M1 Core course in computing for engineers

Exercise sheet 1 - Solving systems

- École Centrale de Lyon -

Exercise 1.

1. Create a 3×3 symmetric matrix A which has a 6 on its diagonal, a -4 on its second diagonal and a 1 at each corner.
2. Modify the gaussElimin function in order that it takes into account several constant vectors b .
3. Try your new function with matrix A and constant vectors

$$
\left(\begin{array}{c}
-14 \\
36 \\
6
\end{array}\right) \text { and }\left(\begin{array}{c}
22 \\
-18 \\
7
\end{array}\right)
$$

Exercise 2.

1. Write a function LUdecomp which takes a square matrix as argument and returns the decomposed matrix in Doolittle's procedure.
2. Write a function LUsolve which, from a LU Doolittle's decomposition matrix and a set of constant vectors stored in a matrix B, gives the set of solutions of $L U=B$.
3. Applied both functions in order to solve the system

$$
\left\{\begin{array}{l}
x_{1}+4 x_{2}+x_{3}=7 \\
x_{1}+6 x_{2}-x_{3}=13 \\
2 x_{1}-x_{2}+2 x_{3}=5
\end{array}\right.
$$

Exercise 3. Choleski's decomposition can be found in both numpy.linalg and scipy.linalg. Find out the function, how to use it. Write a function Choleskisolve which solves, by using Choleski's decomposition,the system associated to the following data that you may copy-paste:
$a=n p . \operatorname{array}([[1.44,-0.36,5.52,0.0],[-0.36,10.33,-7.78,0.0],[5.52,-7.78$,
28.40, 9.0], [0.0, 0.0, 9.0, 61.0]])
b $=$ np. $\operatorname{array}([0.04,-2.15,0.0,0.88])$

[^0]Exercise 4. Write an adaptation of the Doolittle's procedure to solve tridiagonal systems. Apply it to the system with coefficients

$$
A=\left(\begin{array}{ccccc}
6 & 2 & 0 & 0 & 0 \\
-1 & 7 & 2 & 0 & 0 \\
0 & -2 & 8 & 2 & 0 \\
0 & 0 & 3 & 7 & -2 \\
0 & 0 & 0 & 3 & 5
\end{array}\right)
$$

and constants

$$
b=\left(\begin{array}{c}
2 \\
-3 \\
4 \\
-3 \\
1
\end{array}\right)
$$

Exercise 5. Adapt the Doolittle procedure so that it can handle systems which should be pivoted, by using the swap of column described in the lecture. Apply it to

$$
A=\left(\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 2 & -1 \\
2 & -1 & 0
\end{array}\right) \quad b=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

[^0]: September 16, 2023, Biosurf - WWE

