 (right)

Fig. 2 Sequential design of ten points (bold points) in the set of the
coefficients G (left) and their corresponding bold curves in Ξ (right)

A collection of representative curves associated with our
functional random variable V is obtained by recovering the
curves in the initial sample Ξ that correspond to the selected
points D̂l :

D̂l = {ûi }l
i=1 ⊂ G −→ Θ ′

l = {θ ′
i }l

i=1 ⊂ Ξ (13)

This step is important as it allows recovering the functional
variability of V and not only the variability of its first mK L

coefficients. Figure 2 shows the algorithm up to step l = 10
on the example of Fig. 1. Note that, from this figure, we can
see that L2-quantization leads to selecting central points and
so the sample Θ ′

l=10 is mainly representative of the mean
behaviour of V. We also note that the extreme points are
not chosen in the beginning of the construction. To address
this issue, we propose a method that aims at exploring the
range of variations of V by selecting central points and
also extreme points. One way to do so consists in the con-
struction of a space-filling design in R

mK L . Let D̃ be this
design. As the distribution of V is only known through Ξ,

it is natural to search D̃ included in G such that the cho-
sen points are well spread all over the space. Let us recall
the notion of space-filling design, from a purely model-free
stance.

Space-filling design and criterion Let us define D =
{u1, . . . ,ul} a collection of l points.We denote by disti j =
||ui −u j || the euclidean distance between two design points
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ui and u j of D. One must then attempt to make the small-
est distance between neighbouring points in D as large
as possible. We call a design that maximizes φMm(D) =
mini �= j disti j , a maximin-distance design (see Johnson
et al. 1990). There are several other intrinsic criteria in
the literature such as discrepancy that measures whether
the distribution of the points of D is close to a uni-
form distribution. See Pronzato and Müller (2012) for a
detailed overview on the subject. In the following, we con-
sider the maximin-distance criterion to construct our design,
and since we want to select points from the set of coef-
ficients G , the design D̃ can be obtained by finding the
design of l points among N , which maximizes the criterion
φMm .

Maximin-Greedy functional quantization (Maximin-GFQ)
Finding the design D̃ is a computationally difficult task. We
could adapt one of the optimal design algorithms used in
the literature such as simulated annealing (see Morris and
Mitchell 1995) and stochastic evolutionary algorithm (see Jin
et al. 2005) for our purpose. Here, we propose a one-point-
at-time greedy algorithm for the generation of our design.
The sequential construction is described as follows

Initialization: D̃1 = {ũ1} where ũ1 is randomly chosen

∀l ≥ 2, D̃l = D̃l−1 ∪ {ũl}
where ũl ∈ argmax

u∈G
φMm

(
D̃l−1 ∪ {u}

)
,

l = l + 1.

(14)

The algorithm starts with a random point ũ1, and the next
point is chosen among the points in G in order to maximize
the maximin-distance criterion. Besides the sequentiality as
for the L2-GFQ method, the points are now chosen in order
to explore the range of variations of V at each step using a
distance criterion. Meaning that at each step, the exploration
of the domain is reasonable. The technique to recover the
curves remains the same:

D̃l = {ũi }l
i=1 ⊂ G −→ Θ ′′

l = {θ ′′
i }l

i=1 ⊂ Ξ (15)

In order to make a comparison, we start the Maximin-GFQ
method Eq. (15) with the same point as the L2-GFQ method
Eq. (13), i.e. ũ1 = û1. Figure 3 shows the results up to
step l = 10 of both procedures. One can observe that the
greedy maximin method covers well the range of variation
of V contrary to the L2-GFQmethod, which provides spread
points only on the first component. The L

2-GFQ seems to
be more influenced by the higher-order KL expansion. In
the following, in order to improve the readability, we adopt
the simplified notation Θl that refers to one of the two con-
structions Θ ′′

l and Θ ′
l . In this way and in the same spirit as

Fig. 3 Left: two designs of l = 10 points in the 2D-coefficients set
G . Maximin-GFQ (red circle points) and greedy L

2-GFQ (blue square
points). Right: the corresponding red curves for theMaximin-GFQ pro-
cedure (right). (Colour figure online)

before [see Eqs. (3), (5)], we define Θl -quantization of the
stochastic process V as

V̂l =
l∑

i=1

θ i1Cθ i
(V), (16)

where {Cθ i (Θl) : θ i ∈ Θl} is a Voronoi partition of Ξ

induced by Θl as defined in Eq. (4).
Regarding the computational time devoted to perform

the functional quantization, Fig. 4 shows the time needed
to compute the whole Greedy Functional Quantization as a
function of point set size l. The KL expansion is done in a
prior unaccounted step that takes 0.11s. These algorithms
are implemented in the software R, and all computations
are performed on a 2.80GHz processor. From this figure,
the running time of the maximin-GFQ method grows much
more slowly than the L

2-GFQ one. Indeed, the discrete
optimization in the L

2-GFQ method [Eq. (12)] involves
an empirical estimation of the expectation at each step;
thus, the algorithm has complexity O(N 2 × l × mK L).
The latter becomes time-consuming as l increases compar-
ing to the maximin-GFQ algorithm which has complexity
O(N × l × mK L).

The reasons for performing a dimension reduction are
twofold. The first one is computational as illustrated in Fig. 4,
where both methods are compared to the L

2-GFQ without
KL decomposition with complexity O(N 2 × l × NT ). The
second one is related to the properties of the maximin cri-
terion. Indeed, the space-filling quality is higher in a small
dimensional space since in a high one too many points are
chosen at the boundary (see e.g. Abtini 2018; Pronzato and
Müller 2012).

We recall that this functional PCA step is done once for
all in a pre-processing step.

