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A B S T R A C T

In the robust shape optimization context, the evaluation cost of numerical models is reduced by the use of a
response surface. Multi-objective methodologies for robust optimization that consist in simultaneously mini-
mizing the expectation and variance of a function have already been developed to answer to this question.
However, efficient estimation in the framework of time-consuming simulation has not been completely explored.
In this paper, a robust optimization procedure based on Taylor expansion, kriging prediction and a genetic
NSGA-II algorithm is proposed. The two objectives are the Taylor expansion of expectation and variance. The
kriging technique is chosen to surrogate the function and its derivatives. Afterwards, NSGA-II is performed on
kriging response surfaces or kriging expected improvements to construct a Pareto front. One point or a batch of
points is chosen carefully to enrich the learning set of the model. When the budget is reached the non-dominated
points provide designs that make compromises between optimization and robustness. Seven relevant strategies
based on this main procedure are detailed and compared in two test functions (2D and 6D). In each case, the
results are compared when the derivatives are observed and when they are not. The procedure is also applied to
an industrial case study where the objective is to optimize the shape of a motor fan.

1. Introduction

Complex physical phenomena are increasingly studied through nu-
merical simulations. These numerical models are able to mimic real
experiments with a high degree of accuracy. They predict the physical
measures of interest (outputs) very precisely, though computational
cost tends to explode even on state of the art super-computers. One
main use of these simulations is to solve optimization problems. This
work focuses on cases where the optimized solution is sensitive to input
perturbations. For example, these perturbations are due to random di-
mensional fluctuations during production. A robust solution is then
sought. To solve the robust optimization problem, one way is to in-
troduce a multi-objective optimization formulation where the first ob-
jective is the expectation and the second the variance. These two ob-
jectives are often antagonistic. The issue of robust optimization is then
to find a Pareto front that strikes the right balance between the opti-
mization of the function and the impact of input perturbations (un-
certainties). As the simulations provided by the numerical code are
often time-consuming, only a few of them are then affordable. So, the
computer code cannot be intensively exploited to provide the robust
optimum. In this case, the optimization procedure is often run on a
kriging model (see e.g. [1]) that statistically approximates the computer

code (kriging-based black-box optimization). Choosing where to sample
the output in the input space to reach the optimum as fast as possible is
of special interest. The authors in [2] developed the Efficient Global
Optimization (EGO) algorithm that exploits the Expected Improvement
(EI) criterion. However, the EGO algorithm is not an answer to the
robust optimization problem because uncertainties are not taken into
account.
The literature contains a sample of works that handle robust opti-

mization. Methodologies depend on the kind of uncertainties. The au-
thors in [3] propose two classes of uncertainties: uncertainties that ”are
primitively linked to the environment and condition of use” and un-
certainties that ”are connected with the production/manufacturing
process”. In the first type of uncertainties, the aim is to find x such that f
(x, U) is minimal where U is a random vector (cf [4–7]). The authors in
[4] propose to minimize the expectation of f(x, U) with a Gaussian
process-based methodology. The authors in [5] propose an algorithm
that minimizes the worst-case. In [7] a mono-objective solution based
on the worst-case on the response surface is proposed. In all these se-
quential methods, the variables are clearly separated into two classes
(design and uncertain) and the robust criterion is summed up either by
the expectation or the worst-case.
In our context, the aim is to find x such that +f x H( ) is minimal
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with H a random vector accounting for perturbations such as manu-
facturing uncertainties. We introduce a multi-objective strategy to de-
tect the whole set of robust solutions. The first objective is to quantify a
level of the function in a neighborhood of a solution. The local ex-
pectation, +E f x H[ ( )] is then considered. The second objective aims at
measuring the robustness of a solution. Göhler et al. [8], Gabrel et al.
[9] and Coco et al. [10] give some overviews of different robustness
criteria. As our industrial partners quantify the robustness of a solution
by the local variance of the output (see e.g. [6,11]), the second objec-
tive is +Var f x H[ ( )].
In a context of a black-box optimization, these two objectives are

computed by Monte-Carlo method which is unaffordable in practice
even using a metamodel. In this paper, proxies based on the Taylor
expansion as introduced by Darlington et al. [12], are proposed. These
proxies are easily computed, their expression are analytical and involve
the first and second derivatives. In the context of time-consuming si-
mulations, these criteria are predicted by kriging. Kriging, form which
the covariance structure between the GP model of the function and all
the derivatives results, is well adapted. This structure is described in
[13] and used again by Le Gratiet [14].
As the two objectives are accessible through kriging, a multi-ob-

jective optimization is performed to provide set of optimal solutions. In
the literature, several approaches (see [15] for an overview) mixing a
GP modeling and multi-objective optimization are proposed: the ag-
gregation methods (see [16–18]), the hypervolume methods (see
[19–21]), the maximin method (see [22]) and the uncertainty reduction
method (see [23]). [24] shows that the aggregation methods are not
efficient with a complex Pareto front. The hypervolume, maximin and
uncertainty reduction algorithms has to perform multi-objective opti-
mization on Gaussian processes. As the developed robustness criterion
is no longer Gaussian, it could be costly to adapt these methods in our
case. Some optimization procedures inspired by Jeong and Obayashi
[25] are proposed. These procedures consist in applying an evolu-
tionary algorithm on the kriging predictions and in taking into account
kriging variance as suggested by Pronzato and Éric Thierry [26].
The paper is structured as follows. First the proxies of the two ob-

jectives are introduced in section 2. Then in section 3, the context of a
Gaussian process metamodeling is presented. The general multi-objec-
tive optimization scheme is developed in section 4, and the different
enrichment strategies in section 5. The quality criteria for comparing
Pareto fronts are given in section 6. Finally, in section 7, the behavior of
our methodology is studied on two toy functions and on an industrial
test case.

