« BAYESIAN LEARNING »

1. BAYESIAN DECISION

Stéphane Derrode, Dpt MI stephane.derrode@ec-lyon.fr

Contents for 1. Bayesian decision

- Notations and reminders
- 2. Hand-made example
- 3. Bayesian strategy for classification
- 4. Gaussian case

BAYESIAN DECISION

1. Notations and reminders

Notations for discrete RV

 Series of classes/labels are modeled by a stochastic process with as many random variables as there are samples:

$$X = X_1^N = \{X_1, X_2, \dots, X_n, \dots, X_N\}$$

• Each random variable X_n is assumed to be discrete-valued

$$X_n \in \Omega = \{1, \dots, K\}$$

Notations:

$$p(X = x) = p(x)$$
$$p(X = x) = p(x) = p(X_1 = x_1, \dots, X_N = x_N)$$

histogramme of data

```
import numpy
                        as np
                                     20000 -
import matplotlib as mpl
import matplotlib.pyplot as plt
                                     10000
from matplotlib.ticker import MaxNLo
mpl.rcParams.update({'font.size': 16
                                         0
if name == " main ":
    nbsample = 100000
    proba = [0.5, 0.4, 0.1]
    sample = np.random.choice(a=[0, 1, 2], size=nbsample, p=proba)
    ax = plt.figure().gca()
    ax.xaxis.set_major_locator(MaxNLocator(integer=True))
    plt.hist(sample, bins=np.arange(len(proba)+1)-0.5, facecolor='#1798E1',\
        edgecolor="#223E4F", linewidth=0.5)
    plt.title('histogramme of data')
    plt.tight_layout()
    plt.savefig("SimulSampleDiscrete.png")
```

50000

40000

30000 -

Notations for continuous real-valued RV

 Szries of observations of length N are modeled by a stochastic process with as many random variables as there are samples:

$$Y = Y_1^N = \{Y_1, Y_2, \dots, Y_n, \dots, Y_N\}$$

- Each random variable Y_n is assumed to be real-valued and characterized by a pdf (mostly Gaussian).
- Notations:

$$p(Y = y) = p(Y \in dy) = p(y)$$
$$p(\mathbf{Y} = \mathbf{y}) = p(\mathbf{Y} \in d\mathbf{y}) = p(\mathbf{y}) = p(\mathbf{Y}_1 = \mathbf{y}_1, \dots, \mathbf{Y}_N = \mathbf{y}_N)$$

A few reminders

The expectation of a discrete RV is given by

$$E[X] = \sum_{k \in \Omega} k \ p(X = k)$$

$$E[g(X)] = \sum_{k \in \Omega} g(k) \ p(X = k)$$

The expectation of a continuous RV by

$$E[Y] = \int_{-\infty}^{\infty} y \ p(Y = y) \ dy$$
$$E[g(Y)] = \int_{-\infty}^{\infty} g(y) \ p(Y = y) \ dy$$

The probability density of the normal distribution is

$$f(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

where

- μ is the mean or expectation of the distribution (and also its median and mode),
- \bullet σ is the standard deviation, and
- σ^2 is the variance.

We will write
$$Y \leadsto \mathcal{N}\left(\mu, \sigma^2\right)$$

The mean is the expected value of Y

$$\mu = E[Y]$$

The variance is the expected squared deviation

$$\sigma^2 = E\left[(Y - \mu)^2 \right]$$

We will write $Y \leadsto \mathcal{N}\left(\mu, \sigma^2\right)$

histogramme of data

```
4000
                                            2000
import numpy
                       as np
import matplotlib
                        as mpl
                                               0
import matplotlib.pyplot as plt
                                                  -10
                                                                           10
                                                                                 15
from matplotlib.ticker import MaxNLocator
mpl.rcParams.update({'font.size': 16})
if _ name__ == "_ main_ ":
   nbsample = 100000
   mean, std = 1.5, 3.0
   sample = np.random.normal(loc=mean, scale=std, size=nbsample)
    print('estimated mean :', np.mean(sample), '\nestimated var :', np.var(sample))
   ax = plt.figure().gca()
    plt.hist(sample, bins=30, facecolor='#1798E1', edgecolor="#223E4F", linewidth=0.5)
   plt.title('histogramme of data')
    plt.tight_layout()
    plt.savefig("SimulSampleGaussian.png")
```

