Solving systems of linear equations
(1) Introduction

We solve simultaneously the equations

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \quad b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{array}\right.
$$

It is a system of linear equations.
$x_{1}, \ldots x_{n}$ are the unknown quantities, the $\left(\left.a_{i j}\right|_{j=1 . . n}\right.$ are the coefficients, the $\left(b_{i}\right)_{i=1 . . n}$ are the constants.

Notations
with matrices

$$
A x=b \text { or }
$$

$$
\underbrace{\left.\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & & a_{2 n} \\
\vdots & & & \\
a_{n 1} a_{n 2} & \ldots & a_{n n}
\end{array}\right)}_{\text {Coefficient matrix }} \underbrace{\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)}_{x}=\underbrace{\left(\begin{array}{c}
b_{n} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)}_{b}
$$

for computational purpose:

$$
[A \mid b] \text { or }\left[\begin{array}{ccc|c}
a_{11} & \ldots & a_{1 n} & b_{1} \\
\vdots & & & \vdots \\
a_{n 1} & \ldots & a_{n n} & b_{n}
\end{array}\right]
$$

Questions

- does o solution xe exist? Is it unique?
- can we compute it automatically?
- Are there special ways to do it when Å has many zeros?
existence and uniqueness of solution
If the rows Cor columns) of A are linearly independent or equivalently if $\operatorname{det} A=|A| \neq 0$, the system has a unique solution.
Otherwise, we say that A is singular and the system can have no solution or a continuum of solutions depending on the constant vector b.
e.g. $\left\{\begin{array}{l}2 x+y=3 \\ 4 x+2 y=6\end{array}\right.$ has infinitely many solutions, namely the line of equation $2 x+y=3$, while $\left\{\begin{array}{l}2 x+y=3 \\ 4 x+2 y=0\end{array}\right.$ has no solution.

Problem may occur if A is "almostsingular" ju.e. when |A| is small compared to it's coefficients, i.e.
$|A| \ll$ All where MAll is ans norm of A (we say that the
eg.
Euclidian norm: $\|$ All $=\left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{2}\right)^{1 / 2}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{2}}$
Infinity nom $\|A\|_{\infty}=\max _{i=1,-n} \sum_{j=1}^{n}\left|a_{i j}\right|$
Gond $(A)=12 A\left\|l \mid l A^{-1}\right\|$
If cord $(A)_{N}$ II II, the matrix is well conchitroned. This number indeases with the degree of ill conditioning of A. But this number is difficult to compute.

When A is ill conditioned, small changes in the coefficients may result in large changes in the solution.
eg. We solve $2 x+y=3,2 x+1.001 y=0$.

$$
\Rightarrow 0.001 y=-3 \Leftrightarrow y=-3000 \Rightarrow x=300312=1501.5 .
$$

If we change the second equation as $2 x+1.002 y=0$, we find $y=-1500 \quad x=751.5$, so that 0.1% change on the coefficient produces 100\% change in the solution. Note that $|A|=2 \times 1.001-2=0.002$ is small compare to the coefficients 2,1, and the system is ill conditioned.
One cormot therefore trust computed solution of ill conditioned systems.

In In general, the coefficient matrix A is defined permanently while t represents the input of a system and we need to be able to solve $A x=b$ for any kind of b.

- Two kinds of methods for solving systems: "direct" or "iterative".
we carry out some changes on the equations in ordo to simplify the satem. This done through elementary operations which do not affect the solution but may change the determinant of the system:
exchanging two equations Changes the sign of the determinant).
multiplying an equation by a son zero constant (multiplies the determinant by this constant) multiplying an equation by a constant and then substracting it from another equation. (sloes not change the determinant).
In iterative methods on indirect methods, we view the solution of the system as the limit of a very barge (infinite) number of steps. We stop the process according to the accuracy we wont for the solution. These methods ma, be interesting for very large and sparse matrices.
(2) Gauss elimination method

We trons form the system into a diagonal system of the
form form

$$
U x=b^{\prime}
$$

where U is an upper triangular matrix ie. a matrix which has zeros below the main diagonal:
egg.

$$
U=\left[\begin{array}{ccc}
\mu_{11} & \mu_{12} & \mu_{13} \\
0 & \mu_{22} & \mu_{23} \\
0 & 0 & \mu_{33}
\end{array}\right] \text { in } 3 \text { dimensions. }
$$

We explain the method on an example:

$$
\left\{\begin{aligned}
4 x_{1}-2 x_{2}+x_{3}=11 & \left(e_{1}\right) \\
-2 x_{1}+4 x_{2}-2 x_{3}=-16 & (e 2) \\
x_{1}-2 x_{2}+4 x_{3}=17 & \text { (es) }
\end{aligned}\right.
$$