2. Two proxies for the first moments of the function

Mass production involves manufacturing operations generating
uncertainties on part properties, such as geometrical dimensions, ma-
terial properties and so on. Part design accepts such uncertainties
within a specified range, provided as tolerances, for the whole system to
work when the considered part is integrated. Taking into account un-
certainties into an optimization scheme needs the construction of spe-
cific criteria which quantify the local sensitivity to variabilities. A
natural approach is to optimize jointly the local expectation and var-
iance of the output. Let f be the studied function (a two-times differ-
entiable function)

f D a b
fx x

: [ ; ]
( )

p

(1)

where p is the number of input variables, i.e. = …x x x( , , )p1 . At a point
x ∈ D, the quantities of interest - local expectation and variance - are

+E f x H( ( )) and +Var f x H( ( )) where , representing the production
errors, is a centered Gaussian vector with the covariance matrix Δ de-
fined by:
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In a black box context, the evaluation of +E f x H( ( )) and
+Var f x H( ( )) requires a lot of calls to function f. In this paper we

propose to consider a second order Taylor’s approximation of function f,
denoted f̃ and its associated expectation and variance. The objectives to
be optimized are then :

• a Level Criterion of function f (LCf) :
= + = +LC E f x H f x trx x( ) (˜ ( )) ( ) 1

2
(( ( ) ))f f (2)

• a Robustness Criterion of function f (RCf) :
= + = +RC Var f x H tr trx x x x( ) (˜ ( )) ( ( ) ( ) ) 1

2
(( ( ) ) )f f f f

2
(3)

where ∇f is the gradient of f, f the Hessian matrix of f, tr is the
matrix trace.

LCf is to be minimized or maximized according to what is expected
for function f. RCf is to be minimized. This criterion is composed of two
terms. The first part involves the gradient of f (first derivatives) and the
second the Hessian matrix (second derivatives). Minimizing this cri-
terion implies causing the gradient and the Hessian to vanish. This leads
to flat local extrema. The associated designs are insensitive to produc-
tion fluctuations. This criterion does not allow discrimination between
maxima and minima or between two maxima. This is why we perform a
multi-objective optimization on LCf and RCf.

Remarks:

• If the simulator provides the first derivatives with the output itself,
the LCf and RCf criteria can be computed with only one call to the
computer code.
• In the context of costly simulations, a robust optimization cannot be
directly performed on LCf and RCf. The next section presents how
these quantities can be predicted using a kriging approach.

3. Gaussian process modeling for the function and its derivatives

As can be seen in Eqs. (2) and (3), the criteria to be optimized de-
pend on the first and second derivatives of f. A Gaussian process me-
tamodel (see [14]) is well suited to this context in the sense that all
derivatives can easily be predicted. In this section, the model and the
predictions are presented and illustrated on a toy example.

3.1. Kriging model

Let us assume function f to be a realization of a Gaussian process (Y
(x))x ∈ D with a constant mean, μ, and with a stationary covariance
function =k rx x x x( , ˜) ( ˜),2 ×D Dx x( , ˜) . This process is as-
sumed to be two-times differentiable in mean square at point x x( , ˜).
We denote by = ( )Y x x( ( )) ( )x D

Y
x Dx xi i

the first-order partial deri-
vative of (Y(x))x ∈ D with respect to xi, and by

= ( )Y x x( ( )) ( )x x D
Y

x x Dx x
,i j i j

2
the second-order partial derivative of (Y

(x))x ∈ D with respect to xi and xj.
All the covariance structures between the process and its derivatives

are then well-known and are given by:
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Let …x x( , , )n1 be the initial design of experiments, where xk ∈ D,
1 ≤ k ≤ n. The evaluation of the function (resp. first and second de-
rivatives) at point xk is denoted by yk (resp. yx

k
i and yx x

k
,i j ),

where …i p{1, , }, …j i p{ , , } and …k n{1, , }. The collection of
outputs y, yxi and yx x,i j is such that:
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, , ,p i j p p1 1 1 …k n{1, , } is then a reali-

zation of the following = + +d 1 p p3
2 2

2
dimensional GP:

= … … …( )Z Y Y Y Y Y Y i

p i j p

x x x x x x x( ) ( ), ( ), , ( ), ( ), , ( ), , ( ) , 1

,

x x x x x x x x, , ,p i j p p1 1 1

at points …x x, , n1 .

3.2. Kriging predictions of the output and its derivatives

The problem is to predict Z considering observations at points
…x x, , n1 . However, the entire vector Z is not always observable. Let

…u d{1, , }obs be the components that are observable. For example, only
the function and its first derivatives can be affordable. Likewise, it is not
always necessary to predict the whole vector Z. Let …u d{1, , }pred be
the components that need to be predicted.
In the following we assume that 1 ∈ uobs and we denote
= …( )e 1, 0 , , 1, 0 ,obs

nddobs dobs obs1 1 =d u#obs obs and =epred

( )1, 0 ,ddpred pred1 =d u#pred pred. The kriging mean is then given by
the following equation:

= +µe µez x c x z z x^ ( ) ^ ( ) ( ^ ), ^ ( )u pred u obs u
d1

pred obs pred
pred (4)

where =
z

z
zu

obs

obs
n

1

obs the observation vector. z x^ ( )upred is the prediction

vector and

=µ e e e z^ ( ) .obs obs obs u
1 1 1

obs

The mean square error (MSE) at point x ∈ D is given by:

=

×
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where Σθ is the covariance matrix of size ndobs × ndobs given by :
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…i j k l p, , , {1, } where l > i and k > j. For instance
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k

x x
x x

, ˜ ˜
( ˜)
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2

. The matrix

×c x( ) nd dobs pred is the covariance matrix between Z x( )upred and the
observations, while the matrix ×x x( , ) d dpred pred is the variance of
Z x( )upred .

