
BSC « BIG-DATA COMPUTING TECHNOLOGIES »,

CHAPTER 2

Stéphane Derrode, Centrale Lyon
sephane.derrode@ec-lyon.fr

BSC – Big Data

http://perso.ec-lyon.fr/derrode.stephane/Teaching/BSC/readme/

Chapter 2 outline

• Lecturers
Lamia Derrode & Stéphane Derrode (Centrale Lyon).

• Time allocation 28h,
including 1h for mid-term exam and 2h for project restitution.

• Organisation
• Part 1. Linked Open Data (LOD) technology (6h) and project (7h).
• Part 2. Hadoop framework, including HDFS and MrJob library (8h).
• Part 3. Spark framework, using pyspsark python library (4h).

• Assessment
• Lab report (Part 2): 20% of the final grade.
• LOD project (Part 1): 40% of the final grade: 20% for the report and 20%

for the project defense.
• Exam: Mid-term exam (Chapter 1 (MongoDb), and Chapter 2 (Part 1. and

Part 2.)) will account for 20% of the final grade. (February 18th, 2025)

• Detailled content
http://perso.ec-lyon.fr/derrode.stephane/Teaching/BSC/chapter2/

http://perso.ec-lyon.fr/derrode.stephane/Teaching/BSC/chapter2/

Hadoop motivations (1/2)
Examples:

• Google, 2008: 20 PB / day, 180 GB / job

• Web index: 50 billion pages, 15 PB

• Large Hadron Collider (LHC)@CERN: 15 PB / year

Capacity of a (large) server:

• RAM: 256 GB

• HDD: 24 TB

• HDD transfer speed: 100 MB/s

Solution: Parallelism

• Hadoop cluster @ Yahoo: 4000

servers, reading the web in

parallel takes about 1h20

Google data center

• The parallelism problem
• 1 server might crash every few months.

• 1000 servers → average time before a crash is less than 1 day

• A "big" job can take several days
• Hardware failure: this is normal!

• Parallelism: impossible to resume partially in case of failure
(checkpointing and replication are difficult to implement correctly).

• Big Data Platforms: everyone should be able to write
programs
• Encapsulates parallelism

• Encapsulates fault tolerance

• Written once by experts, beneficial for all (non-experts, that is to say
"us")

Hadoop motivations (2/2)

CHAPTER 2

PART 2.1 (4H) – HADOOP FRAMEWORK

1. Map & reduce functions in Python

2. Hadoop

1. Hadoop map-reduce

2. Hadoop & HDFS

3. Introduction to lab

BSC – Big data – chapter 2

http://perso.ec-lyon.fr/derrode.stephane/Teaching/BSC/chapter2/

1. Map & reduce functions in Python
Two very simple functions inspired by functional programming.

M
A

P
 f
u

n
c
ti
o

n

1. Map & reduce functions in Python
Two very simple functions inspired by functional programming.

R
E

D
U

C
E

 f
u

n
c
ti
o

n

1. Map & reduce functions in Python
Two very simple functions inspired by functional programming.

1. Map & reduce functions in Python

Question: How to convert a list of string such as ['1', '2', '3', '4'] into a list of int ?

M
A

P
 e

x
a
m

p
le

s

1. Map & reduce functions in Python
R

E
D

U
C

E
 e

x
a
m

p
le

s

1. Map & reduce functions in Python
B

O
T

H
 f
u

n
c
ti
o

n
s

2. Hadoop

Hadoop in 5 minutes / simplilearn

https://www.youtube.com/watch?v=aReuLtY0YMI

2.1 Hadoop map-reduce

Data in Hadoop is always considered as key-value pairs.

A key can be of any type.

• In pair (‘Hello’, 17)

• ‘Hello’ is the key (text)

• 17 is the value (int)

• In pair (17, ('Hello', 3))

• 17 is the key (int)

• ('Hello', 3) is the value (tuple)

When working with a book, each paragraph to be processed is numbered. In this
case, the key is the paragraph number, and the value is the paragraph itself:

"The Road Not Taken" from Robert Frost

(1, "Two roads diverged in a yellow wood")
(2, "And sorry I could not travel both")
(3, "And be one traveler, long I stood")
(4, "And looked down one as far as I could")
(5, "To where it bent in the undergrowth;")

2.1 Hadoop map-reduce

How map & reduce functions apply for (key-value) pairs?

