First Test - Mathematics - BSc

Functions, graphs and integrals

- 1. In a cartesian coordinates system:
 - (a) draw the graph of the function $x \mapsto |x| 1$,
 - (b) deduce the graph of $x \mapsto ||x| 1|$.
- 2. About the parabola $x \mapsto x^2$:
 - (a) Draw the set

$$E = \{ (x, y) \in \mathbb{R}^2 / \ 0 \le x \le 1 \text{ and } 0 \le y \le x^2 \}.$$

- (b) Calculate the area of E.
- 3. Let f be defined by

$$f(x) = \frac{1}{x^2}$$
 for $x \neq 0$.

- (a) Draw the graph of f.
- (b) What is the image of $f, f(\mathbb{R})$?
- (c) What is the inverse image of (-1, 1] by $f^{-1}((-1, 1])$?
- (d) Give the inverse of f, f^{-1} , from $f(\mathbb{R})$ to $(0, +\infty)$.

Sequences and induction

4. Let $(u_n)_{n\geq 0}$ be the sequence defined by

$$\begin{cases} u_{n+1} = u_n^2 \text{ for all } n \ge 0\\ u_0 \in \mathbb{R}. \end{cases}$$

- (a) Give the explicit expression of u_n (in terms of n and u_0) for $n \ge 0$.
- (b) For which value(s) of u_0 does this sequence converges ? An in this case, what is the limit of the sequence. No proof is required.

Complex numbers

- 5. Help you with a sketch (FR : dessin) to solve this problem.
 - (a) What is the argument of the complex number z = 1 + i?
 - (b) Write the polar form (modulus and argument il you do not know what a polar form is) of z^n for $n \ge 0$ (general formula with n in it).
 - (c) For which $n \in \mathbb{N}$ do we have $z^n \in \mathbb{R}_+$?

Sets

6. Draw the following subsets of \mathbb{R}^2 :

$$E = \{ (x, y) \in \mathbb{R}^2 / \max(|x|, |y|) \le 1 \}.$$

7. What are these sets ?

(a)
$$E = \bigcup_{n \in \mathbb{N}} [0, n]$$

(b) $F = \bigcap_{n \in \mathbb{N}} [n, +\infty).$

Functions and relations

- 8. We want to define order relations on \mathbb{R}^2 . Are the following binary relations order relations? If so are they total or partial ? Is one of them similar to the alphabetical order?
 - (a) We say that $(x_1, x_2) \mathcal{R} (y_1, y_2)$ if $x_1 < y_1$ or if $x_1 = y_1$ and $x_2 \le y_2$.
 - (b) We say that $(x_1, x_2) \mathcal{R}' (y_1, y_2)$ if $x_1 \leq y_1$ and $x_2 \leq y_2$.