3.3. Gaussian processes conditionned by derivatives: illustration with the
six-hump Camel function

In this section, different kriging-based response surfaces con-
ditioning or not on derivatives are compared. The chosen toy function is
the six-hump Camel function defined by:

= + + + +

×

f x x x x x x xx x( ) 4 2.1
3

( 4 4 ) , [ 2; 2]

[ 1; 1]

1
2 1

4

1
2

1 2 2
2

2
2

The kriging covariance kernel is a tensor product one:

= = = …
=

+cov Y Y k x xx x x x( ( ), (˜)) ( ˜) (| |), ( , , )
j

p

j j p
p2

1
1j

(5)

where j is a correlation function which only depends on the one di-
mensional range parameter θj, see e.g. [1] and [27]. A Matern 5/2
kernel is used because the output is assumed to be two-times con-
tinuously differentiable:

= + ++ +h h h h h, , ( ) 1 5 | | 5
3

exp 5 | | .
2

2

Kriging predictive quality has been compared in different learning si-
tuations:

• 10 learning points where f is observed (left part of Fig. 1)
• 10 learning points where f and all the derivatives are observed
(middle part of Fig. 1)
• 60 learning points where f is observed (right part of Fig. 1)
The learning sets composed of 10 or 60 points are maximin latin

hypercube samplings. The test set is a latin hypercube sampling of 1500
points. As expected, the left and middle parts of Fig. 1 show that kriging
with derivatives performs much better than without. While computing
one derivative costs as much as computing a new point, the right part of
Fig. 1 shows that kriging without derivatives does better. However in
industrial applications, computing derivatives is often more affordable.

4. Robust optimization procedure

The proposed robust optimization procedure based on the two cri-
teria introduced above (see Eqs. (2) and (3)) is as follows:

LC RCx x
Find the Pareto set , the solution of the following multi-objective optimization

min { ( ), ( )}
p f f

x

0

(6)

The approach to solve it in the context of time-consuming simula-
tions is based on a classical black-box optimization scheme (see [2]).
The optimization scheme is based on the following steps:

• Initialization. The costly function and possibly its derivatives are
evaluated on a well-chosen initial design of experiments. A kriging
model is adjusted on this first set of outputs. Two response surfaces
{ }obj x^ ( )LCf and { }obj x^ ( )RCf related to the two objectives {LCf(x)} and
{RCf(x)} are predicted.
Remarks: in the different case studies, the chosen initial design is a
maximin Latin Hypercube Sampling (maximin HLS) (see [28]).
• Loop until the budget is reached
1. Multi-objective optimization. A multi-objective global
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optimization method is applied to solve
{ }obj x obj xmin ^ ( ), ^ ( )LC RCx p

f f . A Pareto front is identified.
Remarks: The NSGA II algorithm is chosen for its good perfor-
mances in finding complex Pareto fronts.

2. Enrichment. A set of q points is selected from the Pareto front.
The function and possibly its derivatives are evaluated on these
new points. The Gaussian process model and the two response
surfaces are updated.

The aim of this section is to define the two response surfaces to be
optimized. The next section focuses on different strategies for selecting
good points from the Pareto front.
Three different response surfaces have been studied to run the

multi-objective methodology. The first approach consists in optimizing
the predicted version of the criteria (level and robustness). This ap-
proach, quite crude, is denoted by the ”plug in” approach in the fol-
lowing and is described below. The second approach is based on the
famous Expected Improvement quantity in order to take into account
prediction uncertainty. The third one is the most complex: it optimizes
the multipoint Expected Improvement versions of {LCf(x)} and {RCf
(x)}.

4.1. The ”plug in” response surfaces

We remind you that z x^ ( ) from Eq. (4) is

= …z y yx x x^ ( ) ^ ( ), , ^ ( )x x,p p

The prediction of the Level Criterion LCf is given by

= + =LC y tr Bzx x x x( ) ^ ( ) 1
2

( ( ) ) ^ ( ).y y^ ^ (7)

where =B (1, 0, , 0, , 0 ,0, , 0, ,0, , 0, , 0)2 2 2
p p1

2 2 2
. This formula

corresponds to the exact conditional expectation since LCf is linear in
the derivatives.
The prediction of RCf(x) is defined by:

= +RC tr trx x x x( ) ( ( ) ( ) ) 1
2

(( ( ) ) )y y y y^ ^ ^ ^ 2
(8)

where ŷ is the vector
y

y

^

^

x

xp

1

and is the prediction of the gradient. ŷ is

the matrix
…

…

y y

y y

^ ^

^ ^

x x x x

x x x x

, ,

, ,

p

p p p

1 1 1

1

and corresponds to the prediction of the

Hessian matrix. ŷ and ŷ are obtained from different components of
z x^ ( ).
The ”plug in” formulation is then:

LC RCx x
Find the Pareto set , the solution of the following multi-objective optimization

min { ( ), ( )}
p y yx

0
^ ^

(9)

Remarks:

• The definition of the predicted robustness criterion corresponds to
the definition of Eq. (3) where the derivatives have been replaced by
their prediction.
• These response surfaces are easy to compute. While NSGA II runs
quickly on these quantities, prediction uncertainty is not taken into
account at this stage.

