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Abstract: Filtering and smoothing in switching state-space models are important in numerous 

applications. The classic family of conditionally Gaussian linear state space models (CGLSSMs) is a 

natural extension of the Gaussian linear system by introducing its dependence on switches. In spite of 

their simplicity, recursive filtering and smoothing are no longer feasible in CGLSSMs and 

approximate methods must be used. Conditionally Markov switching hidden linear models 

(CMSHLMs) are alternative models which allow recursive optimal exact filtering and smoothing. We 

introduce an original family of CMSHLMs defined with copulas and we address the problem of their 

identification. The proposed identification method chooses a model in a family of admissible 

parametric models and estimates the parameters. It is applied to a learning sample containing 

observations and states, while the switches are unknown. The interest of the proposed “semi-

unsupervised” filtering and smoothing is validated via experiments on simulated data. 

Key words: Markov switching models, Non-Gaussian non-linear system, Copulas, Model 

identification, CMSHLM, GICE-GLS, Semi-supervised filtering, Semi-supervised smoothing.  

 

1. Introduction 
   

   We introduce a general switching model based on copulas and we propose an algorithm for its semi-

supervised identification. The identification is performed from a learning sample set including states 

and observations, the switches being unknown. It consists of solving two problems: 

 

(i) find the appropriate model in a set of possible parametric models; 

(ii) estimate the parameters. 

 

Then the recursive exact filtering and smoothing can work based on the identified models, and we 

show the interest of the whole procedure via simulation studies. 

A switching model contains three random sequences: )...,,( 11 N
N XXX  , )...,,( 11 N

N RRR  , and 

)...,,( 11 N
N YYY  . For 1n , …, N , nX  takes its values in sR , nR  takes its values in  K...,,1 , and 

nY  takes its values in qR . For 1n , …, N , let ),,( nnnn YRXT   and let us consider )...,,( 11 N
N TTT  . 

For some occasions, NT1  will be also denoted as ),,( 1111
NNNN YRXT  . The final restoration problem 

dealt with is to estimate both the hidden ),(),( 1111
NNNN rxRX   from observed 

NN yY 11  . 

To be concise, we will note different probability distributions with the same letter p . So the 

distribution of NX 1  will be denoted with )( 1
Nxp , the distribution of nR  conditional on nn yY   will be 

denoted with )( nn yrp , and so on. For discrete variable, like 1R , )( 1rp
 
is a probability, for continuous 

one, like nY , )( nyp
 
is a probability density function (pdf), and for mixed case, like ),,( 1111 YRXT  ,  

we have ),()(),,( 1111111 ryxprpyrxp  , with )( 1rp
 
probability and ),( 111 ryxp  pdf.  
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   Let us consider “Conditionally Markov switching hidden linear model” (CMSHLM [41]) defined as: 

 

)...,,( 11 N
N TTT  is Markov;        (1.1) 

 

)(),,( 11 nnnnnn rrpyrxrp   ;        (1.2) 

 

),,(),,,( 1111 nnnnnnnnn yryrpyrxyrp   ;      (1.3) 
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where 1nA , 1nB , 1nC  are some functions and 2W  , …, NW
 
is a sequence of centred variables with 

unity variance and such that 1nW  is independent from )...,,( 1 nTT  for each 1n , …, 1N . Let us 

note that (1.2) implies the Markovianity of NR1 , while  (1.3) implies the Markovianity of ),( 11
NN YR . 

 

We propose the following contributions: 

 

(i)  CMSHLM in which ),( 11
NN yrp  is copulas based one [7] is original; 

(ii)  ),( 11
NN yrp

 
is identified from 

NN yY 11   through an original variant of the “generalized 

iterative conditional estimation” (GICE [13]); 

(iii) identification and parameter estimation of 1nA  and 1nB  with a new “GICE with 

generalized least-squares” (GICE-GLS); 

(iv) general copulas based CMSHLM identification provided with points (ii)-(iii) leads to 

semi-supervised (in learning sample ),(),( 1111
NNNN yxYX 

 
are known while NN rR 11 

 
are not) 

recursive exact filtering and smoothing.   

 

   Let us remark that CMSHLM with ),( 11
NN YX  Gaussian conditionally on NR1  leads to “Conditionally 

Gaussian observed Markov switching models” (CGOMSMs [1, 2, 11, 20, 21, 40]), which thus allow 

exact filtering and smoothing and can be seen as an alternative to the widely used “Conditionally 

Gaussian linear state space models” (CGLSSMs [7, 14, 28], among others).  

 

   More generally, filtering in non-Gaussian non-linear systems is widely applied in different problems 

and particle filters – which are asymptotically optimal – are very efficient when the number of 

particles is sufficient [8, 14-17, 29, 31], among others. Approximating such stationary non-Gaussian 

non-linear systems (NSNGSs) with general CMSHLM proposed in the paper – as carried out using 

CGOMSMs in [21] – opens rich perspectives of dealing with stationary NSNGSs when particles based 

methods fail because of the excessively large number of particles needed. 

 

   Furthermore, smoothing in switching systems is a hard problem and using particles is often faced 

with the degeneracy problem. Researchers are very active in the field, [29, 35, 36, 38, 42] among 

others. Such problems do not occur in CMSHLMs and smoothing is even quite straightforward. Let us 

remark that although similar to smoothing methods in CGOMSMs described in [19], those presented 

in this paper are new. 
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   The rest of the paper is organized as follows. In section 2 we present the new copulas based 

CMSHLM (CB-CMSHLM), and specify filtering and smoothing. Section 3 is devoted to the proposed  

CB-CMSHLM identification method termed GICE-GLS. Some experiments are provided in Section 4 

and the last Section 5 concludes the work and sets out the perspectives. 