In this section, we have introduced two data-driven greedy
original procedures for functional quantization, quantization
being an alternative to Monte Carlo methods for numerical
integration. In the next section, we highlight the performance
of these procedures through two analytical examples.
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Fig. 4 Computation time (in seconds) of theGFQmethods as a function
of point set size (N = 200, NT = 200)

3 Numerical integration

Let h : V = L
2([0, T ]) −→ R be a continuous function,

and let V̂l be a l-quantization. It is natural to approximate
E[h(V)] by E[h(V̂l)]. This quantity E[h(V̂l)] is simply the
finite weighted sum:

E[h(V̂l)] =
l∑

i=1

h(θ i )P(V̂l = θ i ), (17)

where the distribution
(
P(V̂l = θ i )

)
i=1:l of V̂l can be approx-

imated empirically by
(
card(Cθ i (Θl) ∩ Ξ)/card(Ξ)

)
i=1:l .

For a given i , this is the proportion of curves among N which
are closer to θ i than to any other θ j , j �= i . This propor-
tion acts as a weight in the computation of the expectation.
Assigning weights can bring a significant improvement (see
L’Ecuyer and Lemieux 2005).

Remark Under regularity assumptions, the integration error
can be bounded by the quantization error. For example, if h
is Lipschitz in the sense that ∀v, v′ ∈ V , |h(v) − h(v′)| ≤
c||v − v′||, then
∣
∣E[h(V)] − E[h(V̂l)]

∣
∣ ≤ E|h(V) − h(V̂l)|
≤ cE||V − V̂l ||
≤ c(E||V − V̂l ||2)1/2.

(18)

Returning to our original notation E[ f (x,V)], the pro-
posed methodologies for an efficient estimation of the
expectation over a functional random variable are summa-
rized in Algorithms 1 and 2.

Algorithm 1 maximin-GFQ: Numerical integration
1: Inputs: initial sample (Ξ ), truncation argument (mK L ), x value

where the expectation will be evaluated and set size of the quan-
tization (l).

2: G ← truncation of the KL expansion after mK L -terms.
3: Construct the set of representative points D̃l defined by Eq. (14).
4: Induce from D̃l the corresponding set of representative curves Θ ′′

l
Eq. (15).

5: Define V̂l ← Θ ′′
l -quantization of V Eq. (16).

6: Perform the computation of the expectation E[ f (x, V̂l )] Eq. (17):
7: E[ f (x,V)] ≈ E[ f (x, V̂l )] = ∑l

i=1 f (x, θ ′′
i )P(V̂l = θ ′′

i ).

Algorithm 2 L2-GFQ: Numerical integration
1: Inputs: initial sample (Ξ ), truncation argument (mK L ), x value

where the expectation will be evaluated and set size of the quan-
tization (l).

2: G ← truncation of the KL expansion after mK L -terms.
3: Construct the set of representative points D̂l defined by Eq. (12).
4: Induce from D̂l the corresponding set of representative curves Θ ′

l
Eq. (13).

5: Define V̂l ← Θ ′
l -quantization of V Eq. (16).

6: Perform the computation of the expectation E[ f (x, V̂l )] Eq. (17):
7: E[ f (x,V)] ≈ E[ f (x, V̂l )] = ∑l

i=1 f (x, θ ′
i )P(V̂l = θ ′

i ).

In the sequel,we compare these two algorithms to the stan-
dard Monte Carlo, whose steps are outlined in Algorithm 3.
The estimation of the expectation is sequentially calculated
in the same vein as the GFQ procedures.

Algorithm 3 Crude MC: Numerical integration
1: Inputs: initial sample (Ξ ), x value where the expectation will be

evaluated and set size of the quantization (l).

2: Sample V̄l = {v̄i }l
i=1 where v̄1, . . . , v̄l

i .i .d.∼ UΞ , where UΞ a dis-
crete uniform distribution on Ξ .

3: Estimate the expectation E[ f (x,V)] by l MC runs to f (x, v̄):
4: E[ f (x,V)] ≈ 1

l

∑l
i=1 f (x, v̄i ).

We consider two analytical examples to highlight the inte-
gration performances of the two Greedy Functional Quan-
tization methods (GFQ) in comparison with crude Monte
Carlo. The first example is defined as an additive Lipschitz
function, i.e. sum of the 2DBohachevsky function and uncer-
tainties. The second example does not verify the Lipschitz
assumptions to mimic real applications.
Application 1 We consider a functional f defined as

f : v �→ (
a2 + 2b2 − 0.3 cos(3πa)

− 0.4 cos(4πb) + 0.7
) +

∫

T
evt dt,

where a = 50, b = −80 and V is a standard Brownian
motion on R and [0, T ] = [0, 1]. We suppose that a sample
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Fig. 5 Application 1. Sequential expectation estimation (mK L = 2).
Lines denote the average estimates, and coloured bands mark the 25th
and 75th quantiles (Monte Carlo (in green) andmaximin-GFQ (in red)).
Horizontal axis denotes the number of curves l used for the expectation
estimation. (Colour figure online)

Ξ of N = 200 realizations of V is available and that the
probability distribution of V is unknown. These realizations
are discretized on a regular grid of NT = 200 points. In
this example, we fix the truncation argument at 2 to explain
90% of the variance. Because of the random choice of the
starting curve, the maximin-GFQ methods have a stochastic
behaviour like theMonte Carlo method. To account for these
variabilities in the test, the performance is averaged over 200
independent runs for the MC method and 200 runs related to
all the different starting curves for themaximin-GFQmethod.

The results are shown in Fig. 5. We observe that for any
choice of l, the integration error induced by any of both GFQ
methods is significantly smaller than the standard Monte
Carlo. One can note that the maximin-GFQ method is less
sensitive to the starting point from set size l ≥ 25. We also
remark that for a small size l ≤ 5, the maximin-GFQmethod
is not yet stabilized implying more uncertainties in the esti-
mation. From l ≥ 10 (see Fig. 3), stability is reached thanks
to the procedure of selection of different kinds of curves
(centred and extreme).