4.2. The ”expected improvement” response surfaces

Unlike the previous case, in this approach we take into account the
kriging variance in the optimization scheme. The best way to do this is
to optimize the expected improvement.
In the EGO algorithm, the expected improvement (EI) criterion

measures the improvement of a point x in the minimization of function
f and is used to add new points to the learning set. The expression of the
EI (see [2]) at point x is:

= =+EI y Y Yx x y( ) [(min( ( )) ( )) | ( ) ]

where = …y y ymin( ( )) min( , , )n1 .
The analytical expression of the EI for a Gaussian process is given

by:

=

+

EI y y y y
s

s y y
s

x x x
x

x x
x

( ) (min( ( ) ^ ( )) min( ( )) ^ ( )
^ ( )

^ ( ) min( ( )) ^ ( )
^ ( )

where y x^ ( ) is the kriging mean, s x^ ( ) is the kriging standard deviation,
and Φ and ϕ are the cdf and pdf of the standard normal law.
In our case, these formulas have to be adapted:

Fig. 1. Prediction plots for the six-hump Camel function: 10 points without observation of the derivatives (on the left), 10 points with 5 derivatives (in the middle)
and 60 points without observation of the derivatives (on the right).
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i) to level and robustness criteria,
ii) to a larger set of observations that may include derivatives,
iii) to a multi-objective optimization context.

To answer to i, we need to define the processes (LCY(x))x ∈ D and
(RCY(x))x ∈ D. From Eqs. (2) and (3), the processes are naturally defined
by:

= +LC Y x trx x( ) ( ) 1
2

( ( ) )Y Y (10)

= +RC tr trx x x x( ) ( ( ) ( ) ) 1
2

(( ( ) ) )Y Y Y Y
2

(11)

where ∇Y is the vector
Y

Y

x

xp

1

and Y is the matrix
…

…

Y Y

Y Y

x x x x

x x x x

, ,

, ,

p

p p p

1 1 1

1

.

To answer to point ii, conditional expectations are considered over
observations of vector z that includes derivatives when they are avail-
able.
Finally to answer to iii, the authors in [25] show that, in the context

of multi-objective optimization, the usual reference value, which is the
current observed minimum, is too constraining. To continue to allow
improvement, this reference value is rather taken as the worst value on
the current Pareto front. The expressions of EI for LCf and RCf are then
as follows:

= =
= =

+

+

EI LC LC Z
EI RC RC Z

x x z
x x z

( ) [(max( ( *)) ( )) | ( ) ]
( ) [(max( ( *)) ( )) | ( ) ]

LC y Y u

RC y Y u

y obs

y obs

where * is the set of non-dominated points for the objectives {LCy,
RCy} of the learning set .
The ”expected improvement” formulation is then:

{ }EI EIx x
Find the Pareto set , the solution of the following multi-objective optimization

min ( ), ( )
p LCy RCyx

0

(12)

Remarks:

• A solution x1 dominates another solution x2 for the m objectives
…g g, , m1 if and only if …i m{1, , } gi(x1) ≤ gi(x2) and

…i m{1, , } gi(x1) < gi(x2). Among a set of solutions , the so-
lutions of the non-dominated set * (Pareto front) are those that are
not dominated by any member of the set .
• When the derivatives used to compute the level and the robustness
criteria are not observed, LCmax( ( *))y and RCmax( ( *))y are
predicted by kriging.
• As the process LCY(x) is Gaussian, the expression of EILCy is

=

+

EI LC LC
LC LC

s

s
LC LC

s

x x
x

x

x
x

x

( ) (max( ( ) ( ))
max( ( )) ( )

^ ( )

^ ( )
max( ( )) ( )

^ ( )

LC y y
y y

y y

^
^

^

y

where s x^ ( ) is the kriging variance.
• As the link between RCY(x) and Z(x) is not linear, the process (RCY
(x))x ∈ D is not Gaussian anymore. EIRCy is then estimated by a Monte
Carlo method.

4.3. The ”multi-point expected improvement” response surfaces

While the EI strikes a good balance between exploration and mini-
mization, it computes the improvement of a single point. The multi-
point EI (q-EI) is used to measure the improvement of q points

= …+ +X x x( , , )n n q1 [29]. In a multi-objective context, the expressions of
the q-EI are:

= …
= …

+ + +

+ + +

qEI LC LC LC
qEI RC RC RC

X x x z
X x x z

( ) [(max( ( *)) min( ( ), , ( ))) | ]
( ) [(max( ( *)) min( ( ), , ( ))) | ]

LC y Y
n

Y
n q

u

RC y Y
n

Y
n q

u

1

1
y obs

y obs

where * is the set of non-dominated points for the objectives {LCy,
RCy} of the learning set .
We note that q-EI involves …+ +LC LCx xmin( ( ), , ( ))Y

n
Y

n q1 instead of
+LC x( )Y

n 1 . The improvement is provided by the set of q points si-
multaneously chosen. Besides, in the context of multi-optimization, the
reference value is the maximum of the Pareto front outputs.
The ”multi-points expected improvement” formulation is then:

× { }qEI qEIX X
Find the Pareto set , the solution of the following multi-objective optimization

min ( ), ( )
p q LCy RCyX

0

5. Sequential stategy for enrichment

Seven enrichment strategies have been developed based on the
three approaches described above. Once the Pareto front has been
found (NGSAII algorithm), points are chosen to enrich the set of ob-
servations. Different strategies can be studied. They are described
below.

5.1. Enrichment for the ”plug in” formulation

With this approach, it is not costly to find the Pareto front since the
response surfaces are easily computed. However, the kriging variance
has never been considered. If kriging predictions turn out to be of poor
quality, some interesting areas can be missed. Hence the first strategy
consists in choosing part of the points from the Pareto front but also
part of the points randomly in the parameter space. Other strategies
consist in using information from the kriging variance, for example
through an expected improvement criterion.
More precisely, five enrichment approaches have been bench-

marked and are described below:

1. MyAlea: q
2
1 points are selected randomly on the Pareto front, while

q q
2 points are randomly chosen in the parameter space.

2. MyEI: EILCy as well as EIRCy are computed for each point of the
Pareto front. A k-means clustering using the method in [30] is ap-
plied to the non-dominated points of { }EI EI,LC RCy y to provide q
clusters. Then the q clusters’ medoids are added to the design.