 

   The remaining of the paper is organized as follows. In section 2 we present the new copulas based 

CMSHLM (CB-CMSHLM), and specify filtering and smoothing. Section 3 is devoted to the proposed  

CB-CMSHLM identification method named GICE-GLS. Some experiments are provided in Section 4 

and the last Section 5 concludes the work and gives the perspectives. 

 

 

2. Filtering and smoothing in copulas based CNSHLMs 

2.1. Copulas based CMSHLM  

Let )...,,( 11 d
d YYY   be a random vector valued in dR ,  ddd yYyYPyyF  ...,,)...,,( 111  

its  

cumulative density function (CDF), and 1F , …, dF  CDFs of 1Y , …, dY , respectively. Furthermore, a 

copula C  is a CDF defined on  d1,0  such that marginal CDFs )( 11 yC , …, )( dd yC  are identities on 

 1,0 . According to Sklar’s theorem, for given F  there exists a unique copula C  such that: 

 

))(...,),(()...,,( 111 ddd yFyFCyyF  .      (2.1) 

 

Assuming differentiable F  and C , setting  

 

)...,,(
...

)...,,( 1
1

1 d
d

d

d yyC
yy

yyc



       (2.2) 

 

and taking derivative of (2.1), we obtain the probability density function (PDF) of )...,,( 11 d
d YYY  : 

 

])(...,),([)()...,,( 11
1

1 dd

d

i
iid yFyFcyfyyf 



 ,     (2.3) 

 

with 1f , …, df  PDFs of 1Y , …, dY  respectively. 

Let us return to CMSHLM defined by (1.1)-(1.4). In addition, we will consider the following 

commonly used assumptions: 

 

)()( 11
1

1 


  nn
n
nn rypryp ;       (2.4) 

 

)()( 1
nn

n
nn rypryp  ;        (2.5) 

 

Applying (2.3) to ),( 1
1




n
nnn ryyp

 
and using (2.4), (2.5), there exists a copula )( 1

1



n
nn rc  such: 
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nnn ryFryFrcryprypryyp ,  (2.6) 
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and thus 

 

))(),()(()(),( 111
1

111
1

1 





  nnnnnn
n
nnnnn

n
nn ryFryFrcrypyryp .   (2.7) 

 

Markovianity of NR1 and ),( 11
NN YR

 
joined to (2.7) indicate that the distribution of ),( 11

NN YR  is given 

by Markov distribution of NR1 , margins )( 11 ryp , …, )( NN ryp , and copulas )( 2
12 rc , …, )( 1

N
NN rc  . 

Let us notice that CB-CMSHLM so obtained is not necessarily stationary: margins and copulas can 

depend on n .  

 

2.2. Filtering in copulas based CMSHLM 

The filtering problem consists of recursively computing )( 1
11



n

n yrp , ],[ 1
111



n

nn yrXE , and 

],[ 1
1111



n

n
T
nn yrXXE  from )( 1

n
n yrp , ],[ 1

n
nn yrXE , ],[ 1

n
n

T
nn yrXXE , ),,( 11 nnnn yryrp  , and 1ny . 

We have  
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 (2.11) 
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)(),,(
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111

1111
11 .      (2.12) 

 

Let us briefly justify (2.8)-(2.12). (2.8) and (2.12) come from the Markovianity of ),( 11
NN YR , which 

implies  

   

  
),(),,(),( 111

1
1

1 n
nnnnn

nn
n yrpyryrpyrp 

      (2.13) 
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To justify (2.9), we write  
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and then we apply

],[],,[ 1
1

11
n

nn
n

nnn yrXEyrrXE 
  - which comes from (1.1), according to which nX

 
and ),( 11  nn YR  

are independent conditionally on ),( nn YR . (2.10)-(2.11) are obtained in similar way replacing 1nX  by 

T
nn XX 11  . 

 

Remark 2.1 As )( 1
11



n

n yrp  and ],[ 1
111



n

nn yrXE  are computed from )( 1
n

n yrp , ],[ 1
n

nn yrXE , and 

1ny  without using ),( 11
1




n
n

n
nn YRC . So (1.4) can be actually extended to  
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nnn WYRBXYRAX ,    (2.14) 

 

with the only hypotheses that 0][ 1 nWE
 
and 1nW is independent from )...,,( 1 nTT  for each 1n , …, 

1N . However, the filter’s variance depends on ][ 1nWVar , and would thus be unknown.  

 

2.4. Smoothing in copulas based CMSHLM 

 

Optimal smoothing consists of computation of ],[ 1
N

nn yrXE  for each 1n , …, N . Under CMSHLM 

they are not complicated to get from already calculated ],[ 1
n

nn yrXE  in filtering given in the previous 

paragraph. We have: 

 

 

nn r

n
nn

N
n

r

N
nn

N
n

N
n yrXEyrpyrXEyrpyXE ],[)(],[)(][ 11111 ,     (2.15) 

 

the second equality being due to the fact that nX  and N
nY 1  are independent conditionally on ),( nn YR . 