Application 2 We define a function f by mixing control
variables and uncertainties. This function involves max(v)
and min(v), so catching the variability of V becomes impor-
tant. The function f is given by

f : v �→ max
t

vt .|0.1 cos(a max
t

vt ) sin(b).(a + bmin
t

vt )
2|

.

∫ T

0
(30 + vt )

a.b
20 dt,

where a = 2.95, b = 3.97 and V is a standard Brownian
motion onR and [0, T ] = [0, 1]. To mimic real applications,
we assume in the procedure that the probability distribution
of V is unknown. We suppose that a sample Ξ of N = 200
realizations of V is available. These realizations are dis-
cretized on a grid of size NT = 200. We note that the two

Fig. 6 Application 2. Sequential expectation estimation (mK L = 2).
Lines denote the average estimates, and coloured bands mark the 25th
and 75th quantiles [Monte Carlo (in green) andmaximin-GFQ (in red)].
Horizontal axis denotes the number of curves l used for the expectation
estimation. (Colour figure online)

Fig. 7 Application 2. Sequential expectation estimation (mK L = 2).
Lines denote the average estimates, and coloured bands mark the 25th
and 75th quantiles [FPCA (in blue) and maximin-GFQ (in red)]. Hor-
izontal axis denotes the number of curves l used for the expectation
estimation. (Colour figure online)

GFQ methods depend on the truncation argument mK L . In
this example, we fix it at 2 to explain 90% of the variance.
(Results are similar for other truncation arguments and x val-
ues, and are omitted for brevity.)

Due to the stochastic nature of the Monte Carlo and the
maximin-GFQ methods, the performance of the method is
averaged over 200 independent runs for the MC method and
200 runs related to different starting curves for the maximin-
GFQ method. The results of the integration algorithms are
shown in Fig. 6. The lines indicate average estimate, and
the coloured bands mark the area between the 25th and 75th
quantiles. Here, two observations can be made. First, for any
choice of l, the integration error induced by both GFQmeth-
ods is significantly smaller than the standard Monte Carlo.
Secondly, for maximin-GFQmethod, the variability induced
by the choice of the starting point is weak from set size
l ≥ 20.

We recall that our procedure is based on a dimension
reduction. However, once the space-filling design has been
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built in R
mK L , we go back to the high-dimensional space V

by selecting the corresponding curves. We expect such a pro-
cedure to be robust to the dimension reduction. To illustrate
this intuition, we compare the maximin-GFQ algorithm to an
existing method, called hereafter FPCA method. This latter
consists in sampling independently the KL random vari-
ables U ∈ R

mK L whose probability distribution is estimated
beforehand and denoted PU [see, e.g. Nanty et al. (2016)
for a detailed overview on the subject]. Then, we obtain the
desired curves using the linear combination of Eq. (10). The
results of the comparison are shown in Fig. 7. We note that
the FPCA method leads to a biased estimation due to the
regularization induced by reducing the dimension.

In summary, these simulations show that the two GFQ
methods benefit improved performances over Monte Carlo
in numerical accuracy.

In this section, we presented a methodology to efficiently
estimate the expectation over V at a point x in the control
space X. In the next section, we recall an existing method to
address the inversion problem in the control variable space
in the context of computationally costly simulations. This
strategy is definedwithin aBayesian framework and based on
the so-called stepwise uncertainty reduction strategy (SUR).
Let us start with some presentation of SUR paradigm.

4 Background on SUR strategies

Let f : X×V −→ R denote a real-valued continuous func-
tion, where X is a bounded subset of Rp, p ≥ 1, and V a
functional space on which a random variable V is defined.
Moreover, we suppose that a finite set of N independent and
identically distributed realizations of the functional random
variable V is available. In the following, we consider the
expectation over the distribution of the functional random
variable and we are interested in characterizing the set of
control variables which leads to the safe behaviour of a sys-
tem:

Γ ∗ =: {x ∈ X , EV[ f (x,V)] ∈ C}
= {x ∈ X, g(x) ∈ C} with C = (∞, c], c ∈ R.

(19)

While the function f depends on two separate types of inputs
(control and uncertain variables), our objective function g
depends only on the control variables, i.e. for each setting
of control variables, the objective function is the mean of f
over the unknown distribution of the uncertain variable.

The estimation of Γ ∗ by evaluating the function g at each
grid point of the discretized version of X requires far too
many evaluations of g. Therefore, statistical methods based
on a reduced number of evaluation points are widely used to
overcome this latter difficulty by focusing the evaluations on
the ’promising’ subregion of the control space.

Thesemethods usually begin by an exploration phase, during
which the output of the code is computed on an experimen-
tal design of size n. This initial design is then sequentially
expanded by adding new goal-oriented points. These sequen-
tial strategies have been used in recent years for many
purposes, such as the failure probability estimation (Bect
et al. 2012) and target regions (Picheny et al. 2010) whose
main idea is to decrease the kriging variance at the points
where the kriging mean is close to the threshold c. Unlike
the two aforementioned methods, we are interested in the
whole excursion set. In Chevalier et al. (2013, 2014a), the
sampling criterion is based on the concept of random closed
sets and applied to identify the set Γ ∗. In this work, we adopt
this strategy and the procedure is introduced as follows.

4.1 Random closed set and Bayesian framework

In a Bayesian framework, we assume that g is a real-
ization of an almost surely continuous Gaussian process
Y ∼ G P(m, k) with a mean structure m, defined as,
m(x) = E[Yx], x ∈ X, and a covariance kernel k, defined
as, k(x, x′) := Cov(Yx, Yx′), x, x′ ∈ X. Due to the stochas-
tic nature of (Yx)x∈X, the associated excursion set,

Γ := {x ∈ X , Yx ∈ C} (20)

is a randomclosed set. From the assumption that g is a realiza-
tion ofY , the true unknown setΓ ∗ can be seen as a realization
of the random closed set Γ . It is possible to compute a mean
and deviation for this random setΓ by theVorob’ev approach
(see Chevalier et al. 2013). We use the Vorob’ev expectation
Qα∗ as an estimator of the true excursion set and Vorob’ev
deviation E[μ(Γ �Qα∗)] to quantify the uncertainty of the
random closed set Γ . Therefore, we implement a Stepwise
Uncertainty Reduction strategy (SUR) that aims at reducing
uncertainty on Γ by adding new evaluation points step by
step as proposed by Chevalier et al. (2013). The principle of
SUR strategies is also recalled in Sect. 4.2.

