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BAYESIAN DECISION

1. Notations and reminders



Notations for continuous real-valued RV

« Series of observations of length N are modeled by a

stochastic process with as many random variables as
there are samples:

Y=Y, ={V,Ys,...,Y,,....Yn}

 Each random variable Y» is assumed to be real-valued
and characterized by a pdf (mostly Gaussian).

* Notations:
p(Y =y) =p(Y €dy) = p(y)
pY =y)=p(Y €dy)=p(y) =p(Y1=91,..., YN =Yn)



L
Notations for discrete RV

Series of classes/labels are modeled by a stochastic process
with as many random variables as there are samples:

X =X={X1,Xo,....,X,,..., Xn}

. Each random variable X n 1S assumed to be discrete-valued
X,eQ=1{1,...,K}

 Notations:
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if __name__ == "__main__":

nbsample = 100000
proba = [08.5, 0.4, 0.1]
sample = np.random.choice(a=[®, 1, 2], size=nbsample, p=proba)

ax = plt.figure().gca()

ax.xaxis.set_major_locator(MaxNLocator{integer=True})

plt.hist(sample, bins=np.arange(len(proba)+1)-8.5, facecolor='#1798El1"',\
edgecolor="#223E4F", linewidth=0.5)

plt.title('data histogram')

plt.tight_layout()

plt.savefig("./fig/SimulSampleDiscrete.png")

plt.close()



A few reminders

* The expectation of a discrete RV is given by

* The expectation of a continuous RV by
ElY] = / yp(Y =y) dy

Elg(Y)] = /_OO g(y) p(Y =y) dy



The probability density of the normal distribution is

1 (‘y—u)2
2 = — o o2
[l 07) = == e =

where

« 11 is the mean or expectation of the distribution (and also its median and mode),

« 7 is the standard deviation, and

. {1"2 is the variance.
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 The mean is the expected value of Y
p=E[Y]

* The variance is the expected squared deviation
o’ =E[(Y — u)?]

We willwiite Y ~~> N (1, 07)
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if _name__ == "_main__":
nbsample = 100000
mean, std = 1.5, 3.0
sample = np.random.normal(loc=mean, scale=std, size=nbsample)
print('estimated mean :', np.mean(sample), '\nestimated var :', np.var(sample))

ax = plt.figure().gcal)

plt.hist(sample, bins=30, facecolor='#1798E1', edgecolor="#223E4F", linewidth=0.5)
plt.title('data histngraﬂ'l

plt.tight_layout() -

plt.savefig("./fig/SimulSampleGaussian.png")

plt.close()
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2. Bayes' decision theory with examples



L
Bayesian Decision Theory

Bayes’ Theorem with Two Random Variables

Y = o = PY =YX = 1) plX = x)
pX =z|Y =y) p—

Where:

o p[X = z|¥ =) is the posterior probability of X = = given that ¥ = 3.

e plY = y|X = ) is the likelihood, i.e., the probability of observing ¥ = y given X = z.
e p[X = r)is the prior probability of X = =

e p[¥Y =) is the marginal probability of observing ¥ = y, which is computed by summing over all possible
values of X:

p(Y =y) =3 p(Y =y|X =x) - p(X = 1)

Explanation

e Prior Probability p(X = x): The initial belief about the probability of X = z, before any evidence ¥ = y
is observed.

e Likelihood p(¥ = y|X = x): The probability of observing ¥ = y, given that X = =.

e Posterior Probability p(X = z|Y = y): The updated probability of X = z alter observing ¥ = y.



L
Bayesian Decision Theory

Example (with Y discrete):
Let X represent the weather condition (Rainy or Sunny), and let ¥ represent whether a person carries an
umbrella {Umbrella or No Umbrella).

1. Prior:
p(X = Rainy) = 0.3, p(X = Sunny) = 0.7

2. Likelihood:
p[‘k" = Umbrﬁlla|.x = R,;E.i.n:.r] = 0.9, pl[}"' = Umhrﬂ]lalx = Eunn:,'} =1.1

3. Marginal Probability of ¥ = Umbrella:
p(¥ = Umbrella) = p{Y = Umbrella| X = Rainy) p{X = Rainy)4p(Y = Umbrella| X = Sunny)-p(X = Sunny)
Substituting the values:

p(Y = Umbrella) = (0.9 -0.3) + (0.1 - 0.7) = 0.27 + 0.07 = 0.34

4. Posterior: To find the updated probability of rain given that the person is carrying an umbrella:

I B ~ plY = Umbrella| X = Rainy] - p( X = Rainy)
p{X = Rainy|Y = Umbrella) = (Y = Unbrella)

Substituting the values:

0.9-0.3)  0.27

- Rainvly — _
pi X = Rainy|¥ = Umbrella) = 031 -0

== (.79

Thus, after observing the umbrella, the updated probability that the weather is rainy is approximately T9%.