• Map: Function f is applied to each pair independently.

f(key, value) → list(key, f(value))

[('Home', 1), ('Garden', 3), ('Park', 1)]

→ [('Home', f(1)), ('Garden', f(3)), ('Park', f(1))]

• Reduce: Function f is applied to all values with the same key.

f(key, list(value)) → (key, f(list(value)))

[('Home', 1), ('Home', 3), ('Home', 1)] == ('Home', [1,3,1])

→ ('Home', f([1,3,1]))

The basic hadoop map-reduce process works like this

input Mapping
Shuffling &

sorting
Reducing output

2.1 Ex: counting the frequency of a word

Sentences of a text or a poem Key-value list of words

Parallel processing

(e.g. the cores of a processor)

2.1 Ex: counting the frequency of a word

Shuffling & sorting

2.1 Ex: counting the frequency of a word

2.1 Word count in Python (map)

#!/usr/bin/env python3

#file wc_mapper.py

import sys

input comes from STDIN (standard input)

for line in sys.stdin:

remove leading and trailing whitespace

line=line.strip()

split the line into words

words=line.split()

increase counters

for word in words:

write the results to STDOUT (standard output);

what we output here will be the input for the

Reduce step, i.e. the input for reducer.py

tab-delimited; the trivial word count is 1

print(word,'\t1')

2.1 Word count in Python (reduce)
#!/usr/bin/env python3

#file wc_reducer.py

import sys

current_word=None

current_count=0

word=None

for line in sys.stdin:

line=line.strip()

word, count=line.split('\t’, 1)

try:

count=int(count)

except ValueError:

continue

if current_word==word:

current_count+=count

else:

if current_word:

print(current_word, '\t', current_count)

current_count=count

current_word=word

if current_word==word:

print(current_word, '\t', current_count)

Step #1 of the Lab to be

completed by students

The technical foundation of Hadoop consists of:

• All the necessary support architecture for orchestrating

MapReduce, which includes:

• Job scheduling,

• File location,

• Execution distribution.

• A HDFS (Hadoop Distributed File System) that is:

• Distributed: data is spread across the machines in the cluster.

• Replicated: in case of failure, no data is lost.

• Optimized for the co-location of data and processing.

Section heavily based on openclassroom

2.2 Hadoop & HDFS

https://openclassrooms.com/fr/courses/4297166-realisez-des-calculs-distribues-sur-des-donnees-massives/4308656-familiarisez-vous-avec-hadoop

2.2 Hadoop & HDFS

Distributed processing Distributed storage

m
a
s
te

r
s
la

v
e
s

• Objectives of the Distributed File System:
• Fault-tolerant (redundancy)

• High-performance (parallel access)

• Large Files
• Sequential read and write

• Data Processing "at the closest"
• Data is stored on the machines that process it

• For better resource utilization of machines

• To avoid network transfers (latency)

• Data is organized in files and directories
• Mimics standard file management systems

• Files are split into blocks (64MB) and distributed across servers with
replication (3 times by default)

• Whenever possible, process data on the machines where it is stored.

2.2 HDFS

2.2 « master / slave » architecture

• A master: the « NameNode »

• Manages file names, access rights, etc.

• Stores metadata associated with files.

• Keeps everything in RAM (maximum: 60M objects and 16GB).

• Oversees operations on files and blocks.

• Monitors the health of the system (failures, crashes), and load balances.

• Thousands of slaves: the « DataNodes »

• Stores data (blocks).

• Data never passes through the NameNode.

• Performs read and write operations.

• Performs copies (replications) ordered by the NameNode.

• Regularly checks the health of the NameNode.

• Reports to the NameNode if any blocks are corrupted (checksum).

2.2 « master / slave » architecture

Orchestration Copy in case of failure

Myfile.txt

1. The client tells the NameNode that it wants to write a block.

2. The NameNode indicates which DataNode to contact.

3. The client sends the block to the DataNode.

4. The DataNodes replicate the blocks among themselves.

5. The cycle repeats for the next block.

2.2 Copy a file to HDFS

1. I want to write

"MyFile.txt" on HDFS
2. Ok, send it to

DN1 and DN3

1. The client tells the NameNode that it wants to read a file.
2. The NameNode provides the file's size and the DataNodes

containing the blocks.
3. The client retrieves each block from one of the DataNodes.
4. If a DataNode is unavailable, the client contacts another one.

2.2 Read a file on HDFS

1. I want to read

"MyFile.txt" on HDFS

2.2 Submitting a job in Hadoop

JVM : Java virtual Machine.

Remember that Hadoop is natively developed in Java!

2.2 Map-reduce in Hadoop

Shuffling and sorting

3. Introduction to lab : Docker with hadoop container

Datanode 1

Namenode

Your Hard Drive / NTFS (Windows system)

Docker

Your personnal

computer (Windows)
HDFSLinux Hadoop

Datanode 2

Linux : Only works on command line: there

si no user graphical interface to
manipulate files.