3. MyqEI: a simulated annealing algorithm gives the set of q points
among the Pareto front that minimizes the function

qEI qEILC RCy y.

Two sequential approaches presented in [29] can be used to replace
the q-EI in order to measure the improvement of q points: the Kriging
Believer and the Constant Liar.

4. MyKB: q points are sequentially selected from the Pareto front based
on the Kriging Believer strategy. This strategy consists of the fol-
lowing steps: The EILCy and EIRCy are computed on the Pareto
front, then a point x0

1 is randomly chosen from the EI Pareto front
and added. z x( )0

1 is then considered known and is assumed to be
equal to z x^ ( )0

1 . Another computation of EILCy and EIRCy provides
one more point based on the same strategy up to the q requested
points.

5. MyCL: q points are sequentially selected based on the Constant Liar
strategy. This strategy consists of the following steps: The EILCy and

EIRCy are computed on the Pareto front, then a point x0
1 is ran-

domly chosen from the EI Pareto front and added. LC x( )y 0
1 (resp.

RC x( )y 0
1 is then considered known and is assumed to be equal to

1 ⌊.⌋ is the floor function
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LCmin ( *)y (resp. RCmin ( *)y ). Another computation of EILCy
and EIRCy provides one more point based on the same strategy up
to the q requested points.

The problem with this group of strategies is that kriging variance is
not taken into account during multi-objective optimization. Except if
the MyAlea strategy is used, some interesting areas can be missed. The
second approach solves this issue by conducting multi-objective opti-
mization directly on the EI.

5.2. Enrichment for the ”expected improvement” formulation

Multi-objective optimization is performed on the EI of the output
and the robustness criterion. This approach takes into account the
kriging variance right from the start of the procedure. For this ap-
proach, one enrichment strategy is proposed to add one points one by
one:

6. MEIyAlea: a point is randomly chosen and sequentially added until
the total budget is reached.

Because this strategy adds points sequentially one by one ( =q 1),
the last formulation is introduced to add points by batch.

5.3. Enrichment for the ”multi-point expected improvement” formulation

One last enrichment approach is proposed to add q points simulta-
neously:

7. MqEIyAlea: one point is randomly extracted from the Pareto front.
This point will provide q points in the parameter space for the next
optimization step.

The seven methods for performing the enrichment are summarized
in Table 1.

6. Quality criteria for Pareto fronts

The seven strategies based on three different response surfaces are
compared through the quality of the resulting Pareto front. Several
measures exist to quantify the quality of a Pareto front (cf [31–34]). The
Inverted Generational Distance (IGD) and the Hypervolume (HV) are
selected here to compare strategies. Let = …f ff ( , , )m1 be the objective
function, the theoretical Pareto front, and * the empirical Pareto
front where =M # . The chosen performance metrics are:

• Inverted Generational Distance (IGD) see [35]:
=

=
IGD

M
d( *) 1

i

M
i1
2

where =d f x f xmin ( ( ) ( ) ),i
i

x X* 2 f x( )i . This metric evalu-
ates the distance between the empirical and the theoretical Pareto
front. A small value is better.

• Hypervolume (HV) see [34]. Fig. 2 shows the Hypervolume (HV) of
a Pareto front. In [36] the authors introduce an algorithm to com-
pute this volume. The empirical HV is compared to the theoretical
one. The Hypervolume depends on the reference point. Whenever
possible the nadir point of the true Pareto front is used. The Hy-
pervolume then enables the comparaison of two empirical fronts.

7. Applications

This section compares the strategies on two toy functions and one
industrial test case. The toy functions are the six-hump Camel in two
dimensions and the Hartmann in six dimensions. Two cases are con-
sidered depending on whether the derivatives are affordable or not. For
efficiency’s sake, only three of the best strategies are applied on the
Hartmann function and on the industrial test case. For these applica-
tions NSGA II is performed with populations of a hundred points. Each
generation is computed with a crossed probability of 1 and a mutation
probability of ,p

1 where p is the number of inputs.

7.1. Six-hump Camel function: 2D

In this application, the six-hump Camel function is considered. The
two input variables are subject to manufacturing errors with

= x x(max( ) min( )),j j j
0.05

4 =j {1, 2}.
Fig. 3 shows the four optimal areas for robust optimization in the

objective and parameter space.
In order to perform a robust optimization, the function and all the

first and second derivatives need to be predicted. The set of predicted
indexes is = …u {1, ,6}pred and corresponds to the following vector:

= ( )Z Y Y Y Y Y Y, , , , ,u x x x x x x x x, , ,pred 1 2 1 2 1 1 2 2

7.1.1. Derivative observations
In this first part of the study, the function and all the derivatives are

available at each evaluated point. The set of observed indexes is
= …u {1, , 6}obs that corresponds to the process vector:

= ( )Z Y Y Y Y Y Y, , , , ,u x x x x x x x x, , ,obs 1 2 1 2 1 1 2 2

The initial learning set is a maximin LHS of nine points. Nine updates of
five points are added for a total budget of 54 points. The optimization
scheme is performed 100 times with different initial learning sets to
compare the seven strategies.
Results are provided in Fig. 4 and Table 2. In the table, two criteria

are used to compare the methods: the computation time and the
number of areas found after 54 evaluations. In the figure, the methods
are compared through two Pareto front performance metrics.
Our analysis is as follows: MqEIyAlea is really time-consuming and

the metrics IGD and HV have not yet converged even if the number of

Table 1
Minimization problems and methods for choosing the interesting points.