12000

10000

8000

6000

BAYESIAN DECISION

2. Hand-made example

Bayesian Decision Theory

Bayes formula

Bayesian Decision Theory

Bayes decision (2 classes)

We try to predict the sex (X=1 or X=2) of a person from its height (Y)

$$p(X=1|Y=y) \propto p(X=1)p(Y=y|X=1)$$
 Posterior Prior Likelihood
$$p(X=2|Y=y) \propto p(X=2)p(Y=y|X=2)$$

under the following condition P(X=2|Y=y) + P(X=1|Y=y) = 1

A priori probabilities

Conditional probabilities

Normalized histogram of men' size in France in the seventies and estimated Gaussian density.

$$p(Y = y|X = 1)$$

2. Bayesian Decision Theory

- Bayesian Decision Theory is a fundamental statistical approach to the problem of pattern classification.
- Quantifies the trade-off between various classifications using probability and the costs that accompany such classifications.

Fingerprint classification

Assumptions:

- Decision problem is posed in probabilistic terms.
- All relevant probability values are known.
- The classification is to estimate a realization of the hidden X from the observable Y.

Nicolas Bayes, 1702-1761, English statistician

BAYESIAN DECISION

3. Bayesian strategy for classification

Bayesian strategy for classification

A priori law (prior):

$$p(X = k) = p(k) = \pi_k, \text{ on } \Omega = \{1, \dots, K\}$$

Conditional laws (likelihood):

$$p(Y = y | X = k) = f_k(y), \text{ on } \mathbb{R}$$

Joint law:

$$p(Y = y, X = k), \text{ on } \mathbb{R} \times \Omega$$

Mixture:

$$p(Y = y) = \sum_{k=1}^{K} p(Y = y, X = k) = \sum_{k=1}^{K} \pi_k f_k(y)$$

A posteriori law (posterior):

$$p(X = k|Y = y) = \frac{p(Y = y, X = k)}{p(y)} = \frac{\pi_k f_k(y)}{\sum_{l=1}^K \pi_l f_l(y)}$$

Assume y to be an observation and x its (true) class or label.

Classification strategy

$$\hat{s}: \mathbb{R} \longrightarrow \Omega$$
$$y \longrightarrow \hat{x}$$

$$\hat{s}(y) = \hat{x} \begin{cases} = x & \text{true} \\ \neq x & \text{wrong} \end{cases}$$

Loss function

$$L: \Omega \times \Omega \longrightarrow \mathbb{R}^+$$

$$L(i,j) = \begin{cases} 0 & \text{if } i = j \\ \lambda_{i,j} > 0 & \text{else} \end{cases}$$
 $L(i,j) = \begin{cases} 0 & \text{if } i = j \\ 1 & \text{sinon} \end{cases}$
 $L(i,j) = \begin{cases} 0 & \text{if } i = j \\ 1 & \text{sinon} \end{cases}$

$$L(i,j) = \begin{cases} 0 & \text{if } i = j \\ 1 & \text{sinon} \end{cases}$$

L is called the "0-1 loss" function

Assume \hat{s} and L given, how can we measure the quality of \hat{s} ?

Suppose that we have *N* independent observations and we know the true labels of the sample.

$$\mathbf{y} = \{y_1, \dots, y_N\}$$

 $\mathbf{x} = \{x_1, \dots, x_N\}$

The total loss for the sample is

$$L(\hat{s}(y_1), x_1) + \ldots + L(\hat{s}(y_N), x_N)$$

We try to minimize this loss.

According to the law of large numbers

$$\frac{L(\hat{s}(y_1), x_1) + \ldots + L(\hat{s}(y_N), x_N)}{N} \xrightarrow[N \to \infty]{} E[L(\hat{s}(Y), X)]$$

The quality of the strategy \hat{s} is measured by (when N is large)

$$E[L(\hat{s}(Y), X)]$$

which is called the « mean loss ».

