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Abstract

The analytical Fourier-Mellin transform is used in order to assess motion parameters
between gray-level objects having the same shape with distinct scale and orienta-
tion. From results on commutative harmonic analysis, a functional is constructed in
which the location of the minimum gives an estimation of the size and orientation
parameters. Furthermore, when the set of geometrical transformations is restricted
to the compact rotation group, we show that this minimum is exactly the Hausdorff
distance between shapes represented in the Fourier-Mellin domain. This result is
used for the detection and the estimation of both all rotation and reflection sym-
metric in objects.

Key words: Analytical Fourier-Mellin transform, Gray levels object, Scale and
rotation parameters estimation, Hausdorff distance, Rotational and reflectional
symmetries estimation.

Résumé

La transformée de Fourier-Mellin analytique est utilisée pour estimer les paramètres
de mouvement entre des objets à niveaux de gris de même forme mais de taille et
d’orientation différentes. À partir de résultats de l’analyse harmonique commutative,
une fonctionnelle est construite pour laquelle le minimum fournit une estimation
des paramètres d’échelle et d’orientation. De plus, lorsque l’on restreint l’ensemble
des transformations géométriques au groupe compact des rotations, nous montrons
que ce minimum est précisément la distance de Hausdorff entre formes lorsque ces
dernières sont décrites dans le domaine de Fourier-Mellin. Ce résultat est utilisé
pour la détection et la localisation de tous les axes de symétries par rotation et
réflexion dans les objets.

Mots-clefs: Transformée de Fourier-Mellin analytique, Objets à niveaux de gris, Esti-

mation des paramètres d’échelle et d’orientation, Distance de Hausdorff, Estimation

des symétries par rotation et réflexion.
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1 Introduction

The Mellin transform and the Fourier-Mellin transform (FMT) have been ex-
tensively studied for pattern description and recognition in the last decades. A
number of works to date were motivated by the search for some sets of features
invariant under rotation and scale [1, 2, 3]. Due to the crucial numerical prob-
lem faced in estimating the standard FMT [4], the analytical Fourier-Mellin
transform (AFMT) was proposed in [5] and three efficient approximations
were then presented [6]. In this work, we derive new algorithms for global
motion parameters estimation, pattern matching and symmetry detection in
gray-level objects using the AFMT.

The AFMT can be seen as the Fourier transform on the planar similarity
group from the harmonic analysis viewpoint [7] and is well suited to extract-
ing similarity invariant features. Extracting such a set of features needs the
estimation of geometrical parameters to which the descriptors have to be in-
variant. The geometrical parameters correspond to the transformation that
should be applied on a first object to recover the pose of the second one. In
invariant pattern recognition, the estimation of the relative motion between
two objects is generally done implicitly, i.e. hidden in the computation. For
example, the normalization process proposed in [8] transforms an object back
into a canonical form, i.e. the invariant representation of the object. Hence,
the comparison between two objects is realized according to their canonical
form.

This work is motivated by the same goals but with a different viewpoint.
From results on commutative harmonic analysis for the group of similarities,
a functional is constructed from the Euclidean distance between the AFMT
representation of two objects. The location of its minimum allows to assess
the scale and rotation parameters that should be applied on the first object
to match the second. Furthermore, the correspondence problem is solved si-
multaneously according to the minimum value. The approach proposed needs
neither invariant descriptors, nor matching primitives but works directly on
gray-level objects. It is related to global image registration methods designed
for the similarity group such as correlation and matching filters [9, 10, 11, 12].

Another interesting application of the method concerns the detection and
localization of symmetry axes in gray-level images. Indeed, when the set of
geometrical transformations is restricted to the compact rotation group, we
show that the minimum of the functional is precisely the Hausdorff distance
between shapes when expressed in the Fourier-Mellin domain. Hence, two
algorithms are derived in order to estimate all the rotational- and reflectional-
symmetric axes of any gray-level object. The method is related to some extent
to the work proposed in [13], in the case of reflectional symmetry, where the
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authors minimize an energy function constructed from the complex moments
of images.