Method Minimization Interesting points Updates

MyAlea LCy, RCy Random points on the Pareto front and
the parameter space

Batch

MyEIClust LCy, RCy Cluster on EILCy and EIRCy Batch
MyqEI LCy, RCy Annealing algorithm on qEILCy and qEIRCy Batch
MyKB LCy, RCy Kriging believer Batch
MyCL LCy, RCy Constant liar Batch
MEIyAlea EI EI,LCy RCy Random point on the Pareto front Seq
MqEIyAlea qEI qEI,LCy RCy Random point on the Pareto front Batch

Fig. 2. Diamonds represent the individuals of the empirical Pareto front *.
The black circle is the Nadir point of the set *.
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found areas is the highest. MEIyAlea gives the worst results in terms of
metrics and found areas with a high computation time. Among the five
other methods, MyqEI, MyCL and MyKB give the best compromises in
terms of metrics, areas and computation time.They are fast as they are
based on the response surface which is easy to compute. They find the
different areas due to an efficient exploration step. Fig. 5 shows the
boxplots of these three methods for each distance. MyqEI gives the
worst results in HV metric. This is due to the annealing simulation of
the strategy that is difficult to tune.

7.1.2. No derivative observations
The aim of this section is to analyze the behavior of the seven

strategies when the derivative observations are not available.

Fig. 3. Pareto front of the six-hump Camel function in the objective space (left) and in the parameter space (right).

Fig. 4. Six-hump Camel function with derivative observations. Evolution of the Pareto metrics with the number of points computed for all the methods over 100
different runs of the algorithm. The HV value of the theoretical front is represented by the dotted line.

Table 2
Summary of the results obtained with the seven strategies on 100 simulations
on the six-hump Camel function with derivative observation. The true number
of areas is 4.

Method Updates Computation time Nb areas

MyAlea Batch 2 min 2.60
MyEIClust Batch 2 min 2.96
MyqEI Batch 6 min 45 sec 3.22
MyKB Batch 3 min 3.19
MyCL Batch 3 min 3.28
MEIyAlea Seq 1 h 21 min 1.83
MqEIyAlea Batch 3 h 16 min 3.63
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The observed set of indexes is =u {1}obs , while the predicted set of
indexes is = …u {1, ,6}pred that corresponds to the process vectors:

=
= ( )

Z Y
Z Y Y Y Y Y Y, , , , ,

u

u x x x x x x x x, , ,

obs

pred 1 2 1 2 1 1 2 2

The initial sample set is still a maximin LHS of 9 points. The available
information is poorer, and detection of the front need to add more
points. For this reason, 35 updates of 5 points are performed up to a
total budget of 324 points. The optimization scheme is carried out 100
times with different initial learning sets to compare the seven strategies.
Results are provided in Fig. 6 and Table 3. Our analysis is as follows:

the six-hump Camel function is difficult to approximate without deri-
vative observations. MqEIyAlea gives the best results, but it is far too

Fig. 5. Boxplots of the metrics computed for the three best methods over 100 simulations for the six-hump Camel function with derivative observations.

Fig. 6. Six-hump Camel function without derivatives’ observations. Evolution of the Pareto metrics with the number of points compute for all the methods over 100
different runs of the algorithm. The HV value of the theoretical front is represented by the dotted line.

Table 3
Summary of the results obtained with the seven strategies on 100 simulation on
the six-hump Camel function without derivative observation. The true number
of areas is 4.

Method Updates Computation time Nb areas

MyAlea Batch 14 min 3.69
MyEIClust Batch 42 min 2.20
MyqEI Batch 1 h 08 2.22
MyCL Batch 19 min 2.85
MyKB Batch 19 min 2.29
MEIyAlea Seq 8 h 41 1.68
MqEIyAlea Batch 26 h 47 3.94
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time-consuming. MyAlea strategy, which is partially based on a random
search, gives comparable results. In this context, too much reliance
should not be placed upon kriging. On the contrary, MEIyAlea provides
bad results by any criterion. The MyCL and MyKB, which exploit the
kriging variance, also give good results. Finally, the MyEIClust, MyqEI
and strategies that use the EI criterion provide less accurate results. The
best strategy is MyAlea, but MyKB and MyCL are also retained to test
them in a higher dimension.

7.2. Hartmann function: 6D

In this section, the three best strategies (MyqEI, MyKB and MyCL)
identified in Section 7.1.1 are benchmarked in a higher dimension (six).
A Gaussian process model is built with a tensor product kernel using the
Matern5_2 covariance function (see Eq. (5)). The studied function is the
six-dimensional Hartmann function defined by:

=
= =

f exp A x P xx x( ) ( ) , [0; 1]
i

i
j

ij j ij
1

4

1

6
2

1
2 2

where = (1, 1.2, 3, 3.2) ,

=A
10 3 17 3.5 1.7 18

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

and

=P 10
1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

4

The two input variables x4 and x5 are assumed to vary in the interval
xj ± 2δj where = x x(max( ) min( )),j j j

0.05
4 =j {1, 2}. As above, two

cases are considered depending on whether or not derivative observa-
tions are provided.

7.2.1. Derivative observations
The sets of indexes are = =u u {1, 5, 6, 20, 26, 27}obs pred which cor-

respond to the process vectors:

= = ( )Z Z Y Y Y Y Y Y, , , , ,u u x x x x x x x x, , ,obs pred 4 5 4 5 4 4 5 5

The initial sample set is a maximin LHS composed of 18 points. Five
updates are made and 18 points are added by update for a total budget
of 108 points. The best methods found in the previous test case with
derivative information, MyqEI, MyCL and MyKB strategies, are applied.
The right part of Fig. 7 shows that the three methods converge to the

true front. MyqEI is the fastest. On the simulation presented on the left
part of Fig. 7, it is the only method which finds at step 5 the all Pareto
front. MyKB takes 8 minutes and MyCL takes 9 minutes for the five
steps when MyqEI takes 12 minutes.