We proceed by using one of the elementary operation listed abase.
We use equation (es) as a pivot. We change the lines below the pivot line by substracting to them the pivot line multiplied by a well chosen consonant.

$$
\left\{\begin{array}{rl}
4 x_{1}-2 x_{2}+x_{3} & =11 \quad\left(e_{1}\right) \text { unchanged } \\
3 x_{2}-\frac{3}{2} x_{3} & =-\frac{21}{2} \quad\left(e_{2}\right)-\left(-\frac{1}{2}\right)\left(e_{1}\right)=\left(e_{2}^{\prime}\right) \\
-\frac{3}{2} x_{2}+\frac{15}{4} x_{3} & =\frac{57}{4}
\end{array}\left(e_{3}\right)-\left(\frac{1}{4}\right)\left(e_{1}\right)=\left(e_{3}^{\prime}\right) .\right.
$$

Then we proceed with the seconal line as a pies,

$$
\left\{\begin{aligned}
4 x_{1}-2 x_{2}+x_{3} & =11\left(e_{1}\right) \\
3 x_{2}-\frac{3}{2} x_{3} & =\frac{21}{2}\left(e_{2}^{\prime}\right) \\
3 x_{3} & =9 \quad\left(e_{3}^{\prime}\right)-\left(-\frac{1}{2}\right)\left(e_{2}^{\prime}\right)
\end{aligned}\right.
$$

Once be have such system, it is very easy to solve "backward" $x_{3}=3, x_{2}=-2, x_{1}=1$ (back substitution") And we get for free $|A|=4 \times 3 \times 3=36$.

Algorithm.
We are modifying the coefficients of the system os we are proceeding.
Elimination
for $n=1$ to $n-1$ (pivot row) for $i=n+1$ to n

$$
\lambda=a_{i r} / a_{k k}
$$

for $j=k+1$ to n

$$
\begin{aligned}
& a_{i j} \longleftarrow a_{i j}-\lambda a_{k j} \\
& b_{i} \longleftarrow b_{i}-\lambda b_{k}
\end{aligned}
$$

Ri: re do not compute the new air which is zero and is not used in the substitution step.
Substitution

$$
\begin{aligned}
& x_{n}=b_{n} / a_{n n} \\
& \text { for } k=n-1 \text { to } 1 \text { step }-1 \\
& x_{k}=\left(b_{k}-\sum_{j=k+1}^{\sum_{k j}} a_{k j} x_{j}\right) / a_{k k}
\end{aligned}
$$

count : we count multiplications and division. for $k=1$ to $n-1$, for $i=n+1$ to n, we have

$$
\frac{1}{n-1}+1+n-(n+1)+1=n-b+2 \text { such operations }
$$

ie. $\quad \sum_{k=1}^{n-1}(n-k)(n-k+2)$ operations
we change variable: $\sum_{j=1}^{n-1} j(j+2) \sim \sum_{j=1}^{n-1} j^{2}=\frac{(n-1) n(2 n-1)}{6}$ (for the elimination phase) $\mathrm{vn}^{3} / 3$.

Fist we change inolices from 1 to n " to "from 0 to $n-1$ ".
for $R=$ to $n-2 \longleftrightarrow$ for kin serge $(0, n-1)$:
for $i=R+1$ to $n-1 \longleftrightarrow$ for i in range $(n,+1, n)$:
replace the loop on $i d$ by

$$
a[i, b+1: n]=a[i, \mid a+1: n]-\lambda * a[k, b+1: n]
$$

we con re-use b for substitution. More over python can deal with empty arrays. Finally we substitute the sum by a dot product.
for k in range $(n-1,-1,-1)$:

$$
b[k]=\left(b[k]-n p \cdot \operatorname{abt}\left(a[k, b+1: n], b\left[k_{+1} \mid: n\right]\right) / a[k b]\right.
$$

We can define a function gausstlimin (a, b) that we put in a moolule that we call M1-linalg-py
(3) LU decomposition method
theorem Any square matrix can be decomposed as product of a lower triangular matrix and an upper triangular matrix. $A=L U$ (*) (not unique) If we know L and U, solving $A x=b$ consists in solving $L y=b$ with a forward substitution procedure and then, knowing y, by solving Ux=y with another substitution procedure.
Finding L and U in (*) is known as LU decomposi-