Both NR1  and ),( 11
NN YR  being Markov, )( 1

N
n yrp

 
is classically obtained by recursive calculation of 

“forward” and “backward” probabilities ),()( 1
n

nnn yrpr  , )()( 1 n
N
nnn rypr   with: 

  

 ),()( 1111 yrpr   ;   

nr
nnnnnnnn ryryrpr )(),,()( 1111   ,    (2.16) 

 

 1)( NN r  ; 




1

)(),,()( 1111

nr
nnnnnnnn ryryrpr  .   (2.17) 

 

We have )()(),( 1 nnnn
N

n rryrp  , and thus: 
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nnnn

nnnnN
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)()(

)()(
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,       (2.18)

 

 

][ 1
N

n yXE
 
in smoothing does not require ),( 11

1



n
n

n
nn YRC  as in filtering, while ][ 1

NT
nn yXXE  can be 

calculated in a similar way and gives: 
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nn yrXXEyrpyXXE ],[)(][ 111 ,     (2.19) 

 

with ],[ 1
n

n
T
nn yrXXE

 
from (2.10)-(2.11). 

 

 

3. CB-CMSHLM identification 
 

We tackle the identification problem of a CB-CMSHLM from a learning sample set of observations 
NN yY 11   data and space data NN xX 11  , while NN rR 11  remains unknown. In CB-CMSHLM 

),,( 1111
NNNN YRXT  , the considered couple ),( 11

NN YR  
is stationary, so that its distribution can be 

defined by ),,(),(),,,( 2121212121 rryyprrpyyrrp  , equal to the distributions ),,,( 11  nnnn yyrrp , 2n  , 

…, 1N . Furthermore, 1nA  and 1nB  
 
in (1.4) are time independent from 2n  , …, 1N . To 

summarize, the model identification problem which we are facing is threefold: 

 

 (i) Estimate the distribution ),( 21 rrp ; 

 (ii) Find forms of copulas and margins, as well as related parameters, of the distributions 

),,( 2121 rryyp ; 

 (iii) Find forms and parameters of ),( 2
1

2
1 yrA  and ),( 2

1
2

1 yrB  defining ),,,,( 212121 yyrrxxp . 

 

For each 2
21 ),( rr , forms of copulas ),( 21 rrc , forms of margins

 
)( 11 ryp , and forms of ),( 2

1
2

1 yrA , 

),( 2
1

2
1 yrB , will be searched for in given sets of possible forms. 

 

3.1 Generalized Iterative Conditional Estimation (GICE) 

 

To solve (i) and (ii) we use an original variant of Generalized Iterative Conditional Estimation (GICE). 

GICE is a family of methods extending ICE to cases where the parameterized forms of distributions 

are unknown, but belong to a given family of candidate forms. Introduced in the frame of hidden 

discrete Markov (with correlated noise) models in [13], GICE can be applied here to identify the 

distribution of ),( 11
NN YR  from NY1  only: 

NX1 can be temporarily set aside here. The new GICE 

variant we propose is as follows. 

Let 
NN yY 11   be a sample, and for simplifying the notations, let us denote 

),,(),( 212121 krjryypyyf jk  , )()( 111 jrypyf j  , )()( 222 krypyfk  , and 
 

))(),()(,())(),(( 22112121 kryFjryFkrjrcyFyFc kjjk  . So that: 

 

  
))(),(()()(),( 212121 yFyFcyfyfyyf kjjkkjjk  .   (3.1) 

 

Furthermore, the switch probabilities are written as ),( 21 krjrpp jk  , as already above. 

 

For each j  the form jf  is unknown, but we assume that it belongs to a known set of possible 

forms  LHH ...,,1 . Each form lH , Ll ...,,1 ,  is a parametric set of probability distributions 

 
)()()( llll fH




 . Similarly, for each kj,  the form of  jkc  is unknown, but it is assumed to 

belong to a known set of possible forms  MGG ...,,G 1 , each of which being a parametric set of 

copulas  
)()()( mmmm cG




 .  
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Thus to identify margins means to find (from 
NN yY 11  ) for each j , the right form

j
lH  in   

and 

to estimate parameters )(lj . To identify copulas, the problem is to find, for each kj, , the right 

form jk
mG  in G , and to estimate parameters )(mjk .  

 

To achieve these goals by GICE, we further assume: 

(1) For each kj, , Ll ...,,1 , and Mm ...,,1  there exist estimators )(ˆ lj , )(ˆ mjk ; 

(2) There is a rule 1D  which decides for each set of distributions 1)1( Hf  , …, LL Hf )(  the best 

one which fits the given sample )...,,( 11
1

1

1Q
yyy  , with 1Q  denoting the sample size; 

(3) There exists a rule 2D  which decides for each set of copulas  1)1( Gc  , …, MM Gc )(  the best 

one which fits the given sample )...,,( 22
1

2

2Q
yyy  , with 2Q  denoting the sample size. 

 

Then, GICE iteratively runs the following steps to figure out forms of margins, forms of copulas, and 

related parameters (with superscript i  denoting the iteration number). 