7.2.2. No derivative observations
The sets of indexes are =u {1}obs and =u {1, 5, 6, 20, 26, 27}pred .

Fig. 7. On the left: Pareto fronts obtained during the optimization procedure of the three strategies at the initial step (step 0), middle step (step 2) and final step (step
5). On the right: evolution of the metrics computed during the algorithm for all the methods over 100 simulations for the Hartmann function with derivative
observations. The HV value of the theoretical front is represented by the dotted line.
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They correspond to the process vectors:

=
= ( )

Z Y
Z Y Y Y Y Y Y, , , , ,

u

u x x x x x x x x, , ,

obs

pred 4 5 4 5 4 4 5 5

The initial design is still a maximin LHS composed of 18 points. More
updates are provided since derivatives are not affordable. Here 35 up-
dates of 18 points are sequentially computed up to a total budget of 648
points. The best methods identified previously, MyAlea, MyqEI and
MyCL strategies, are applied.
Fig. 8 shows that the three methods converge to the true front. At

step 5, only one part of the front has been detected by two of the
methods (MyCl and MyqEI). The top left part of the front is difficult to
localize. On this simulation at step 35 it is reached (with 578 additional
points). The right part of Fig. 8 shows that the distance starts to con-
verge to the expected value within the first 100 points. For the IGD
metric, the values are subject to few perturbations around the expected
value zero. For the HV measure, the three methods converge to the
theoretical value with only 100 points that correspond to 6 updates.
MyAlea takes 56 min, MyqEI takes 1h19 min, and MyCL takes 1h02min
for the 35 steps.

7.3. Industrial test case

7.3.1. Context
The chosen application is a front motor cooling fan design. Within

daily use, uncertainties under operating conditions are mainly due to
external parameters. In automotive application, it would be the design
of the car, its air entrance conditions, the size and shape of the engine,
the temperature, humidity, etc.
As such part is usually provided by automotive supplier, these

parameters are complete unknown, and the OEMs generally take the
responsibility to validate their car as a system for all these conditions.
However, in order to ensure the qualification of the product, the spe-
cification that are given are very strict and aims to compare fairly the
fans between them. For instance, tests are made for a fixed rotational
speed on standard test rig (see [37]). Therefore, the remaining vari-
abilities are coming from the geometrical changes and the measurement
uncertainties.
The use of numerical simulation with a very well controlled work-

flow (repeatability, mesh independency, controlled numerical con-
vergence, etc.) help suppliers to reduce the measurement uncertainties.
The geometry changes are an actual issue with production process,

which involves plastic injection with glass fiber. It is well known in the
state of the art that the plastic component that goes out of the mold
does not have the same shape than the mold cavity. In particular,
shrinking, warpage and residual stress distribution can yield plastic
deformation, even long time after the production if we consider effect
of temperature, humidity and aging. Sometimes, the blade modification
is so important that the mold must be reworked, which is obviously an
additional cost that could be saved with a robust optimization ap-
proach.

Fig. 8. On the left: Pareto fronts obtained during the optimization procedure of the three strategies at the initial step (step 0), step 5 and final step (step 35). On the
right: evolution of the metrics during the algorithm computed for all the methods in 100 simulations for the Hartmann function with no derivative observation. The
HV value of the theoretical front is represented by the dotted line.
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These phenomena are observed on fans for a long time, and previous
experience with retro-engineering on used fans has allow suppliers to
quantify the blade deformation: it can be easily converted into mod-
ification of the stagger angles, the chord, the camber, etc. However, the
parameters that were selected in the present investigation are those
which are varying the more, because the maximum freedom for change
is located far from the hub and far from the ring (hub and ring are solid
and massive cylinders that retains the blade at their attachments). If the
robust optimization sorts out the more robust design according to these
parameters which are at risk, it would without no doubt reduce the
uncertainties due to supplier production process.

7.3.2. Numerical chain
We choose a low fidelity turbomachinery predimensioning tool

named TurboConceptTM as main simulation part for the proposed design
optimization. This code is developed and maintained by the Laboratoire
de Mécanique des Fluides et d’Acoustique (LMFA) at Ecole Centrale de
Lyon. The principal equations of Aerothermodynamics used to con-
struct TurboConceptTM are described in [38] and [39]. It can be used
according to two modes of execution. Theses are inverse design, a mode
that find the most suitable fan geometry for specific input operating
conditions and that is described in appendix A of [40], and direct, a
mode that calculates performance criteria associated with specific input
fan geometry and specific input operating conditions. This second mode
is used to perform robust optimization.
A fan blade is divided into five sections of vane height. These are

highlighted in red curves on Fig. 9 on the right. A blade profile is
parameterized according to three parameters of chord length, stagger
and maximum camber (Hmax). Their geometrical definition is re-
presented in Fig. 9 on the left. As a result, each fan blade is

Fig. 9. Blade section with the three input parameters on the left. Sections are represented on the right by the red lines along one blade. Section 1 is the closest to the
disc and section 5 the most far away.

Table 4
Inputs of the numerical code. Hmax is the maximal camber height. These inputs are considered at 5 different sections from sections 1 to 5.