Since the decomposition is not unique, there are several ways of decomposing depending on the constraints we give for that decomposition.
Doolittle's decomposition: $L i i=1, i=1 \ldots n$.
Grout's decomposition : $U_{i l}=1, i=1 \ldots n$
Choleski's decomposition $L=U^{\top}$

In order to understand how to operate, we start from the decomposition in the case when the dimension is $n=3$: we assume

$$
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
L_{21} & 1 & 0 \\
L_{31} & L_{32} & 1
\end{array}\right)_{-8} \quad U=\left(\begin{array}{ccc}
U_{11} & U_{12} & U_{13} \\
0 & U_{22} & U_{23} \\
0 & 0 & U_{33}
\end{array}\right)
$$

and therefore

$$
A=\left(\begin{array}{ccc}
U_{11} & U_{12} & U_{13} \\
L_{21} U_{11} & L_{21} U_{12}+U_{22} & L_{21} U_{13}+U_{23} \\
L_{31} U_{11} & L_{31} U_{12}+L_{-32} U_{22} & L_{31} U_{13}+L_{32} U_{23}+U_{33}
\end{array}\right)
$$

We now proceed with Gauss elimination process.

Therefore:
In LU decomposition, U is obtained as the resulting matrix from Gauss elimination procedure The values of L are given as the pivots in the procedure.
We con use the matrix itself to store the pivot. Once we have Lend U we proceed by substitution.

This decomposition is not always possible. Indeed, if $A=L L^{T}$ then A is symmetric since $A^{\top}=\left(L L^{\top}\right)^{\top}=\left(L^{\top}\right)^{\top} L^{\top}=L L^{\top}$
Moreover A is positive definite. Indeed, A is diag gonalizable, we denote λ any eigen value of A and u any associated eigen vector. Then
$A u=\lambda$ can be whiten $L L^{\top} u=\lambda u$. Therefore

$$
\left.\begin{array}{l}
\left\langle L L^{\top} u, u\right\rangle=\left\langle L^{\top} u, L^{\top} u\right\rangle=\left\|L^{\top} u\right\|^{2} \geqslant 0 \\
\text { and }\left\langle L L^{\top} u, u\right\rangle=\langle\lambda u, u\rangle=\lambda\|u\|^{2}
\end{array}\right\} \Rightarrow \lambda \geqslant 0
$$

Finally $\lambda>0$ since A is invertible.
Theorem If A is symmetric positive definite then there exists $L \in \mu_{n}(\mathbb{R})$ such that $L L^{\top}=A$
As before, we try to guess the algorithm. We assume $A=L L^{\top}$ with

$$
\begin{aligned}
& L=\left(\begin{array}{ccc}
L_{11} & 0 & 0 \\
L_{21} & L_{22} & 0 \\
L_{31} & L_{32} & L_{33}
\end{array}\right) L^{T}=\left(\begin{array}{ccc}
L_{11} & L_{21} & L_{31} \\
0 & L_{22} & L_{32} \\
0 & 0 & L_{33}
\end{array}\right) \\
& \Rightarrow A=\left(\begin{array}{ccc}
L_{11}^{2} & L_{11} L_{21} & L_{11} L_{31} \\
L_{11} L_{21} & L_{21}^{2}+L_{22}^{2} & L_{21} L_{31}+L_{22} L_{32} \\
L_{11} L_{21} & L_{31} L_{21}+L_{32} L_{22} & L_{31}^{2}+L_{32}^{2}+L_{33}^{2}
\end{array}\right) \\
& L_{11}=\sqrt{A_{11}} \\
& L_{21}=A_{12} / L_{11} \\
& L_{22}=\left(L_{31}=A_{31} L_{21}^{2}\right)^{1 / 2} \\
& L_{32}=\left(A_{32}-L_{21} L_{31}\right) / L_{22}
\end{aligned}
$$

Finally $L_{33}=\left(A_{33}-L_{31}^{2}-L_{32}^{2}\right)^{1 / 2}$
This procedure can be generalized. We can write an algo. rithm which number of long operations is about $h^{3} / 6$ (instead of $\mathrm{n}^{3} / 3$). This algorithm is detailed in the book by Kiusalazs.
cf exercise 3 on sheet 1.

Cholesky's de composition is also possible when A is not invertible. In this case, L is a $n \times m$ matrix where m is the rank of A.

Croat's de composition is the same as Doolittle's except that it is the diagonal of U and not of L which has ones on it.

- Gauss Jordar procedure: it is the same as Gauss elinin aton but you complete the procedure so that the resulting matrix is diagonal. It is not interesting beceuse you need $n^{3} / 2$ Operations to compute it (you compute the inverse of A up to a final division on each row).
(4) Symmetric and banded coefficient matrices.