 

1. Initialize GICE with ),,( 000
jkjjk cfp , for kj, ; 

2. Find ),,( 111  i
jk

i
jk

i
jk cfp  from ),,( i

jk
i
jk

i
jk cfp  and 

Ny1  by the sub-steps below: 

 

(a) for 1n , …, 1N , compute ),( 11
N

nn
i ykrjrp    from ),,( i

jk
i
jk

i
jk cfp  and 

Ny1  with 
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nnnnnnN
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kyryrpj
ykrjrp

,
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111
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)(),,()(

)(),,()(
),(




 , where )( jn  and )(1 kn

 
are obtained by 

applying (2.17), (2.18). Then update jkp  with 





 



1

1
11

1 ),(
1

1 N

n

N
nn

ii
jk ykrjrp

N
p ; 

 

(b) sample ),...,()( 11
1

1
1

  i
N

iiN rrr  according to )( 11
NN yrp based on current parameters ),,( i

jk
i
jk

i
jk cfp

 

(recall that )( 11
NN yrp  is Markov with 






k

N

kk

jj
yjrp

)()(

)()(
)(

11

11
11




, and 

)(

)(),,(
),(

111
11

k

jykryjrp
ykrjrp

n

nnnnnN
nn



 



 ) for 1n , …, 1N ); 

 

(c) for each kj,  consider 1
1 )( i

j
Ny  the subsequence of 

Ny1  formed with ny  
such that jri

n 1 , and 

1
1 )( i

jk
Ny  the subsequence of couples ),( 1nn yy  in 

Ny1 such that jri
n 1  and kri

n 


1
1 . For 1l , …, 

L and  1m , …, M , calculate ])([)(ˆ)( 1
1

1   i
j

N
j

i
j yll   and ])([)(ˆ)( 1

1
1   i

jk
N

jk
i
jk ymm  ; 

 

(d) for each j , choose from  
)()1( 11 ...,,

Li
j

i
j

ff    an element 1i
jf  by applying rule 1D  to the 

sample 1
1

1 )(  i
j

Nyy . Similarly, for kj,  chose from  
)()1( 11 ...,,

Mi
jk

i
jk

cc    an element 1i
jkc  by 

applying rule 2D  to the sample 1
1

2 )(  i
jk

Nyy ; 

 

3. Stop according to some criterion. 
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For the initialization in step 1, K-means is applied to group Ny1  
and find the initial guess of switches 

0
1 )( Nr , then ),,( 000

jkjjk cfp
 
can be initialized from 0

11 ),( NN yr   so as for the sub-step (c) and (d) 

(replacing the iteration index “ 1i ” with “0”). As GICE is a general estimation frame, different 

parameter estimators and decision rules for assumptions (1)-(3) can be applied. In this work, 

Maximum Likelihood (ML) estimators are chosen for both )(ˆ lj  and )(ˆ mjk , while in [13] )(ˆ mjk
 

were obtained by mean of the empirical estimation of Kendall’s tau. Besides, we adopt the 

minimization of Kolmogorov distance as decision rule 1D , while GICE in [13] is based on Pearson’s 

system of distributions. Let us note that 1D  considered here is valid for every set of distributions while 

the Pearson system used in [13] is limited to a set containing fixed eight possible forms. The algorithm 

will stop when it is considered to be converged according to some criterion. For example, no change 

of form is observed for the estimation of both margins and copulas, and the difference of the objective 

function value of each decision (both 1D  and 2D ) between 2 iterations is within some predefined 

threshold.  

 

3.2  Least-square estimation for non-linear switching model 

 

The last problem (iii) left is to find forms and parameters of ),( 11  n
n

n
n yrA , ),( 11  n

n
n
n yrB , and 

),( 11  n
n

n
n yrC

 
defining 1nX  from nX  with (1.4), and being independent from 1n  , …, N . We have 

seen that ),( 11  n
n

n
n yrC

 
intervenes neither in filtering nor in smoothing, thus we concentrate on dealing 

with  ),( 2
1

2
1 yrA  and ),( 2

1
2

1 yrB . Let us temporarily assume that their forms are given and for each 

),(2
1 kjr  , and they depend on parameters jka

 
and jkb  respectively: )(),,( 2

1
2
121 yAykrjrA

jka , 

)(),,( 2
1

2
121 yBykrjrB

jkb . When )( 11
NN yrp  is given, the parameter estimation of the Gaussian 

),,( 11
1




n
n

n
nnn ryxxp  can be considered as the estimation of a multi-regimes switching regression, and 

the Least-Square (LS) is an efficient method to deal with this. Extending the Ordinary Least-Square 

(OLS) to the non-Gaussian case that we deal with, estimates  kjjkaa ,)ˆ(ˆ  and  kjjkbb ,)ˆ(ˆ  are 

obtained by minimizing with respect to kjjka ,)( , kjjkb ,)(  the quantity 

 

 

211
1

1 ),(
1

1
1

2 ]})()([)),(({
1

1 





 


  

n
nbn

n
na

N

n kj

Nn
nn yBxyAykjrpx

N
e

jkjk
, (3.2) 

 

As previously done for copulas and margins, let us assume that the form of ),( 2
1

2
1 yrA

 
is not known but 

belongs to a given set of forms  QKK ...,,1 , with each form qK  being parameterized by 

 kj
q
jk

q aa ,)( . Similarly, the form of ),( 2
1

2
1 yrB  is not known but belongs to a given set of forms 

 SLL ...,,1 , with each form sL  being parameterized by  kj
s
jk

s bb ,)( . Then, minimization of (3.2) is 

applied to each couple of forms ),( sq LK , giving estimated  kj
q
jk

q aa ,)ˆ(ˆ  and  kj
s
jk

s bb ,)ˆ(ˆ . Then 

the couple of forms finally kept is the couple )ˆ,ˆ( sq LK  for which the related )ˆ,ˆ( sq ba obtains the 

minimum (3.2) (comparing to other )ˆ,ˆ( ** sq ba
 
related to other couples ),( ** sq LK ).  