Input Chord length Stagger Hmax

Section 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Notation x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15
Min 0.04 0.06 0.08 0.09 0.11 −50.67 −59.68 −65.87 −70.29 −73.58 3.82 3.82 3.82 2.86 1.91
Max 0.07 0.09 0.11 0.14 0.16 −45.85 −54 −59.59 −63.6 −66.57 5.73 5.73 5.73 4.29 2.86
δ 0 0 0 0 0 0 1.16 1.28 1.36 0 0 0 0 0 0

Table 5
Fixed physical parameters and values

Physical parameter name fixed value

Rotation speed Ω (rad s. 1) 277.5

Volume flow rate Q (m s.3 1) 0.833

Fig. 10. The 46 initial observation points in the true objective space: opposite
level criterion ( LC ) and robustness criterion calculated on the efficiency
(RCη).
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characterized by fifteen geometrical parameters, namely five chord,
stagger and maximum camber. They are denoted = …x x Dx ( , , )1 15
and can vary within a specific range [Min; Max] shown in Table 4.
Among these inputs, only intermediate staggers (x7, x8, x9) are sub-
jected to manufacturing tolerances xi ± 2δi, =i {7, 8, 9}. The values of
δi are given by the industrial experts (see Table 4). The first and second
derivatives of the uncertain variables are provided by the numerical
code. The operating conditions of the fan have been set to the specific
values in Table 5.
The performance criterion to be optimized is based on the static

efficiency of the fan, defined by:

= ×
×

Q P
C (13)

As the rotational speed Ω (rad s. 1) and the volume flow Q (m s.3 1)
are fixed, fan efficienty η (.) depends on two outputs of TurboConceptTM.
The first one is the delta of static pressure ΔP (Pa) between the output
and the fan input. This pressure energy is provided by fan rotation and
is necessary to counterbalance the pressure loss induced by the fric-
tional forces acting on the fluid as it flows through the radiator fins. The
second one is the resistive torque C (N.m), corresponding to the moment
of pressure and the viscous forces applied by the air on the fan.

7.3.3. Results
The initial sample set D1 is a maximin LHS of 46 observations.

Fig. 10 shows the learning sample set in the true objective space {LCη,

RCη}. LCη and RCη are the level and robustness criteria calculated on η
given by Eq. (2) and (3). The total budget is composed of 136 points,
and 90 points are added to the initial design with 5 updates of 18
points. The three best methods (MyKB, MyqEI and MyCL) used in
Section 7.2.1 are selected to perform robust optimization.
As it can be seen MyKB, MyqEI and MyCL have well progressed

Table 6
Computation time for the three strategies, MyCL, MyKB and MyqEI.

Update 1 2 3 4 5 Total

MyKB Time 0h21 0h35 0h 48 0h58 1h15 3h57
MyqEI Time 0h08 0h13 0h 19 0h24 0h32 1h36
MyCL Time 0h19 0h29 0h 42 0h56 1h26 3h52

Fig. 11. Non-dominated points of the final design for methods MyCL, MyKB
and MyqEI in the true objective space: opposite level criterion ( LC ) and
robustness criterion calculated on the efficiency (RCη).

Fig. 12. The shape on the left corresponds to the square of Fig. 11,
while that on the right to the triangle.

Fig. 13. Progression of the algorithm for methods MyKB (a), MyqEI (b), MyCL
(c) in the true objectives space: opposite level criterion ( LC ) and robustness
criterion calculated on the efficiency (RCη).

M. Ribaud, et al. Reliability Engineering and System Safety 200 (2020) 106913

12



between the initial step (cf Fig. 10) and the final step (cf Fig. 11). They
gives interesting non-dominated points that are compromises between
efficiency and robustness. MyqEI provides the worst progress in the
objective space, while MyKB gives the less dispersed areas and MyCL
the most advanced and dispersed ones. These differences stem form
where strategies add points along updates. As it can be seen on Fig. 13,
all the points added by MyKB are in the same area (middle left). MyqEI
adds points in different areas from the first update but at the end, it has
not finished the progression. MyCL progresses better than the others.
Since the second update, it puts a point in the bottom right area. Table 6
shows that MyqEI is the fastest strategy. Indeed MyCL and MyKB need
q-updates of the kriging model to select the batches.
The shapes of two of these compromises (see the big square and

triangle on Fig. 11) are represented on Fig. 12.
Four new optimization runs have been performed from new initial

LHS designs (D2, D3, D4, D5). The initial number of points for the five
models is {46, 48, 48, 48, 49}, a difference that stems from
TurboConceptTM. Fifty points were launched but not all of them con-
verged. Nevertheless, at the end of the optimization all designs have
136 points. Fig. 14 shows the five sets of learning samples in the true
objective space {LCη, RCη}.
Fig. 15 shows that the five different initial designs converge to the

same Pareto front with the three methods. The choice of the optimized
initial LHS has little impact on the final result. Moreover, the MyCL
method is the most reliable, as the five Pareto fronts coincide perfectly.

8. Conclusion

In this paper, an efficient kriging-based robust optimization proce-
dure is proposed. The methodology is based on a multi-objective opti-
mization of the two first moments (expectation and variance). Proxies
are given based on a Taylor expansion and for Gaussian errors. These
expressions using derivatives have the advantage of being easily pre-
dicted under Gaussian process modeling. The introduced multi-objec-
tive strategies are iterative and based on two steps: a NSGA-II algorithm
performed on kriging response surfaces or kriging expected improve-
ments and relevant enrichment methods composed of one point or a

batch of points carefully chosen on the Pareto front. Seven strategies
have been compared on two toy functions. The study reveals that it is
far more computer-wise efficient to optimize the plug in versions of
kriging prediction rather than EI. When points are selected using kri-
ging variance, the procedure detects all the diversity of the robust so-
lutions. Finally, the methodology is applied on an industrial problem
that consists in optimizing motor fan shape taking into account pro-
duction uncertainties. Interesting shapes are provided to ensure robust
optimization of turbomachinary efficiency, which strike the right bal-
ance between efficiency and robustness.
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Fig. 14. The initial observation points for five LHS designs in the true objective
space: opposite level criterion ( LC ) and robustness criterion calculated on
the efficiency (RCη).

Fig. 15. Non-dominated points of the five final designs for methods MyKB (a),
MyqEI (b), MyCL (c) in the true objective space: opposite level criterion ( LC )
and robustness criterion calculated on the efficiency (RCη).
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