This paper is organized as follows. The AFMT and some of its relevant proper-
ties are presented in section 2. In particular, we give the appropriate Parseval
equality and shift theorem and we define precisely the notion of shape accord-
ing to the planar similarity group. Based on these properties, section 3 presents
a method for estimating the rotation and scale factor parameters by using a
functional constructed from the AFMT representation of objects. When the
transformation group is restricted to pure rotation, we then show that the
minimum of the functional is precisely the Hausdorff distance expressed in the
Fourier-Mellin domain. From the last result, we derive in section 4 two algo-
rithms for the detection and localization of both all rotational and reflectional
symmetries of an image. All the algorithms are illustrated with experiments
on both synthetic and real gray-level images.

2 Formulation and notation

The aim of this section is to sketch some theoretical results and useful proper-
ties concerning group theory and commutative harmonic analysis for the direct
similarity group in order to set a rigorous background for planar gray-level
shape analysis. Further results and applications on commutative harmonic
analysis in the image processing field can be found in [7, 14, 15] for example.

Throughout this paper, we shall denote by Z the additive group of integers,
R the additive group of the real line, R

∗
+

the multiplicative group of positive
and non-zero real numbers and S

1 the unit circle of the plane R
2. All these

groups are locally compact and commutative. The direct product G = R
∗
+
×S

1

forms a locally compact and commutative group under the following law :
(α, θ) ◦ (ρ, ψ) = (αρ, θ+ψ). G is formed by all planar and positive similarities
centered on the origin of axes and is equivalent to the polar coordinate space.

2.1 The analytical Fourier-Mellin transform

We denote by Lp(G) the normed vector spaces of integrable (p = 1) and square
integrable (p = 2) real valued functions defined on G:

f ∈ Lp(G) ⇔ ‖f‖
Lp(G) =

(∫ ∞

0

∫ 2π

0
|f(r, θ)|p dθ

dr

r

) 1

p

<∞, (1)

where r−1dr dθ is a positive and invariant measure on G (the Haar mea-
sure [16]).
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Fig. 1. Direct and inverse AFMT approximations (fast algorithm, σ = 0.5). (a) Orig-
inal image. (b) Magnitude of central Fourier-Mellin harmonics. (c) Reconstructed
version from a finite and discrete Fourier-Mellin spectrum.

The Fourier-Mellin Transform (FMT) is defined for functions in L1(G). How-
ever, in general, gray-scale images cannot be assimilated to such functions and
it was proposed to compute the FMT of fσ(r, θ) = rσf(r, θ) with σ > 0 [5].
Since any real image f is bounded, fσ belongs to L1(G). Using harmonic anal-
ysis results, it is easy to show that the dual group of G is Ĝ = Z × R [16],
which represent the parameters space in the Fourier-Mellin domain. The FMT
of fσ is called the Analytical Fourier-Mellin Transform (AFMT) of f and can
be written in this way:

∀(k, v) ∈ Ĝ, Mfσ
(k, v) =

1

2π

∫ ∞

0

∫ 2π

0
f(r, θ) rσ−iv e−ikθ dθ

dr

r
. (2)

Hence, the AFMT can be seen as the Laplace transform on the planar simi-
larity group.

The AFMT gives a unique description and images can be retrieved with the
inverse transform. Recently, three approximations of the AFMT, i.e. direct,
fast and Cartesian estimations, were proposed and used for the reconstruction
of images from a finite and discrete set of harmonics [6]. These approxima-
tions differ in the re-sampling of images into polar, log-polar and Cartesian
coordinates and in the way numerical integration is performed. It was found
that the fast algorithm performs better, in the L2-reconstruction error sense,
than the other two approximations. The fast algorithm involves re-sampling
the Cartesian image according to a log-polar grid and computing the AFMT
integrals with a two dimensional FFT. Conversely, the original image is re-
constructed from a 2D inverse FFT and log-polar to Cartesian re-sampling.
Fig. 1 illustrates a reconstruction result obtained from the fast algorithm.
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2.2 Parseval equality for the similarity group

We denote by L2(Ĝ), the normed vector space of square integrable complex
valued functions defined on Ĝ:

h ∈ L2(Ĝ) ⇔ ‖h‖
L2(Ĝ) =




∫ +∞

−∞

∑

k∈Z

|h(k, v)|2 dv





1

2

<∞. (3)

The Plancherel theorem can be extended to every locally compact and com-
mutative group [17]. For fσ in L1(G) ∩ L2(G), Mfσ

∈ L2(Ĝ) and the Parseval
equality is given by :

‖fσ‖L2(G) = ‖Mfσ
‖
L2(Ĝ) ,

∫ ∞

0

∫ 2π

0
r2σ |f(r, θ)|2 dθ

dr

r
=
∫ +∞

−∞

∑

k∈Z

|Mfσ
(k, v)|2 dv.