 

Example 3.1  

Let us consider the linear case )()( 1
1

1   n
njk

n
njk ygayA , )()( 1

2
1   n

njk
n
njk ygbyB , with 1g , 2g  given 

functions. The explicit solution (the vector stacking all jka  and jkb ) of the minimization of (3.2) is:  
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   xLLLx TT 1)()(ˆ  ,     (3.3) 

 

with T
Nxxx )...,,( 2 , and L

 
matrix given with 
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,1
1
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1
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1
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1
2,1

1
,1

1
2,1

1
1,1

......

...............

......

NN
K

NN
K

N

KK

gpgpgp

gpgpgp

L ,   (3.4) 

 

where ))),(( 1
1

,
Nn

n
n

kj ykjrpp   , and ])()([ 1
2

1
12,1

 n
nn

n
n

n ygxygg . 

 

For the general case we can turn to various numerical algorithms to minimize the error. A potential 

solution can be the Gauss-Newton method with linear approximation of the functions, the Powell’s 

Dog Leg method with a control of trust region, or some other hybrid methods introduced in [4, 5, 31] 

respectively. In experiments of the next section we adopt the Levenberg-Marquardt (LM) algorithm, 

which is a Damped Gauss-Newton method as proposed in [28] and completed in [24, 33, 37]. 

Combining the two identification steps above, the entire Schema of GICE-GLS for CB-CMSHLM 

identification is given in Figure 3.1. 

 

 

 

                                    
 

 

            

Ny1
                                       

)( 11
NN yrp

                                                         

Nx1  

 

                                    
 

 

 

 

 

 

 

 

 

 

Figure 3.1. Schema of CMSHLM estimation from learning sample ),( 11
NN yx

 
Through GICE-GLS. 

 

Concerning complexity time of ICE-GLS, we note that is linear in the sample size N . Besides, it is proportional 

to the number of possible margins forms L , and it is proportional to the number of possible copulas forms M . 

In the general GICE-GLS it would also be proportional to the number of possible forms of )( 2
1yAa  and  

)( 2
1yBb . Finally, it also is proportional to the number of iterations of GICE-GLS. However, important is that 

similarly to the classic ICE in simple hidden Gaussian Markov chains, complexity time of ICE-GLS is linear in 

sample size N . 

 

 

 

 

 

Possible forms of copulas and 

margins 
Possible  

GICE GLS 

Estimated  

 

Estimated ,  

 

Estimated CMSHLM 
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4. Experiments 
 

We present two series of experiments on simulated data and test a simplified version of GICE-GLS, 

called GICE-LS, in which the parameterized forms )( 2
1yA

jka  and )( 2
1yB

jkb  are known, and the 

problem lies only in estimation of their parameters.  

In the first series, the learning sample and data to be restored are simulated according to a CB-

CMSHLM. After having identified the CB-CMSHLM through GICE-LS from the learning sample, 

filtering and smoothing obtained results are compared to the other two. The first one with parameters 

estimated by ICE-LS and data restored by exact restoration considering Gaussian margins and copulas, 

and the second one, identification and restoration through CGOMSM-ABF proposed in [20, 21]. The 

aim is to show that when data are not Gaussian considering them as Gaussian can significantly 

degrade the filtering and smoothing results.  

In the second series, data are sampled with respect to a CGOMSM. The aim is to verify that when data 

follow the simpler Gaussian CGOMSM, which is a particular case of CB-CMSHLM, GICE-LS based 

filtering and smoothing provide a result comparable to those obtained with ICE-LS and CGOMSM-

ABF. 

In the second series, data are sampled with respect to a CGOMSM. The aim is to verify that when data 

follow the simpler Gaussian CGOMSM, which is a particular case of CB-CMSHLM, GICE-LS based 

filtering and smoothing provide result comparable to those obtained with ICE-LS and CGOMSM-

ABF. 

The considered CB-CMSHLM is defined as follows. 

 

- Both hidden states and observations are scalar; 

- The Markov chain NR1  
is stationary and has 2K  jumps; 

- The margins are of six possible forms (see Appendix for details):  

 

   prime Beta  Beta, Laplace,Gaussian,  Fisk,Gamma,...,, 61  HHH ,   (4.1) 

 

with details provided in Appendix; 

- The copulas are of seven possible forms (all of them – except Product – belong to one-parameter 

copula families; see Appendix for details): 

 

   Product}Arch14, Arch12,  FGM,Clayton, Gaussian, {Gumble,...,, 71  GGG    (4.2) 

 

- All estimators )(ˆ lj  are the Maximum Likelihood ones; 

- Rule 1D  consists of minimizing the Kolmogorov distance between empirical distribution F̂  and 

candidates 11 HF  , …, LL HF  . The Kolmogorov distance between two CDFs F , 'F  is defined as: 

 

   )(')(sup)',(
R

yFyFFFd
y




,    (4.3)
 

 

and thus for a sample )...,,( 11 Q
Q

uuu   the chosen CDF )( 1
1 Q

uD  among candidates 11 HF  , …, 

LL HF  , is defined with: 



11 
 

 

    
])ˆ([infarg)(

...,,1
1

1 F,FduD l
Ll

Q



 ,    (4.4) 

where empirical CDF F̂  is given by: 

 

   




Q

n
uunQ

uF
1

][1
1

)(ˆ ;     (4.5) 

 

- Estimators jk̂  are obtained with the method presented in [26]. For a sample

)),(),...,,(( 21221
2
1 QQ

Q
uuuuu  , we have:  

 

  

])))(ˆ,)(ˆ(([maxarg)(ˆ 1

1

1

2
1 





 n

N

n
n

Q
uFuFcLogu 



 ,   (4.6) 

 

where )(ˆ
nuF  and )(ˆ

1nuF  are empirical CDFs calculated from ),...,( 121 Quu  and ),...,( 22 Quu   

respectively. Let us remark that other copula estimation methods [3, 23, 25] could replace the applied 

ones. 