4.2 SUR strategies

The principle of stepwise uncertainty reduction (SUR) (see,
e.g. Bect et al. 2012; Chevalier et al. 2014b) is to define
an uncertainty measure, depending on the objective to be
fulfilled, and to sequentially choose the points that decrease
most this uncertainty. In other words, the aim of the SUR
strategy is to construct a sequence of evaluation locations
in order to reduce the expected uncertainty on a quantity of
interest.

Here, we work in the setting where g is a sample path of a
random process Y . The uncertainty function for an estimate
of Γ is defined as a function H uncert that associates with
any finite sequence of observations (Xn, gXn) a real value
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representing the uncertainty on the estimation of Γ . When n
observations are available, we denote by H uncert

n the uncer-
tainty at step n. We assume that we have r evaluations left.
The objective of the SUR strategy is to find r optimal loca-
tions xn+1, . . . , xn+r such that the uncertainty H uncert

n+r is as
small as possible.

In what follows, we consider the Vorob’ev deviation as
the uncertainty function, at step n,

H uncert
n = E[μ(Γ �Qn,α∗

n
) | YXn = gXn ], (21)

where Qn,α∗
n
is the Vorob’ev expectation conditionally to

the n available observations. One way of constructing the
sequence xn+1, . . . , xn+r is to choose at each step the point
that gives the smallest uncertainty H uncert

n+1 ,

H uncert
n+1 (x) = E[μ(Γ �Qn+1,α∗

n+1
) | YXn = gXn , Yx] (22)

We note that the future uncertaintyH uncert
n+1 is function of

Yx given YXn = gXn . Therefore, at each step we choose the
point that gives the smallest uncertainty in expectation, that
is :

xn+1 ∈ argmin
x∈X

En,x [H uncert
n+1 (x)]

:= argmin
x∈X

Jn(x),
(23)

whereEn,x denotes the expectationwith respect to Yx|YXn =
gXn [for detailed formula of Jn(.), see Chevalier et al.
(2013)].

After having evaluated the function g at the optimal loca-
tion xn+1, we update the parameters of the posterior mean
and covariance, and we restart until the evaluation budget r
is spent. Such strategy is called one-step lookahead, which
means that we select the next evaluation point as if it were the
last one. A comparison of such a strategy to the space-filling
strategy based on Sobol sequences is given in Chevalier et al.
(2013). The authors highlight the effectiveness of the SUR
strategy through an analytical example. For more theoretical
perspectives on the SUR strategies, see Bect et al. (2016) and
references therein.

4.3 SUR strategy adapted to noisy observations

In our context, we cannot compute exact evaluations of
the expectation over the probability distribution of V. We
propose in Sect. 2 sequential algorithms that efficiently
approximate the value of g(x) byE[ f (x, V̂l)]. On the design
points, the n evaluations g(Xn) are replaced by their approxi-
mation g̃(Xn) = (E[ f (x1, V̂l)], . . . ,E[ f (xn, V̂l)]). For that
reason, we do not want to build an exact interpolant at points
x1, . . . , xn . We rather consider that g̃(Xn) are realizations of
aGaussian vector (Ỹx1 , . . . , Ỹxn )

T defined by Ỹxi := Yxi +εi ,

where ε1, . . . , εn are independent centredGaussian variables
of variance τ 21 , . . . , τ 2n . Conditionally to Ỹx1 , . . . Ỹxn , the pro-
cess Y is still Gaussian except that we add the variances
{τ 2i }n

i=1 to the diagonal elements of the covariance matrix.

Remark In our context, we estimate the expectation empir-
ically by l calls to the function f . The well-known Monte
Carlo methods (Crude MC, FPCA) allow us to quantify the
noise of estimation and to integrate it into GP modelling
(kriging with noisy observations). Consequently, we define
the variance components {τ 2i }n

i=1 as the sample variance esti-
mators τ 2i = ˆvar( f (xi , V̄l)) for the crude MC method and

ˆvar( f (xi ,V
pca
l )) for the FPCA method.

5 Algorithm coupling SUR and functional
quantization

The whole computational aspect is carried out in the R
environment: we use the DiceKriging package (Rous-
tant et al. 2013) for Gaussian modelling, and the sampling
criterion Jn Eq. (23), used in order to select the next eval-
uation xn+1 of the function g, is already implemented in the
KrigInv package (Chevalier et al. 2014a). We exploit the
kriging update formulas (Chevalier et al. 2015) for faster
updates of posterior mean and covariance. When xn+1 is
identified, l calls to the simulator have to be performed to
approximate the expectation on that point. The sequentiality
of our estimation method of the expectation on xn+1 leads us
to define a stopping criterion on the expectation estimation
m̂. Thus, l is chosen sufficiently large so that l0 consecu-
tive ’expectation variations’ are smaller than a threshold ε.
Besides, the number of calls l will naturally depend on xn+1.

In practice, at each step of the estimation we evaluate the
absolute difference between two consecutive estimations of
the expectation,

el(xn+1) = |m̂l−1(xn+1) − m̂l(xn+1)|, (24)

where m̂i (xn+1) = E[ f (xn+1, V̂i )], we denote by |.| the
absolute value function. In the following, the stopping crite-
rion is defined by the following relation,

∀ 0 ≤ j ≤ l0 , el− j (xn+1) ≤ ε (25)

It ensures that the quantities el are smaller than a prescribed
tolerance ε on the l0 previous steps in the estimation. These
two parameters are set by practitioners. It allows using fewer
curves without loosing estimation accuracy.

