ENS de Lyon, Master IF, HMM for time series classification and filtering¶
Outline, requirement, textbook
Lesson 1: Mixture Model (MM) and Bayesian Decision (BD) theory¶
- Slides Lesson 1 Chapter 1 & 2 (33.9 Mo)
- Slides Lesson 1 Chapter 3 & 4 (40.3 Mo)
- Lab session statement (date: ???)
- Grading: 1h sitting exam, no document, grading weight: 25%, date: ???
Lesson 2: Hidden Markov models (HMM)¶
- Slides Lesson 2 Chapter 1 (44.6 Mo)
- Slides Lesson 2 Chapter 2 (27.1 Mo)
- Python programs (5 Ko)
- Lab session statement (date: ???)
- Slides Lesson 2 Chapter 3 - part 1 (43 Mo)
- Slides Lesson 2 Chapter 3 - part 2 (28 Mo)
- Slides from Haoyu LI - Conference : TMC application to quantified-self (3.8 Mo)
- Grading: 2h sitting exam, no document, grading weight: 50%, date: ???
Please read carefully the following paper, a question will be on it!
S. Derrode and W. Pieczynski, Unsupervised signal and image segmentation using pairwise Markov chains, IEEE Trans. on Signal Processing, Vol. 52(9), pp. 2477-2489, Septembre 2004.