- Finally, the rule 2D  is the maximum of pseudo-likelihood: for a sample 

)),(),...,,(( 21221
2
1 QQ

Q
uuuuu  , copula ĉ  related to each distribution ),( 212 nn uup   is chosen among 

candidates 11 Gc  , …, MM Gc   with: 

 

   
]))(ˆ)(ˆ[suparg)( 1

1

1...,1

2
1

2



 nn

N-

n
m

Mm

Q
uF,uF(cuD ,   (4.7) 

 

with )(ˆ
nuF , )(ˆ

1nuF  being empirical CDFs as above. 

 

Series 1.  

 

In both series the probabilities ),( 21 krjrpp jk   defining the distribution of stationary NR1  are 

45.02211  pp , 05.02112  pp . A set of 5000N  simulated ),( nn yx  is taken as a learning sample 

used for the model identification, and another set of 1000N  simulated data is taken for testing form 

identification, parameter estimation, and related filtering and smoothing based on real and estimated 

models. The margins and copulas in ),( 11
NN yrp  are set as in Table 5.2. ),,,( 1

11


  n
nnnnn ykrjrxxp  

are Gaussian with means )( 1 n
njknjk yBxa  - where jknnjk

n
njk dyybyB  


1
1)(  are non-linear in ny ,

1ny , and the variances 
2
jk . Let us recall that variances 

2
jk  are only used to sample data and neither 

interfere in filtering nor smoothing. They are taken as 0.12
22

2
11  , and 8.02

21
2
12   . 

Restoration results of all three methods are indicated in Table 4.1. From the results and those of other 

similar experiments performed, we can advance the following conclusions: 

 

   1. GICE-LS based filtering and smoothing are quite efficient for the data which follows CB-

CMSHLM, with MSE close to the optimal one; 
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   2. ICE-LS provides better results than CGOMSM-ABF. Both of them wrongly assume that 

)( 11
NN ryp  is Gaussian; the difference lies in the fact that CGOMSM-ABF also assumes 

),( 111  n
n

n
n

n
n yrxp  Gaussian, while ICE-LS limits the Gaussian assumption to ),,( 11

1



n
n

n
nnn yrxxp . 

Thus, the non-linearity of jknnjk
n
njk dyybyB  


1
1)(

 

is better taken into account by ICE-LS; 

 

   3. GICE can select false margins and copula, especially for 2112 cc  . However, this does not 

significantly degrade the optimal filtering and smoothing results; 

 

   4. The estimates from GICE-LS are quite close to the true ones as listed in Table 4.2. The average of 

estimated joint probabilities ),( 21 krjrpp jk   from GICE are 474.0ˆ11 p , 445.0ˆ22 p , 

040.02112  pp ; 

 

   5. According to Figure 4.1, where the error ratio of unsupervised switches estimation is concerned, 

GICE is much more effective than ICE; 

 

   6. A trajectory example displayed in Figure 4.2 clearly illustrates the superiority of GICE-LS over 

the other methods on the restoration of general CB-CMSHLM data considered; 

 

   7. According to Table 4.3 estimates of jka , jkb , and jkd  are quite correct. 

 
 Optimal GICE-LS ICE-LS CGOMSM-ABF 

 

Filtering 

Error 0.139 0.156 0.404 0.462 

MSE 2.380 2.771 5.762 9.353 

 

Smoothing 

Error  0.084 0.103 0.378 0.456 

MSE 2.290 2.631 5.750 9.273 

 

Table 4.1 Error ratios and MSEs of optimal (based on true parameters) restorations, as well as the 

GICE-LS, ICE-LS and CGOMSM-ABF based ones (average of 100 independent experiments) 

 

Margins and 

parameters 
1f ( 1 ) 

(Gamma) 

2f ( 2 ) 

(Fisk) 

Copulas and 

parameters 
)( 1111 c

(Gaussian) 

)( 2222 c

(Clayton) 

)()( 21211212  cc 

(Gaussian) 

True i  16.00 4.00 True ij  0.45 4.67 0.45 

Estimated i  13.72 3.93 Estimated ij  0.46 4.46 0.46 

 

Table 4.2. True margins, copulas, and their estimates (extracted from cases in which true copulas and 

margins are perfectly found).  

 

 True Estimates
 

),( kj  )1,1(  )2,1(  )1,2(  )2,2(  )1,1(  )2,1(  )1,2(  )2,2(  

jka  0.40 0.60 0.80 0.40 0.27 0.41 0.69 0.81 

jkb  0.50 0.60 0.90 0.50 0.69 0.56 0.63 0.90 

jkd  0.00 0.00 0.00 0.00 0.00 -0.01 -0.13 -0.01 

 

Table 4.3. True jka , jkb , jkd  and their estimates (extracted from cases in which true copulas and 

margins are perfectly found).  
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 Gamma Fisk Gaussian Laplace Beta Beta Prime 

Identified
 1f  87% 12% - 1% - - 

Identified 2f  1% 99% - - - - 

 

Table 4.4. Margins identification error ratio. 1f  
is Gamma, and 2f

 
is Fisk, – see Table 4.2. 