Remark The parameters (l0, ε) are closely linked to the
allocated budget. Moreover, the parameter l0 can be set in
practice between 2 and 5 regarding the stability we want to
achieve with the method. About the parameter ε, it will be
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intuitively calibrated depending both on the precision and on
the scale of the outputs.

The strategySURcould be stopped if the allocated number
of simulations is reached. However, we define in this work an
additional stopping criterion based on theVorob’ev deviation
and close to the one defined for the expectation estimate.
Thus, the strategy is carried out until the following stopping
criterion is verified

∀ 0 ≤ j ≤ lSUR0 , eSURl− j (xn+1) ≤ εSUR, (26)

where eSURi = |Ei−1[μ(Γ �Qi−1,α∗
i−1

)]−Ei [μ(Γ �Qi,α∗
i
)] |

is the absolute error between two successive Vorob’ev devi-
ations. The condition Eq. (26) tests whether all the quantities
are smaller than a tolerance εSUR on lSUR0 consecutive steps.
Alternatively, one might consider a stopping criterion based
on the values rather than the variations of the Vorob’ev devi-
ation. This criterion is given by

∀ 0 ≤ j ≤ lSUR0 , El− j [μ(Γ �Qi−1,α∗
l− j

)] ≤ εSUR.

The globalmethodology to perform inversion in the presence
of functional uncertainty proposed in this paper is summa-
rized in Algorithm 4.

Algorithm 4 Data-driven stochastic inversion under func-
tional uncertainties
1: Create an initial design of experiments (DoE) of n points in the

control space X.
2: Alg A ← choose one of the Algorithms 1,2 and 3.
3: Estimate the expectation (Alg. A ).
4: Deduce {τ 2i }n

i=1 (if Crude MC or FPCA methods).
5: while Stopping criterion Eq. (26) not met (SUR) do
6: xn+1 ← Sampling criterion Jn .
7: Set l = 1.
8: while Stopping criterion Eq. (25) not met (Expectation Estima-

tion) do
9: Approximate the expectation by E[ f (xn+1, V̂l )] (Alg. A ).
10: Set l = l + 1.
11: end while
12: τ 2xn+1

← var( f (xn+1, V̂l )) (if Crude MC or FPCA methods).
13: Update DoE.
14: Set n = n + 1.
15: end while
16: end

Remark on stage 2 of Algorithm 4 Due to their sampling-
based nature, the CrudeMC and FPCAmethods are sensitive
to the resulting estimation errors. Consequently, we consider
the adaptation of the SUR strategy for noisy observations
(see Sect. 4.3).

6 Numerical tests

In this section, we apply the proposed data-driven method-
ology for stochastic inversion under functional uncertainties
to two test cases. On an analytical test case, we first high-
light through a comparison to a random infill strategy the
effectiveness of the SUR strategy. Secondly, we compare the
methods combining the SUR strategy to the four approaches
to estimate the expectation. We then present in Sect. 6.2 an
application to the industrial automotive test case which moti-
vates our study.

6.1 Analytical example

Tocompare theSURstrategy to a random infill one,we define
a deterministic function fdeterm as follows:

fdeterm : x �→ max
t

vdeterm .|0.1 cos(x1 max
t

vdeterm).

sin(x2).(x1+x2 min
t

vdeterm)2|.
∫ T

0
(30+vdeterm)

x1 .x2
20 dt,

where the control variable x lies in X = [1.5, 5] × [3.5, 5]
and vdeterm is a fixed curve. We are interested in the set
Γ ∗ := {x ∈ X , fdeterm(x) ≤ 0.2}. We consider a Gaus-
sian process prior with constant mean function and Matérn
covariance kernel with ν = 5/2. A Random Latin Hyper-
cube design was used as an initial DoE for both strategies
creating new initial design with nine points for every run. In
Fig. 8, one can see the evolution of the Vorob’ev deviation
and the set estimation error when new points are added. We
observe that the SUR strategy manages to quickly reduce the
Vorob’ev deviation (top plot) and that the Vorob’ev expec-
tation obtained after the new evaluations matches with the
true set. This example illustrates that a random filling strat-
egy may not be optimal for set estimation, as it clearly was
outperformed by the adaptive SUR strategy.

We now consider the function f (x,V)withV is a standard
Brownianmotion.We suppose that a sample ofN realizations
of V is available, denoted by Ξ , and these realizations are
discretized uniformly on 100 points. The objective is to con-
struct the set Γ ∗ := {x ∈ X , g(x) = EV[ f (x,V)] ≤ c},
where c = 1.2.

Here, we consider a Gaussian process prior (Yx)x∈X ∼
G P(m, k), with constant mean function and Matérn covari-
ance kernel with ν = 5/2. The initial DoE consists of
a nine-points Latin Hypercube Sample (LHS) design opti-
mized by maximin criterion. The hyper-parameters of the
Gaussian process Y are estimated by Maximum Likelihood
Estimation (MLE). Figure 9 shows the initial design of
experiments and the target set Γ ∗ obtained from a 30 × 30
grid experiment, where at each grid point the expectation is
approximated by a Monte Carlo Method over 5000 realiza-
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Fig. 8 Analytical example. The average Vorob’ev deviation (top) and
the average set estimation error μ(Γ ∗�Qiter,α∗

iter
)/μ(Γ ∗) (bottom)

using 30 independent runs

tions of V. We aim at estimating the set Γ ∗ using the SUR
strategy to choose the next evaluation point as defined in
Sect. 4, and the methods presented in Sect. 2 to provide an
efficient estimation of the expectation. We proceed to add
one point at each iteration of the SUR strategy until the con-
dition Eq. (26) for (lSUR0 , εSUR) = (4, 5× 10−3) is reached.
The covariance parameters are re-estimated at each step by
MLE. Since this criterion is based on the Vorob’ev devi-
ation, the objective is to reduce the uncertainty on the set
estimate until stability. For the sequential estimation of the
expectation, we test the sensitivity to the parameters (l0, ε)
of criterion Eq. (25) (see Table 1).

