



































































































Solving systemsof linearequations

1 Introduction
we solve simultaneously theequations

pansentanat

tansen bi
danser ta arhat Qan Rn ba

i

Anna tanaka t t dman Du
It is a system of linear equations
xp son are the unknownquantities the diffp arethe coefficients the Cbi ii n are the constants

Notations

withmatrices

µ
an Ann ba

Azi Azz Man

Aseb or

computationaparpo

ÏËÈÈIÎLËÊ

CAb or

a
Lain

ann
Questions

does a solution se exist Is it unique
can we compute it automaticallyAre there specialways to do it whenAhasmanyZeros
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existence and uniqueness of solution
If the rows Lor columns of A are linearlyindependent
orequivalently if detA AI 40 thesystem has a unique
solution
Otherwise we say that A is singular and thesystem
can have nosolutionon a continuum of solutionsdepending
on the constant vector b
eg 2x y 3

4 2y es
has infinitelymanysolutions

namely the line ofequation 2 4 3 _while
2 4 3

has no solution
4 24 0

Conditioning Problemmay occur it A is almostsingular i e
when IAl is small compared to it's coefficients i e

IAI AllWhere HAI isany norm of A we say that the
System on the matrix A are ill conditioned
eg
Euclidiennorm l'Alle ÉTÉ dig FÉE
Infinitynorm Hallo III É lais
Matrixconditionnumber cond A e IAIN A I

If cond A u IIIlithematrix is wellconditioned This
numberincreases with thedegree of ill conditioningof A
But thisnumber is difficult to compute
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When A is ill conditioned small changes in thecoefficients

may result in largechanges in thesolution
eg Wesolve 2 4 3 2 1.0014 0

0.001 y 3 ES y 3000 X 300312 1501.5

If wechange the second equationas 2 1.0024 0

we find Yi 1500 X 751.5 so that 0.1 changeon the
coefficient produces 100 change in the solution
Note that I AI 2 1.001 2 0.002 is small

compare tothe coefficients 2 1 and the system
is ill conditioned

One carnet therefore trust computedsolution of
ill conditioned systems

THINgeneral the coefficient matrix A is definedpermanently
while b represents theinputof a system and we need to
be able tosolve A se b forany land of b

MDMTwo kinds ofmethods for solvingsystems director iterative
Indirect methods we carryout some changes on the
equations inonder to simplify thesystemThisdonethrough
elementary operations whichdo not affect the solution but may
change thedeterminant of thesystem

exchanging two equations changes thesign of

the determinants
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multiplying an equationby a non zero constant

multiplies thedeterminantbythis constant
multiplying an equationby a constant and then
subtracting it fromanother equation does not

change the determinant
In iterative methods ou endirectmethods we view the
solutionof the system as the Limit of a very large infinite
numberof steps We stop the process according to
the accuracy we want for the solution

These
methods

may beinteresting for verylarge and sparsematrices
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2 Gauss eliminationmethod
Wetransform thesystem into adiagonal system of theform

UX D
where U is an uppertriangularmatrix i e amatrixwhich
haszeros below themain diagonal

U in 3dimensionsC.ly g 122 Nzz

Weexplain the method on an example

für Es
A 212 4 3 17 63

Weproceed by using one of the elementaryoperationlisted
above
we useequation les as a pivot WechangetheLinesbelow the
pivotline bysubstracting to them the pivot linemultipliedby a well chosen constant

4 1 2 2 X 11 C1 un chansed
3 2 3 3 21 ce2 1 e l 2

Intense les_E
e le's

Then we proceed with the second line as a pivot
4h 2x Xz 11 en

3 2 EX 21 és
3 3 9 és f el

Once tuehavesuchsystem it is veryeasytosolve backward

23 3 X2 2 a 1 backsubstitution

And we get for free IAI 4 3 3 36






































































































Algorithm
Weare modifying the coefficients of the system
as we are proceeding
Elimination
for ke 1 ton 1 pivot row
for i kf1 ton
D dir are provided that are to
for je kf1 ton

déj auj taj
bi bi Dbr

Rg we do not compute the new air which is Zero and
is not used in the substitution step
Substitution
du Du lann
for ken 1 to 1 Step 1

Xp br Étakj arr

Operation count we count multiplicationsanddivision
for be 1 ton 1 for i tt ton we have

1 1 n Ca xD e n bas suchoperations
i e Ét n k Ln kf2 operations
Wechangevariable II j'j 2 NÉÉ j'ANIKA
for the eliminationphase Plz
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Programming First we change indices from 1 ton
to from O to n 1

for K oto n 2 for kin range 0 n i

for i Rtl ton 1 es fort in range ah n

replace the loop on j by
a i RH n ali khin t ask KH n

we can re use b for substitution Moreover

python can deal with empty arrays Finally we
Substitute the sum by a dot product

fou k in rangeCa 1 1 1

DEKI CEI ap dotlackjate n b KH D
zzz

We can define a function gaussEliminCa b
that we put in a module that we call Me_linolypy

7






































































































3 LU decompositionmethod
Theorem Any square matrix can be decomposed as
product of a lower triangular matrix and an upper
triangularmatrix A LU E notunique
If we know Land U solving Ax b consists
in solving Ly b with a forward substitution
procedureand then knowing y bysolving Uxey
with anothersubstitution procedure
Finding Land U in A is known as LU

decompositionor factorization
Since the decomposition is not unique there are
several ways of decomposing depending on the constraints
we give for that decomposition
Doolittle s decomposition Lii 1 i 1 n

front's decomposition Oii 1 i 1 n

Choleski'sdecomposition LUT

Doolittle's decompositionmethod
In order to understandhow to operate we start

from the decomposition in the case when thedimensionis n 3 we assume
0 Ou Un V13

Le En L
Lan Lou 9

Un Uaz
0 0 V33
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and therefore