The Bayesian strategy, denoted by \hat{s}_B , is the one that minimizes the mean loss

$$E[L(\hat{s}_B(Y), X)] = \min_{\hat{s}} E[L(\hat{s}(Y), X)]$$

Be carefull: this is true for a large number of samples, and we can't say something for only one or two samples.

Exercise: show that the Bayesian strategy \hat{s}_B with the loss function

$$L(i,j) = \begin{cases} 0 & \text{if } i = j \\ \lambda_{i,j} > 0 & \text{else} \end{cases}$$

can be written

$$\hat{s}_B(y) = k = \arg\min_{j \in \Omega} \sum_{i=1}^K \lambda_{j,i} \ p(X = i | Y = y)$$

The minimal mean loss is then given by

$$\xi = E[L(\hat{s}_B(Y), X)] = \int_{\mathbb{R}} \phi(y) p(Y = y) \ dy = \int_{\mathbb{R}} \sum_{i=1}^{K} \pi(i) f_i(y) L(\hat{s}_B(y), i) \ dy$$

Specific case:
$$\Omega = \{1, 2\}$$
 $L(i, j) = \begin{cases} 0 & \text{if } i = j \\ 1 & \text{else} \end{cases}$

Express the Bayesian strategy \hat{s}_B and the minimal mean loss ξ of the classifier.

BAYESIAN DECISION

4. Gaussian case

$$\mathcal{N}(\mu_1 = 100, \sigma_1 = 6)$$

 $\mathcal{N}(\mu_2 = 110, \sigma_2 = 3)$

$$\pi_1 = \frac{1}{3}, \pi_2 = \frac{2}{3}$$

Example continued

1. Calculate the Bayesian decision thresholds, *i.e.* when the decision switches from class 1 to 2, and from class 2 to 1. For calculations, you can set

$$\mu_1 = a, \mu_2 = a + 10,$$
 $\sigma_1 = s, \sigma_2 = s/2$
 $\pi_1 = \frac{1}{3}, \pi_2 = \frac{2}{3}$

2. Assuming a L_{0-1} loss function, calculate the mean loss.

TIP: Error function (special function)

$$erf(x) = \int_0^x e^{-z^2} dz$$
, with $\lim_{x \to \infty} erf(x) = 1$

1. $\tau_1 = 104.5, \tau_2 = 122.1$

$$\pi_1 = \frac{1}{3}, \pi_2 = \frac{2}{3}$$

$$\mathcal{N}(\mu_1 = 100, \sigma_1 = 6)$$

$$\mathcal{N}(\mu_2 = 110, \sigma_2 = 3)$$

2.
$$\xi = 0.098$$

$$\pi_1 = \frac{1}{3}, \pi_2 = \frac{2}{3}$$

$$\mathcal{N}(\mu_1 = 100, \sigma_1 = 6)$$

$$\mathcal{N}(\mu_2 = 110, \sigma_2 = 3)$$

$$\xi = \underbrace{\int_{-\infty}^{\tau_1} \pi(2) \, f_2(y) \, dy}_{A} + \underbrace{\int_{\tau_1}^{\tau_2} \pi(1) \, f_1(y) \, dy}_{B} + \underbrace{\int_{\tau_2}^{+\infty} \pi(2) \, f_2(y) \, dy}_{C}.$$

$$A = \frac{1}{3} \left(1 + \text{erf} \left(\frac{\sqrt{2}}{\sigma} \left(\tau_1 - a \right) \right) \right) = 0.023.$$

$$B = \frac{1}{6} \left(\text{erf} \left(\frac{\tau_2}{\sigma \sqrt{2}} \right) - \text{erf} \left(\frac{\tau_1}{\sigma \sqrt{2}} \right) \right) = 0.075.$$

$$C = \frac{1}{3} \left(1 - \text{erf} \left(\frac{\sqrt{2}}{\sigma} \left(\tau_2 - a \right) \right) \right) = 1.71 \, 10^{-5}.$$