The estimation of the expectation at the proposed point by
SUR is carried out with one of themethods detailed in Sect. 2
(FPCA, crude MC, maximin-GFQ, L2-GFQ). As presented
in Sect. 5, the estimation is done sequentially and it depends
on the stopping criteria parameters l0, ε and on the truncation
argument mK L . This latter is set at mK L = 7 in order to
explain 97% of the variance. The four expectation estimation
methods are sequential as detailed in Sect. 2. Indeed, the
two GFQ methods are sequential by definition. The crude
MC method is sequential because at each step, a curve is
drawn with replacement from the available sample Ξ (see
Algorithm 3). The same goes for the probabilistic approach
(FPCA); at each step, we add a new curve built as already
explained.

The first test consists in fixing the available sample of real-
izations of V (N = 200). For this fixed sample, we compare
the obtained results for different l0 and ε. Table 1 lists the
parameters tested in this section.

Fig. 9 Analytical example. Contour plot of the function g, the set of
interest (green) with boundary (red line), the initial design of experi-
ments (black triangles). (Colour figure online)

Table 1 Analytical example. Estimation of expectation stopping crite-
ria parameters

l0 4 2 3 4

ε 10−2 5 × 10−3 5 × 10−3 5 × 10−3

To compare the performance of the various methods, we
use the ratio between the volume of the symmetric difference
between the true set Γ ∗ and the estimated set at last iteration,
μ(Γ ∗�Qnlast,α∗

nlast
) and the volume of the true set,μ(Γ ∗).

As shown earlier in Fig. 6, the maximin-GFQ method is not
very sensitive to the starting point. Thus, in the following test,
we consider the deterministic version of the maximin-GFQ
method by fixing the starting point to the one of L2-GFQ
method.

From the comparison results displayed in Table 2 and
plotted on Fig. 10, we note that the two GFQ methods are
sensitive to the parameters l0 and ε. The L

2-GFQ method
performswell in set estimation error terms, and themaximin-
GFQ provides better results in terms of cost. In the following
comparison tests, we consider only the L2-GFQmethod as it
gives much better set estimation error for a reasonable num-
ber of calls to the function f .

Regarding the second test, the two expectation estimation
methods (Crude MC and FPCA) have a stochastic behaviour
because of the sampling steps. To account for these variabil-
ities, the performance of each method is averaged over 30
independent runs. The results are summarized in Tables 3
and 4. The results indicate that the three methods are sen-
sitive to the parameters l0 and ε: larger is the parameter l0,
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Table 2 Analytical example. (Top) The relative error obtained by the
two GFQ methods for different values of l0 and ε. (Bottom) The cumu-
lative number of calls to the function f (in brackets are the number of
iterations required to reach the stopping criterion in the SUR strategy)

(l0, ε) μ(Γ ∗�Qnlast,α∗
nlast

)/μ(Γ ∗)

Maximin-GFQ (%) L
2-GFQ (%)

(4, 1.e−2) 11.86 7.50

(2, 5.e−3) 12.34 7.93

(3, 5.e−3) 10.80 6.87

(4, 5.e−3) 8.02 6.79

(l0, ε) Cumulative number of calls to f

Maximin-GFQ L
2-GFQ

(4,1.e−2) 1144 (21) 1225 (42)

(2,5.e−3) 735 (21) 978 (22)

(3,5.e−3) 989 (18) 1096 (21)

(4,5.e−3) 1259 (19) 1489 (26)

Fig. 10 Analytical example. The relative error obtained by the twoGFQ
methods for different values of l0 and ε as a function of the number of
calls to the function f

Table 3 Analytical example. The average relative error obtained by the
crude MC, FPCA for different values of l0 and ε (in brackets are the
standard deviation for the crude MC and FPCA methods)

(l0, ε) μ(Γ ∗�Qnlast,α∗
nlast

)/μ(Γ ∗)

Crude MC FPCA L
2-GFQ (%)

(4, 1.e−2) 9.53% (4.12) 9.89% (4.14) 7.50

(2, 5.e−3) 9.84% (3.24) 10.86% (2.82) 7.93

(3, 5.e−3) 9.54% (3.81) 7.29% (1.07) 6.87

(4, 5.e−3) 8.98% (2.62) 7.01% (1.21) 6.79

Best values are shown in bold

i.e. when seeking to a stability of the estimation, smaller is
the error but higher is the number of calls to the function
f . The L2-GFQ method performs well in terms of error and
cost. The cumulative number of calls to f has been decreased
by a factor greater than 3 in comparison with the two other
methods.

Table 4 Analytical example. The average cumulative number of calls to
the function f (written in brackets are the number of iterations required
to reach the stopping criterion in the SUR strategy)

(l0, ε) Cumulative number of calls to the function f

Crude MC FPCA L
2-GFQ

(4, 1.e−2) 2849 (27) 2805 (24) 1225 (42)

(2, 5.e−3) 2393 (26) 2670 (23) 978 (22)

(3, 5.e−3) 3537 (23) 3661 (20) 1096 (21)

(4, 5.e−3) 4400 (23) 4278 (20) 1489 (26)

Best values are shown in bold

Fig. 11 Analytical example. Results for (l0, ε) = (4, 5.e−3). Lines
denote the average, and coloured bands mark the 25-th and 75-th quan-
tiles [FPCA (in red) and CrudeMC (in green)]. Top: TheVorob’ev devi-
ation. Bottom: the set estimation error μ(Γ ∗�Qnlast,α∗

nlast
)/μ(Γ ∗)

Figure 11 shows the set estimation error and the Vorob’ev
deviation as a function of the iteration number for the three
methods and (l0, ε)= (4, 5.e−3). For the crudeMCandFPCA
methods, the dotted lines indicate average error decay, and
the coloured bands mark the area between the 25th and 75th
error quantiles. Note that the three methods show a strong
decrease in the set estimation error. The main observation
that can be made is that, for a small total number of calls
to f (see, Table 4), the convergence rate for the proposed
approach (L2-GFQ) is better in comparison with the Crude
MC and FPCA methods.