Many engineering problems lead to matioces which have a lot of zeros or are "sparsely populated" or "sparse". some of them have their nontero terms cluster around the diagonal, they are called banded matrix, or p-diagonal matrix where p is the maximum of non zero terms in one row or column symmetrically placed arround the diagonal. For instance, a trim oliggonal matrix has the form
 where the orly hon zero terms are on the tines.

The banded structure of o coefficient matrix con be exploited to save storage and computation time, as we now explain it an Doolittle's decomposition for a trieboesere) matrix.
storage: instead of n^{2} coefficient, we have $n+2(n-1)$ $=3 n-2$ nonzero coefficients. Assume

$$
\begin{aligned}
\text { for } k & =2 \text { ton } d_{0} \\
\lambda & =c k / d_{-1} \\
d_{k} & \leftarrow d_{k}-\lambda e_{k-1} \\
c_{k} & =\lambda
\end{aligned}
$$

And therefore the number of orris $2 n$.

The matrix L and U remain tri- diagonal
other wethrols. When A is symmetric, A can be decor.
posed as $A=L U=$ LDL where D is a diagonal matrix. We have $U=D L^{\top}$ and $D_{1} L^{\top}$ can be casiey recovered from U. We can use this together with the banded coefficients condition in order to construct a very efficient algorithm E see Kiusalaas).
(5) Pivoting

There can be cases in which the procedures we low do not work, namely when pivot is 0 and there fore we cannot compute λ.

Imagine we hove the following system

$$
\left\{\begin{array}{l}
0-x_{2}+x_{3}=0 \\
-x_{1}+2 x_{2}-x_{3}=0 \\
2 x_{1}-x_{2}=1
\end{array}\right.
$$

We cannot even start the elimination procedure because the pivot coefficient is 0 . Away to get sid off this problem is to invert lines: since the matrix is invertible there is at least 1 man zero coefficient in the first column.
Row reordering or row pivoting is also required when the pivot element is very small by comparis on with the other terms. In deed if we solve the system

$$
[A \mid \varepsilon]=\left(\begin{array}{cc:c:c}
\varepsilon & -1 & 1 & 0 \\
-1 & 2 & -1 & 0 \\
2 & -1 & 0 & 1
\end{array}\right)
$$

by our procedure goussElimin, then, with

$$
\varepsilon=l \cdot E-15 \text { we get the solution }
$$

$$
x_{1} \approx 11102 \quad x_{2}=1 \quad x_{3}=1
$$

Che solution with $\varepsilon=0$ is $(1,1,1))$

A $n \times n$ matrix is said to be diagonally dominant if on all raw i we have

$$
\left|a_{i i}\right|>\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|x_{i j}\right|
$$

example The matrix

$$
A=\left(\begin{array}{ccc}
-2 & 4 & 1 \\
1 & -1 & 3 \\
4 & -2 & 1
\end{array}\right)
$$

is not diagonally dominant (there is a pb at each row, but a problem at one row would be sufficient to loose the property).
towered if we reorder the equations, we can end with a system whose matrix is

$$
A^{\prime}=\left(\begin{array}{ccc}
4 & -2 & 1 \\
-2 & 4 & 1 \\
1 & -1 & 3
\end{array}\right)
$$

which is diagonally dominant
"theorem". If the matirx A is digonally dominant then pivoting is not necessary
Therefore we need a procedure which transform A to a matrix A' as close as possible to diagonally dominant matrix.

A simple procedure to avoid problems could be the following adapted Gauss elimination procedure:

$$
c=(1, \ldots, n)=\left(c_{1},-, c_{n}\right)
$$

for each $k=1$ to n

$$
P=\operatorname{argmax}\left(\left|a_{k, k}\right|,\left|a_{k k+1}\right|, \ldots,\left|a_{k n}\right|\right)
$$

if $P \neq k$
exchange column R and P kep trace of the change by setting $C_{k}, C_{p} \longleftarrow C_{p}, C_{k}$ simultaneously
At the end, we have a system whose variables x_{1}, \ldots, x_{n} have been exchanged. In order to opt the solution, whe have to re-order the solution vector:
$e_{1}, l_{2}, \ldots C_{n}$ contain the indices of the components of the solution which are stored in $b_{1}, b_{2} \ldots . b_{n}$ respectively, i.en $b_{k}=x_{c_{k}}$ for all b_{0}
When not necessary, it is better not to pivot because pivoting hes drawbocks since it increases the number of computations and may even destroy the structure of the system (banded or symmetric). Most of the time, engineering problems end up well posed in that respect.

