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BAYESIAN DECISION

1. Notations and reminders



D
Notations for discrete RV

Series of classes/labels are modeled by a stochastic process
with as many random variables as there are samples:

X=X ={X1,X0,...., Xn,..., Xy}

. Each random variable X n 1S assumed to be discrete-valued
X,eQ={1,...,K}

 Notations:



histogramme of data
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import matplotlib as mpl

import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLo
mpl.rcParams.update({'font.size': 16
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if name__ == "__main__":

nbsample = 100000
proba = [0.5, 0.4, 0.1]
sample = np.random.choice(a=[0, 1, 2], size=nbsample, p=proba)

ax = plt.figure().gca()

ax.xaxis.set_major_locator(MaxNLocator(integer=True))

plt.hist(sample, bins=np.arange(len(proba)+1)-0.5, facecolor="#1798E1",\
edgecolor="#223E4F", linewidth=0.5)

plt.title('histogramme of data')

plt.tight_layout()

plt.savefig("SimulSampleDiscrete.png")
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Notations for continuous real-valued RV

« Szries of observations of length N are modeled by a
stochastic process with as many random variables as
there are samples:

Y=Y, ={V1.Y5,....Y,,..., Yy}

« Each random variable Y, is assumed to be real-valued
and characterized by a pdf (mostly Gaussian).

 Notations:

p(Y =y) =p(Y € dy) = p(y)
pY =y)=pY €dy)=py) =p(Y1=y1,...., YN =yy)



A few reminders

* The expectation of a discrete RV is given by



The probability density of the normal distribution is

1 _ (y=w)?
f(ylp,o%) = N

where

« 4 is the mean or expectation of the distribution (and also its median and mode),
e o is the standard deviation, and

o 02 is the variance.

-----------------

- H=0, O%=0.2,=—
M= 0, g“= 1.0, w——
p=0, 0?=5.0,—
- H=-2, 0%z 0.5,

..........................




 The mean is the expected value of Y
p=EY]

* The variance is the expected squared deviation
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histogramme of data
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import numpy as np

import matplotlib as mpl

import matplotlib.pyplot as plt

from matplotlib.ticker import MaxNLocator
pl.rcParams.update({'font.size': 16})
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if __name__ == "__main__":
nbsample = 100000
mean, std = 1.5, 3.0
sample = np.random.normal(loc=mean, scale=std, size=nbsample)
print(‘estimated mean :', np.mean(sample), '\nestimated var :', np.var(sample))

ax = plt.figure().gca()

plt.hist(sample, bins=30, facecolor='#1798E1l', edgecolor="#223E4F", linewidth=0.5)
plt.title('histogramme of data')

plt.tight_layout()

plt.savefig("SimulSampleGaussian.png")
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2. Hand-made example
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Bayesian Decision Theory

Bayes formula
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L
Bayesian Decision Theory

Bayes decision (2 classes)

We try to predict the sex (X=1 or X=2) of a person from its height (YY)

p(X =1Y =y) x p(X =1)p(Y =y|X =1)

_— /

Posterior Prior Likelihood

N

p(X =2]Y =y) «p(X =2)p(Y = y|X =2)

under the following conditon P(X =2]Y =y)+ P(X =1]Y =y) =1



A priori probabilities

Map indicating the human sex ratio by country.!"]
. Countries with more females than males.

Countries with the same number of males and females (accounting
that the ratio has 3 significant figures, i.e., 1.00 males to 1.00 females).

. Countries with more males than females.
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Source: https://en.wikipedia.org/wiki/Human_sex_ratio
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Conditional probabilities

p(y) Joint Probability %x10—3 Conditional Probability
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Normalized histogram of men’ size in
France in the seventies and estimated
Gaussian density.
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2. Bayesian Decision Theory

Bayesian Decision Theory is a
fundamental statistical approach to
the problem of pattern classification.

Quantifies the trade-off between
various classifications using
probability and the costs that Fingerprint classification
accompany such classifications.

 Assumptions:
» Decision problem is posed in probabilistic terms.
* All relevant probability values are known.

 The classification is to estimate a realization of the hidden X
from the observable Y.



Nicolas Bayes, 1702-1761,
English statistician
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3. Bayesian strategy for classification




.
Bayesian strategy for classification

- A priori law (prior): p(X =k) =p(k) = m,on Q= {1,...,K}

- Conditional laws (likelihood) :
p(Y =y|X =k) = fr(y),on R

- Joint law: p(Y =y, X =k),on R x Q
K K

- Mixture: p(Y =y) = ZP(Y =y, X =k)= Zﬂk £ ()
k=1 k=1

- A posteriori law (posterior):




Assume y to be an observation and x its (true) class or label.

- Classification strategy

§:R—>§2 sy) =24 " true
y — & # x wrong
- Loss function
L:OxQ—RT o 0 ifi=j
0 if { =3 L(i,j) = :
L(i,j) _ 1 sinon
Aij >0 else L is called the “0-1 loss” function




Assume s and L given, how can we measure the

quality of 5 ?
Suppose that we have N independent y=Avy1,.-.,yn}
observations and we know the true labels 5 — {4, ... zx}

of the sample.
The total loss for the sample is

L(§(y1),$1) +.. T L(g(yN)va)

We try to minimize this loss.
According to the law of large numbers

L(§(y1),x1) +..F L<§<yN>7xN)

< =3 BIL(3(Y), X))




The quality of the strategy s is measured by (when N is large)
EL(5(Y), X)]
which is called the « mean loss ».

The Bayesian strategy, denoted by sg, is the one that
minimizes the mean loss

E[L(3p(Y), X)] = min E[L(3(Y), X)]

S

Be carefull : this is true for a large number of samples, and
we can’t say something for only one or two samples.



Exercise : show that the Bayesian strategy sz with the loss
function

o 0 if 1 =1
L(w)={ /

Aij >0 else
can be written y

$p(y) =k = arg grgg; i p(X =ilY =y)
The minimal mean loss is then given by
K
£ = BILGo(Y). X)) = [ oY =9) dy = [ 3wl i) L(sn(0),1) dy

0 ifi=;

1 else

Specific case: Q={1,2} L(i,j) = {

Express the Bayesian strategy sz and the minimal mean loss ¢
of the classifier.
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4. Gaussian case



Example
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Example continued

1. Calculate the Bayesian decision thresholds, i.e. when
the decision switches from class 1 to 2, and from class 2
to 1. For calculations, you can set

p1 = a, p2 = a + 10, 2
y T = §

01— 85,09 28/2

2. Assuming a L,_4 loss function, calculate the mean loss.

TIP : Error function (special function)

erf(x) = / e~* dz, with limg_ocerf(z) =1
0



1. T1 = 104.5,7'2 = 122.1
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2.  £=0.098

T ) + oo
£ = / (2) f2 (y) dy+/ (1) f1 (y) dy+/ m(2) f (y) dy.
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