In the following, the stopping criteria for SUR (lSUR0 =
4, εSUR = 5 × 10−3) and for the expectation estimation
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Table 5 Analytical example. (Top) The average set estimation error
obtained for different sample sizes and methods and mK L = 7 (in
brackets are the standard deviation). (Bottom) The average cumulative
number of calls to the function f (in brackets are the number of iterations
required to reach the stopping criterion in the SUR strategy)

μ(Γ ∗�Qnlast,α∗
nlast

)/μ(Γ ∗)

Crude MC FPCA L
2-GFQ

N = 50 15.38% (8.76) 13.25% (5.09) 11.13% (6.48)

N = 100 9.60% (4.65) 9.08% (5.41) 8.80% (3.60)

N = 200 8.22% (2.18) 7.71%(2.35) 7.02% (2.31)

Cumulative number of calls to f

Crude MC FPCA L
2-GFQ

N = 50 4281 (22) 4343 (21) 1044 (27)

N = 100 4262 (22) 4313 (21) 1236 (25)

N = 200 4152 (22) 4552 (21) 1262 (24)

Best values are shown in bold

(l0 = 4, ε = 5 × 10−3) are chosen in order to offer a good
compromise between the accuracy and the number of model
evaluations.

Table 5 compares the sensitivity of the methods to the size
of the available sample Ξ , denoted by N. In each cell of the
table, we perform 20×20 independent runs. Indeed, for each
value of N, we generate 20 training samplesΞ of size N, and
for each sample, we perform 20 runs for each method. The
table summarizes the results averaged over the 400 runs.

We note that for a larger sample size, the recovering error
is smaller. This can be explained by the fact that with a large
sample size, the available information on variable V enables
an effective estimation of the expectation.

We know that the L
2-GFQ and the probabilistic mod-

elling (FPCA) depend on the truncation argument. To better
understand the effect of the number of dimensions mK L , we
fix the stopping criteria for the SUR strategy and expecta-
tion estimation, and we consider different values of mK L =
{2, 3, 4, 5, 6}. Each cell of Table 6 represents the result aver-
aged over 14 × 20 independent runs. For each mK L , we
generate 14 samples Ξ of size N=200, and for each of them,
we perform 20 runs of each method.

Table 6 shows that for all values of mK L , the L
2-GFQ

method outperforms the probabilistic FPCA modelling. As
shown in Table 7, for high truncation argument, the explained
variance increases, which explains the decrease in the esti-
mation error for the probabilistic modelling (FPCA). On the
other hand, the L

2-GFQ accuracy seems to be almost con-
stant for mK L ≥ 3. This can be explained by the fact that the
KL expansion is only used to define a space-filling design,
and the information lost by the truncation is recovered by tak-
ing the corresponding curve in the setΞ . On the contrary, the
probabilistic modelling which is based on FPCA gives better

Table 6 Analytical example. (Top) The average set estimation error
obtained by the FPCA and the L

2-GFQ methods for different values
of mK L (in brackets are the standard deviation). (Bottom) The average
cumulative number of calls to the function f (in brackets are the number
of iterations required to reach the stopping criterion in the SUR strategy)

μ(Γ ∗�Qnlast,α∗
nlast

)/μ(Γ ∗)

FPCA L
2-GFQ

mK L = 2 11.43% (3.70) 8.90% (3.71)

mK L = 3 10.70% (3.38) 7.72% (3.38)

mK L = 4 9.24% (3.18) 7.40% (3.13)

mK L = 5 8.94% (2.66) 7.05% (5.09)

mK L = 6 8.27% (1.67) 6.96% (3.32)

Cumulative number of calls to f

FPCA L
2-GFQ

mK L = 2 3855 (18) 1286 (26)

mK L = 3 4418 (24) 1139 (21)

mK L = 4 4438 (21) 1236 (20)

mK L = 5 4542 (21) 1214 (25)

mK L = 6 4955 (19) 1142 (21)

Best values are shown in bold

Table 7 Analytical example. The explained variance in the function of
mK L

mK L 2 3 4 5 6

Explained variance 90.2% 93.4% 95.1% 96% 96.7%

results for higher mK L . However, the errors in Table 6 seem
to be bounded below. To go below that bound, we probably
need to increase the size of Ξ . Figure 12 shows the estima-
tion of the true set based on the initial design of experiments,
and Fig. 13 shows the results at the last iteration.

6.2 IFPEN test case

In this section, we test the proposedmethod on an automotive
test case from IFPEN (IFPEnergiesNouvelles). The problem
concerns an after-treatment device of diesel vehicles, called
SelectiveCatalytic Reduction (SCR). This latter consists on a
basic process of chemical reduction of nitrogen oxides (NOx )
to diatomic nitrogen (N2) and water (H2O) by the reaction
of NOx and ammonia NH3. The reaction itself occurs in the
SCR catalyst. Ammonia is provided by a liquid-reductant
agent injected upstream of the SCR catalyst. The amount of
ammonia introduced into the reactor is a critical quantity:
overdosing causes undesirable ammonia slip downstream of
the catalyst, whereas underdosing causes insufficient NOx

reduction. In practice, ammonia slip is restricted to a pre-
scribed threshold.
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Fig. 12 Analytical example. Results based on the initial DoE in the
case mK L = 2. The coverage function, the boundary of the true set
(red), the estimated sets (green)