Terminals : One Terminal should focus on

your own system, another one on the
Linux system inside the container.

Both terminals have to communicate.

You user files

CHAPTER 2

PART 2.2 (4H) – MRJOB LIBRARY

1. Iterators & Generators

2. MrJob library

BSC – Big data – chapter 2

http://perso.ec-lyon.fr/derrode.stephane/Teaching/BSC/chapter2/

1. Iterators & Generators in Python

An iterator is a type of cursor whose task is to move through a sequence

of objects.

The iterator allows you to traverse each object in a sequence without

worrying about the underlying structure.

A list and a list comprehension are iterables, not iterators

a list is an iterable

liste=[1,2,3,4,5,6,7,8,9,10]

for x in liste:

print(x)

A comprenhension list is also an iterable

a_list=[1,9,8,4]

A=[elem*2 for elem in a_list]

print(A)

1.1 Iterators
In Python, an iterator is an object that implements two essential methods:

1. __iter__(): This method returns the iterator object itself. It's used to initialize

the iterator and is required to make the object iterable.

2. __next__(): This method returns the next item in the sequence. When there

are no more items to return, it raises the StopIteration exception to signal
the end of the iteration.

1.1 Iterators

1.2 Generators
Generator: A simpler and memory-efficient way to create an iterator using
the yield keyword, which generates values lazily.
The keyword yield is somewhat similar to the return statement in functions, except
that it doesn't signify the end of the function's execution. Instead, it pauses the
function, and on the next iteration, the function will resume and look for the
next yield.

1.2 Generators
Generator: A simpler and memory-efficient way to create an iterator using
the yield keyword, which generates values lazily.
The keyword yield is somewhat similar to the return statement in functions, except
that it doesn't signify the end of the function's execution. Instead, it pauses the
function, and on the next iteration, the function will resume and look for the
next yield.

1.3 Genertaors in map-reduce scripts

2. MrJob library

The mrjob library is a Python package that simplifies writing and

running MapReduce jobs on Hadoop or Amazon EMR (Elastic MapReduce).

It provides an easy-to-use interface for creating and executing MapReduce jobs

without having to deal with the low-level details of Hadoop's infrastructure.

Key Features of mrjob:

1. Simplicity: mrjob allows you to write MapReduce jobs in pure Python,

eliminating the need to write complex Java code for Hadoop.

2. Multiple Backends: You can run jobs locally (on your machine), on a

Hadoop cluster, or on Amazon EMR, making it highly flexible.
3. Streaming Support: It supports both Hadoop Streaming (for running

MapReduce jobs on a Hadoop cluster) and local execution, where you can

test your code without needing a cluster.

4. Job Configuration: It handles job configuration, input, output, and the

connection to a cluster, making it simpler to focus on the logic of your
MapReduce tasks.

5. Pythonic Interface: Instead of requiring the user to work with Java's

MapReduce API, mrjob lets you write Mappers and Reducers as simple

Python classes and functions.

2. MrJob library

2. MrJob library
With extra mapper_final method

2. MrJob library

2. MrJob library

	Slide 1: BSC « Big-Data computing Technologies », ChAPter 2
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Chapter 2 Part 2.1 (4h) – HADOOP FRAMEWORK
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: 2.1 Ex: counting the frequency of a word
	Slide 16
	Slide 17
	Slide 18: 2.1 Word count in Python (map)
	Slide 19: 2.1 Word count in Python (reduce)
	Slide 20: 2.2 Hadoop & HDFS
	Slide 21: 2.2 Hadoop & HDFS
	Slide 22
	Slide 23: 2.2 « master / slave » architecture
	Slide 24: 2.2 « master / slave » architecture
	Slide 25
	Slide 26
	Slide 27: 2.2 Submitting a job in Hadoop
	Slide 28: 2.2 Map-reduce in Hadoop
	Slide 29: 3. Introduction to lab : Docker with hadoop container
	Slide 30: Chapter 2 Part 2.2 (4h) – MrJob library
	Slide 31: 1. Iterators & Generators in Python
	Slide 32: 1.1 Iterators
	Slide 33: 1.1 Iterators
	Slide 34: 1.2 Generators
	Slide 35: 1.2 Generators
	Slide 36: 1.3 Genertaors in map-reduce scripts
	Slide 37: 2. MrJob library
	Slide 38: 2. MrJob library
	Slide 39: 2. MrJob library
	Slide 40: 2. MrJob library
	Slide 41: 2. MrJob library