Conclusion This process demonstrates how Bayes® Theorem updates our belief about a hypothesis (such as the
weather) based on new evidence (such as the presence of an umbrella), using conditional probabilities.
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Bayesian Decision Theory

plY =y|X =z) p(X = 1)

p{:_x=.',]3|Y =y}= F{Y=y}

Bayes decision (2 classes, cas particulier)

We try to predict the sex (X=1 or X=2) of a person from its height (Y)

p(X =1Y = y) x p(X =1)p(Y =y|X =1)

- /

Posterior Prior Likelihood

N\ N

p(X =2[Y =y) x p(X =2)p(Y =y|X =2)

under the following conditon P(X =2|Y =y)+ P(X =1Y =y) =1



A priori probabllities

Map indicating the human sex ratio by country."]
. Countries with more females than males.

. Countries with the same number of males and females (accounting
that the ratio has 3 significant figures, i.e., 1.00 males to 1.00 females).

. Countries with more males than females.
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Source: https://en.wikipedia.org/wiki/Human_sex_ratio
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Conditional probabilities

Normalized histogram of men'’ size in France in p(Y = y|X = 1)
the seventies and estimated Gaussian density.
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Nicolas Bayes, 1702-1761,
English statistician
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3. Proof of Bayes' decision theory




2. Bayesian Decision Theory

- Bayesian Decision Theory is a
fundamental statistical approach to
the problem of pattern classification.

- Quantifies the trade-off between
various classifications using

shutterstr.ck’

probability and the costs that Fingerprint classification
accompany such classifications.

« Assumptions:
» Decision problem is posed in probabilistic terms.
« All relevant probability values are known.

 The classification Is to estimate a realization of the hidden X
from the observable Y.



Bayesian strategy for classification

- A priori law (prior):  p(X =k) =p(k) =m,on Q@ ={1,..., K}

- Conditional laws (likelihood)
p(Y =yl X =k) = fi(y),on R

- Joint law: p(Y =y, X =k),on R x Q

- Mixture: p(Y =y) = p(Y =y, X =k =) m fu(y)

- A posteriori laws (posterior):

p(Y =y, X =k) Tk fr(y)
p(y

P =HY =) = - Sutm fiy)
=17




Assumey to be an observation and x its (true) class or label.

- Classification strategy

s:R— Q) g(y)_@{zx true
y —> T

- Loss function

L:OxQ—RT o 0 ifi=j
0 if { = L(i,j) = :
L(i,j) _ 1 sinon
Aij >0 else L is called the “0-1 loss” function




Assume § and L given, how can we measure the quality of § ?

Suppose that we have N independent
observations and we know the true labels
of the sample.

The total loss for the sample is

Y =11 UNJ
33:{2171,...,513]\[}

L(§<y1)7x1) + T L(g(yN)axN)

We try to minimize this loss.
According to the law of large numbers

L(§(y1),$1) Tt L(‘g(yN)va)
N

=¥ EIL(3(Y), X))



The quality of the strategy s is measured by (when N is large)
E[L(5(Y), X)]
which is called the « mean loss ».

The Bayesian strategy, denoted by sz, is the one that
minimizes the mean loss

E[L(35(Y), X)] = min E[L(3(Y), X)]

S

Be carefull : this is true for a large number of samples, and
we can’t say something for only a few samples.



Exercise : show that the Bayesian strategy sz with the loss

function
o 0 if i =3j
L(i,j) = {)\
ij >0 else
can be written N

sp(y) =k = argggig; A p(X =1i|Y =y)
The minimal mean loss is then given by
K
€= E[L / (Y =) dy = / S w1 (@) fi () LEn (), 1) dy

Ri=1
0 ife=7
1 else

Specific case: Q={1,2} L(i,j) = {

Express the Bayesian strategy 5z and the minimal mean loss ¢
of the classifier.
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4. Gaussian case



Example
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Example continued

1. Calculate the Bayesian decision thresholds, i.e. when
the decision switches from class 1 to 2, and from class 2

to 1. For calculations, you can set

p1 = a, iz = a + 10,

01 = 5,09 28/2

2. Assuming a L, loss function, calculate the mean loss.

TIP : Error function (special function)
erf(x) = / e_Zde, with lim, ,erf(zx) =1
0



1. T1 = 104.5,7'2 = 122.1

0.08 1

0.06 -

0.04 +

0.02 1

0.00 1
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2. £ =0.098

T T9 + oo
€ = / (2) f2 (v) dy+/ (1) f1 () dy+/ m(2) f (v) dy.
— oo T1 )

A" "
A B C

1 V2
B - = (erf( = )—erf( 2L )):u.n?s.
6 ﬂ"\/E cr\/i
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