We use an emission-oriented simulator developed by
IFPEN, which models the vehicle, its engine and the exhaust
after-treatment system. It takes the vehicle-driving cycle pro-
file as input and provides the time series of corresponding
exhaust emissions as output. A realistic SCR control law is
used in this simulator. See Bonfils et al. (2012) for an exam-
ple of such a control law. In this study, we choose two control
variables as input and a functional one considered as random.
The control variables are parameters of the SCR control law.
They set the targeted level of NH3 storage in the catalyst and
then are indirectly related to the NH3 injected. They lie in
X = [0, 0.6]2. The functional random variable describes the
evolution of vehicle speed on I , with I = [0, 5400 s]. These
functional uncertainties come from an available sample of
100 real-driving cycles. Regarding the discretization of the

Fig. 13 Analytical example. Results at the last iteration in the case
mK L = 2. The coverage function, the boundary of the true set (red),
the estimated sets (green)

real-driving cycle, we have one observation per second, so
∀i ∈ {1, . . . , 100}, vi ∈ R

5400. A subset of that sample is
represented in Fig. 14. In this setting, the functional PCA
takes about 3min.

In short, the ammonia emissions peak during a driving
cycle is modelled as a function,

f : X × V → R

(x,V) �→ f (x,V) = maxt∈I NH
slip
3 (t)

Weare interested in recovering the setΓ ∗ = {x ∈ X , g(x) =
EV[ f (x,V)] ≤ c}, with c = 30ppm. Conducting this study
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Fig. 14 Automotive test case. Sample of seven real-driving cycles

on a full grid would consist in covering the space [0, 0.6]2
with a fine mesh and evaluating the code 100 times at each
point. Knowing that each simulation takes about 2min, such
study would require many computational hours, and thus,
the use of meta-models allows to tackle this computational
issue.

Here, we consider a Gaussian process prior (Yx )x∈X ∼
G P(m, k), with constant mean function and Matérn covari-
ance kernel with ν = 5/2. The initial DoE consists of a
eight-points LHS design optimized with respect to the max-
imin criterion. The covariance kernel hyper-parameters are
estimated by maximizing the likelihood.

As for the analytical example, we proceed to add one
point at each iteration for the SUR strategy until the stop-
ping criterion with (lSUR0 , εSUR) = (4, 5× 10−3) is verified.
Concerning the expectation estimation, we set the stopping
criterion parameters at (l0, ε) = (4, 10−2) and the trunca-
tion argument is set at mK L = 20 in order to explain 80%
of the variance. The algorithm was stopped at the 62-point
design because the Vorob’ev deviation appears as stabilized,
in other words, the absolute error between the Vorob’ev devi-
ations of the points 58–62 is smaller than 0.005, as shown
in Fig. 15. We note that for each additional point, the new
observed response affects the estimation of the excursion
set and its uncertainty. Thus, although the Vorob’ev devia-
tion generally decreases, it is not a monotonic decreasing.
The stopping criterion is constructed to check the stabil-
ity of convergence by taking into account the last four
iterations.

In searching for the true set, the SUR algorithm heavily
visits the boundary region ofΓ ∗ and explores also potentially
interesting regions (cf. Fig. 16). In each added point, Fig. 16
shows the number of necessary driving cycles to estimate
the expectation. We remark that instead of taking the whole
sample (100 driving cycles), it was sufficient to sequentially
and wisely choose a reduced and representative number of
driving cycles below 35. In the present case, the excursion
domainΓ ∗ is well recovered by the algorithm.Actually, after
62 iterations (1575 evaluations) the whole domain X has an
excursion probability close to either 0 or 1.

Fig. 15 Automotive test case. Top: decrease in the Vorob’ev deviation
at each iteration when new points are added. Bottom: evolution of the
absolute error Eq. (26) and the red line represents the stopping criterion

Fig. 16 Automotive test case. Left: coverage probability function (grey
scale), estimate set (green) after 62 added points and 1575 function eval-
uations, initial DoE (black triangles), the sequentially added points (red
circles). Right: number of driving cycles used to estimate expectation
at each added point
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7 Conclusions

In this paper, a new method of inversion under uncer-
tainty was proposed for problems where some of the input
parameters are functional random variables with unknown
probability distribution. (Only a sample is available.) The
objective is to recover the set of control variables leading
to robustly ensure some constraints by taking into account
the uncertainties. The method is composed of two steps : a
sequential strategy to estimate the excursion set and themod-
elling of functional uncertainties. To solve the first issue, a
kriging model in the control input space is built. It makes
possible to assess the uncertainty on the set of interest given
a sample of evaluations. Then, a sequential strategy (SUR)
proposed by Chevalier et al. (2013) and based on the kriging
model is used to sequentially and efficiently choose new eval-
uation points to improve the excursion set estimation. For the
second issue,we consider the expectation tomodel uncertain-
ties and we propose two sequential approaches to estimate
the expectation at each point proposed by SUR. Each curve is
represented by its coefficients in a truncated KL decomposi-
tion. The chosen points in the KL coefficients finite set, each
one corresponding to a curve, are sequentially added and cho-
sen either to approximate a maximin space-filling design or
to reduce the quantization error. This methodology leads to
an efficient estimation of the expectation, as illustrated on the
application on an analytical test case with two control inputs
and a functional random one. The results illustrate significant
enhancement in terms of precision and number of calls to the
simulator. We also applied this method to the automotive
test case which motivated this research work. The obtained
result agrees with the intuitions made from physics behind
the simulator. The paper focuses on themean of f (x,V), and
here we choose to construct a GP model for the unobserv-
able integrated response g. In the optimization context and
for discrete and continuous random variables, existing works
deal with the case of unobservable response (see Williams
et al. 2000; Janusevskis and Le Riche 2013). The authors
propose to build a GP model for the simulator f and induce
a new GPmodel by integrating the previous one over the dis-
tribution of the uncertain variables. The adaptation of these
works in the context of inversion and functional random vari-
ables is an on-going work. Other functionals of the output
distribution may also be of great importance. For example,
practitioners may be interested in ensuring a certain level of
reliability, leading to consider a probabilistic constraint. The
proposed method could be adapted to that case by seeing
the probability as an expectation, at least for moderate risk
levels.
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