Un Un V13

A tuUn LandsatUn LanUns4023 Y
LzrUns 2310124h32022 231013 432023 033

We nowproceed with Gausseliminationprocess
Pivot Un V12 Unz

0 V22 Vais

32022 232023 t V33

1 Un U ne Ons
I o V22 V23

0 V33

Therefore
In LU decomposition U is obtained as theresulting
matrix from Gausselimination procedure
The values of L are given as the pivots in
the procedure

We can use the matrix itself to store thepivot
Once we have Land U we proceed by substitution

Cf exercise 2 on sheet 1
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Choleski's decompositionmethod
This decomposition is not always possible
Indeed if A LE then A is symmetric
since AT IL L'FILTITLT LE
Moreover Ais positivedefinite Indeed Ais
diagonalizable wedenotedany eigenvalue of A
andmany associated eigenvector Then
And can be written Ltu du Therefore
Lin a LIU LTD HEUM

Izoand Lunn Hum ed Kalla Sincento
Finally 1 0 since Ais invertible
Theorem If is symmetricpositivedefinite then
there exists LE Mnk such that LE
As before we try to guess the algorithm We
assume A LE with

et
ki ta

121 222 0

A
f4

4h21 Lutz
Lutz Littré Laila LazLaz

Leitz Labittjalzz h that 45

L A LaneArr Ln Lan Asr Kn
La An tant La Asa La La Laz






































































































Finally Les Azz Ls _Là 2

Thisprocedure can begeneralizedWe canwrite an

algorithmwhich number of longoperations is aboutMy
instead of Mz This algorithm is detailed in

the book by Kinsalazs
et exercise 3 on sheet 1

Remark Cholesky'sdecomposition is alsopossible
when A is not invertible In this case L is a nxm

matrix where m is the rank of A

Other decompositions
Cout's decomposition is the same as Doolittle's

except that it is the diagonal of U and not
of L which has ones en it

GaussJodarprocedure it is the same as Gauss
elimination but you complete the procedure se
that the resulting matrix is diagonal It is not

interesting becauseyouneed Plz operations to
compute it you compute the inverseof A up
to a final division on each row
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4 Symmetric and banded coefficient matrices

Manyengineering problems lead to matrices which have
a lot of zeros or are sparselypopulated or sparse

Some ofthemhavetheirmontero terms clustered around the

diagonal they are called bandedmatrix or p diagona
matrixwhere p is themaximum of non zero terms en
One row or columnsymmetricallyplaced around the
diagonal For instance a tri diagonalmatrixhas
the form âÊontijerotams

Thebanded structure of a coefficient matrix can be
exploited to save storageand computation time as we now

explain it onDoolittle's decomposition for atridiagond
matrix
LUdecomposition et atri diagonal matrix

storage instead et n'coefficients We have MALAD

En 2 nonzero coefficients Assume

e Cr elle

GÉÏÉÉ
tensions

du du de r i
C k d

And therefore thenumber of op.is 2m






































































































Rq The matrix Land U remain tri diagonal
othermethods When A is symmetric A can bedecomposedas A LU L DE Where Dis a diagonal
matrix We have U DE and D I can be easily
recoveredfrom U We can use this together with the
banded coefficients condition in order to construct
a very efficientalgorithm l see Kinsalaas

13






































































































5 Pivoting
There can be cases in which the procedures we saw
do not work namelywhen pivot is o and therefore we
cannotcompute d

Exemple
Imagine we have the followingsystem

22 23 0

f Jen 22 13 0

2mn Uz 1

We cannot even start the eliminationprocedure because
the pivot coefficient is O Awayto get rid off this
problem is to invert lines sincethematrix is invertible
there is at least 1 nonzero coefficient in the first
column
Rowreordering or row pivoting is also requiredwhen the
pivotelement is verysmallbycomparisonwith the otherterms
Indeed if we solve the system

CHEF FÉ
byour procedure gaussElimin then with

E 1 E 15 we get the solution
Xrt 1110 2 2 1 2 1

the solution with E O is 1 1 17
14






































































































Diagonal dominance A un matrix is said to be

diagonally dominant if on all raw i we have

lait ÉÉ taijl

example Thematrix

A 1 1 3

is not diagonally dominant there is anb at
each row but a problem at one row Would be
sufficient to loose the property
However if we reorder the equations we
can end with a systemwhose matrix is

HE
which is diagonally dominant

theorem If the matrix A is diagonallydominant
then pivoting is not necessary
Therefore we need aprocedure which transform
A to a matrix A as dose as possible to A

diagonally dominant matrix
15






































































































simpleprocedure to avoid problems could bethefollowing
adapted Gausseliminationprocedure
C 1 n Cr Cnl
for each k 1 ton

p lugmaxCloud lamas ex latent
il pt k
exchange column k and p
keep trace of the changeby setting
Ck Cp 4 Cp Ca simultaneously

At the end we have a system whosevariables an Un

have been exchanged In order togetthesolution
we have to veorder the solution rector

ln la en Contain the indices of the components
of the solutionwhich are stored in baba br
respectrely i en b r Her for all be

Whennotnecessary it is better not topivot because

pivoting has drawbacks since it increases thenumberof
computationsandmayevendestroy the structure of the
System banded on symmetric Most of the time

engineeringproblems end up wellposed in that

respect
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