 

 Gumbel Gaussian Clayton FGM Arch12 Arch14 Product 

Identified 11c  96% 2% 1% - 1% - - 

Identified 2112 cc   34% 58% 4% 8% - - - 

Identified 22c  2% - 96% 1% 1% - - 

 

Table 4.5. Copulas identification error ratio. 11c
 
is Gumbel, 2112 cc 

 
are Gaussian, and 22c

 
is 

Clayton – see Table 4.2. 

 

Figure 4.1. Error ratio tendency of estimated NR1  according to GICE and ICE iterations in Series 1. 

 
Figure 4.2. Trajectory example from Series 1 experiment (100 samples, smoothing).  
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Series 2  

 

In this second series, data is sampled with respect to a CGOMSM. The aim is to verify whether more complex 

GICE-LS, which considers six possible margins and seven possible copulas, is competing compared to ICE-LS, 

which uses just the right Gaussian margins and copulas. Thus in this series, both )( 11  n
n

n
n ryp  and 

)),,(,( 11
1


  n

n
n
nnn ykjrxxp  are set to be Gaussian with jk

n
njk ayA  )( 1

 and 

jknjknjk
n
njk dycybyB  


1
1)( , with jka , jkb , jkc  and their estimates specified in Table 4.6. Estimated 

switching joint probabilities from GICE are 485.011 p , 421.022 p , 047.01221  pp ; while from ICE, 

they are 489.011 p , 419.022 p , 046.01221  pp . 

According to Table 4.8 GICE-LS based filtering and smoothing results are comparable to ICE-LS and 

CGOMSM-ABF based ones, all of them being close to the optimal results. As in the previous series, 

GICE cannot always find Gaussian margins (Table 4.9) and Gaussian copulas (Table 4.10). However, 

this does not affect the restoration seriously since the found distributions are close to Gaussian ones, at 

least where filtering and smoothing are concerned.  

 

 
11a  12a  21a  22a  11b  12b  21b  22b  11c  12c  21c  22c  

True 0.30 0.50 0.50 0.70 0.61 0.05 0.25 -0.19 0.30 0.70 0.70 0.30 

ICE-LS 0.30 0.52 0.48 0.69 0.60 0.03 0.25 -0.16 0.31 0.71 0.31 0.71 

GICE-LS 0.34 0.56 0.47 0.67 0.50 0.05 0.20 -0.11 0.39 0.78 0.27 0.64 

 

Table 4.6. True parameters and their estimates with ICE and GICE (extracted from cases in which true 

copulas and margins are found). 

 

 Margins  1f ( 1 ) 2f ( 2 ) Copulas  )( 1111 c  )( 2222 c  )()( 21211212  cc   

 True i  0.00 1.00 True ij  0.80 0.45 0.20 

ICE Estimated i   0.01 1.00 Estimated ij   0.79 0.42 0.20 

GICE Estimated i   -0.04 0.99 Estimated ij   0.78 0.49 0.20 

 

Table 4.7. True margins, copulas (Gaussian) and their estimates (extracted from cases in which true 

copulas and margins are found).   

 

MSE of observations 

 27.123 

Optimal GICE-LS ICE-LS CGOMSM-ABF 

 

Filtering 

Error  0.245 0.289 0.249 0.247 

MSE 1.037 1.047 1.044 1.044 

 

Smoothing 

Error  0.211 0.261 0.215 0.213 

MSE 1.032 1.044 1.039 1.040 

 

Table 4.8. Error ratios and Mean Square Errors (MSEs) of optimal (based on true parameters) filtering 

and smoothing, and GICE-LS, ICE-LS, and CGOMSM-ABF based ones. Data sampled with 

CGOMSM with parameters given in Table 5.4.  

 

 Gamma Fisk Gaussian Laplace Beta Beta Prime 

Identified
 1f  2% 1% 86% 11% - - 

Identified 2f  5% 3% 54% 1% - 37% 

 

Table 4.9. Margins identification error ratio. 1f  
and 2f

 
are Gaussian. 
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 Gumbel Gaussian Clayton FGM Arch12 Arch14 Product 

Identified 11c  1% 43% 2% - 3% 51% - 

Identified 2112 cc   32% 52% 10% 4% - 2% - 

Identified 22c  14% 60% 4% 19% - 3% - 

 

Table 4.10. Copulas identification error ratio. 11c , 2112 cc  , and 22c
 
are Gaussian. 

 

 

5. Conclusions and perspectives 
 

   We introduce an identifiable general switching CMSHLM model with copulas, called copulas based 

CMSHLM (CB-CMSHLM), and propose a family of methods called “generalized Iterative conditional 

estimation with generalized least squares” (GICE-GLS) for its identification from a set of admissible 

family of models. Recursive exact filtering and smoothing are then possible using CB-CMSHLM in a 

semi-unsupervised way. The high adaptable identification ability of GICE-LS, which is a particular 

simplified GICE-GLS, has been verified by experiments on both Gaussian linear and non-Gaussian 

non-linear data. 

There are many perspectives for further work:  

    1. Include the estimation of ),( 11
1




n
n

n
nn YRC  in (1.4), when dealing with the parameter estimations 

of ),( 11
1




n
n

n
nn YRA  and ),( 11

1



n
n

n
nn YRB  possibly by weighted Least-Square; 

    2. Other alternative parameter estimation methods under the GICE frame are worth trying to 

improve the performance in specific situations. For example, the moments method could replace ML 

as the estimator for margins, while for copulas, a popular way is to estimate their Kendall’s tau. 

Moreover, instead of the semi-parametric estimation applied in our work, while parametric or non-

parametric methods [3, 25] are undoubtedly also worth a test; 

    3. The model and methods proposed are easy to extend to higher dimensional state-spaces, at least 

when parameters are known. Their interest with respect to Markov chain Monte Carlo (MCMC) based 

methods is expected to increase when the state-space dimension grows, since under high dimension 

circumstance, a large amount of particles will be required by MCMC methods, therefore it loads us 

with the burden of calculation; 

    4. The proposed GICE-GLS identification for CB-CMSHLMs is semi-supervised, for which a 

sample containing observations  NY1  and states NX1  is required, while switches NR1  are unknown. 

Extending the method to a fully unsupervised one, which would work from the NY1  only, is an 

important perspective for applications. One possible idea to explore solutions could be inspired by the 

“double EM” algorithm proposed in the Gaussian case in [47]; 

    5. There are many possible variations over the several known copulas, margins, and functions 1nA , 

1nB , and 1nC  in (1.4). Choosing the best model for a given concrete problem opens a huge field of 

perspectives. In particular, extending studies of stochastic volatility proposed in [21, 45] in the context 

of Gaussian models is an interesting perspective; 

    6. Markov chains dealt in this paper are the simplest Markov graphical models and extensions of 

proposed CB-CMSHLMs to other Markov graphical models, for example those studied in [8], is 

another perspective to view. Some rare applications of hidden particular Markov graphical models 

with copulas to image processing have been proposed in hidden Markov trees [19], or hidden Markov 

fields [27, 44]; however, copulas are still rarely used in hidden Markov models because the 

observations are, in general, assumed to be independent conditionally on hidden states.  
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    7. Classic switches considered in this paper could possibly be extended to “fuzzy” switches, as 

recently proposed in [5, 46], which results in as many possibilities of extensions of the proposed 

models. 

 

Appendix 

1. Six standard forms of margin distributions and related parameters used in experiments are: 

- Gamma: setting 




0

1 exp)( (-t)dtt  and 


y

(-t)dtty

0

1 exp),(  , CDF F
 

and PDF f
 

are 

)(

),(
)(








y
yF , 

)(

)exp(
)(

1










 yy
yf  (for 0 )  

- Fisk (also known as log-logistic distribution): 



y

yF
1

1
)( , 

2

1

)1(
)(





y

y
yf






 (for 0 ) ; 

- Gaussian: setting dttxerf
x

 

0

2 )exp(
2

)(


, ))
2

(1(
2

1
)(

y
erfyF  , and )

2
exp(

2

1
)(

2y
yf 


; 

- Laplace: 













0)exp(
2

1

0)exp(
2

1
1

)(

yify

yify
yF , )exp(

2

1
)( yyf  ; 

- Beta: setting 



1

0

11
21

21 )1(),( dtttB
 , 




x

dtttxI

0

11
21

21 )1(),,(
 , 

),(

),,(
)(

21

21





B

yI
yF  , and 

)()(

)1()(
)(

21

11
21

21



 







yy

yf (for 01  , 02  ) ; 

- Beta prime (also called beta distribution of the second kind or inverted beta distribution): 

),,
1

()( 21 
y

y
IyF


 , and 

),(

)1(
)(

21

1 211





B

yy
yf




 (for 01  , 02  ). 

2. Seven forms of copulas and related parameters used in experiments are: 

- Gumbel copula: Setting ))ln(( 11 uU  , 
 

))ln(( 22 uU  , CDF C
 
and PDF c

 
are (for [[1,  ), 

/1
2121 )(exp(),( UUuuC  ; 

][-(exp1
lnln

),( /1
21

2/1
21

/1
21

22

2

11

1
21

 )UU)U(U)UU(a
)(uu

U

)(uu

U
uuc   ,  

- Gaussian copula. Setting   standard Gaussian PDF (mean 0 and variance 1), 

















)(

)(

2
1

1
1

u

u




 , 
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01
I , and 










1

1




  (for ]1[-1, ): du

uu
uuC

u

)

1

)()(
(),(

1

0
2

1
2

1

21 










 , 

))(
2

1
exp(

1

1
),(

221 


Iuuc T 


 ; 

- Clayton copula:  /1
2121 )1(),(   uuuuC , 2)/1(

21
1

2
1

121 )1()1(),(    uuuuuuc
 
(for 

[[0,  ); 

- FGM (Farlie-Gumbel-Morgenstern) copula. ))1)(1(1(),( 212121 uuuuuuC   ,

))21)(21(1),( 2121 uuuuc   . 
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- Arc12 (Archimedean of order 12) copula. Setting )1
1

(
1

1 
u

U , )1
1

(
2

2 
u

U  (for [[1,  ): 

1/1
2121 ))(1(),(  UUuuC ,  

3/1
21

2)/1(
21

/1
21

22

2

11

1
21

])(1[

)(]))(1(1[

)1()1(
),(





UU

UUUUa

uu

U

uu

U
uuc










.
 

- Arc14 (Archimedean of order 14) copula. Setting  )( /1
11
 uU ,  )( /1

22
 uU  (for [[1,  ):  

  ))(1(),( 1/
2121 UUuuC ,

)1)(1(

])(21[
])(1[)()(

/1
2

/1
121

/1
212/1

21
2)/1(

212121
-u-uuαu

UUα
UUUUUUu,uc -α-




  

  .
 

- Product copula. 2121 ),( uuuuC  , 1),( 21 uuc
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