(4)

In what follows, we assume that a gray-level object is represented by a function
fσ ∈ L1(G) ∩ L2(G) (original description) or, in a strictly equivalent way, by
its FMT Mfσ

∈ L2(Ĝ) (dual Fourier-Mellin description).

2.3 Gray-level shape and shift theorem for planar similarities

The intuitive notion of the shape of an object has been defined rigorously by
several authors [18, 14, 7, 19]. An object retains its shape whatever its position
in the image. So, the notion of shape is directly connected to a group of trans-
formations. In the case of gray-level shapes and similarity transformations,
shapes can be characterized efficiently by the AFMT using an appropriate
shift theorem. The following is inspired by the results obtained in the case of
planar contours and Fourier descriptors [20].

Let f 2 denote the rotation and size change of an object f 1 through angle
β ∈ S

1 and scale factor α ∈ R
∗
+
, i.e. f 2(r, θ) = f 1(αr, θ+β). Two such objects

will be termed similar objects. It is easy to show that their AFMT are related
according to:

∀(k, v) ∈ Ĝ, Mf2
σ
(k, v) = α−σ+iv eikβ Mf1

σ
(k, v). (5)

These relations can be seen as the shift theorem for the planar and positive
similarity group. The AFMT converts a similarity transformation in the orig-
inal domain into a complex multiplication in the Fourier-Mellin domain. This
makes the AFMT appropriate for the extraction of descriptors invariant to
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object changes in scale and orientation and a complete family of similarity in-
variant descriptors has been designed [5]. In the following, we intend to show
how the shift theorem can be used to estimate the two geometrical parameters.

Going through the group of positive similarities, the shape F of an object f
could be defined as the set of all similar objects according to G:

F =
{(
f (αr, θ + β)

)

(r,θ)∈G
, (α, β) ∈ R

∗
+
× S

1
}
, fσ ∈ L1(G) ∩ L2(G), (6)

and, using Eq. (4) and (5), a shape is also defined in a strictly equivalent way
in the Fourier-Mellin domain by:

F =
{(

α−σ+iveikβMfσ
(k, v)

)

(k,v)∈Ĝ
, (α, β) ∈ R

∗
+
× S

1
}
, Mfσ

∈ L2(Ĝ). (7)

It can be shown that a shape is an equivalence class through the action of
G [21, 7]. It is important to note that such a class is not compact since R

∗
+

is
not.

Every object f can be considered as a representative of its shape F. An ob-
ject f i in F is related to f by a similarity transformation (αi, βi) ∈ S

1, i.e.
f i (r, θ) = f (αir, θ + βi), or Mf i

σ
(k, v) = α−σ+iv

i eikβiMfσ
(k, v). Of course, the

converse also applies with parameters α = 1
αi

and β = −βi. In this context,
the assessment of parameters between two similar objects involves finding
their relative position inside a shape. One important point is to determine
beforehand whether the objects belong to the same shape or not.

3 Accurate estimation of scale and rotation parameters

In this section, we intend to derive a new algorithm dedicated to the estima-
tion of size and orientation differences between two objets from their AFMT
representation. The method is based on the computation of the Euclidean
distance between objects expressed in the Fourier-Mellin domain, by using
the Plancherel (4) and shift (5) theorems. Experiments are conducted on the
three images of butterflies shown in figure 2, with the fast approximation of
the AFMT [6]. We start with a straightforward algorithm that will serve lat-
ter, and finish with an interesting result regarding the special case of the one
parameter compact group of rotations.
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Fig. 2. Three images of a butterfly used for the illustration of algorithms. Images
(a) and (b) represent the same butterfly with distinct positions (α = 0.75 and
β = 60◦). The (b) picture has been artificially computed from the (a) one. Image
(c) is a butterfly with a distinct shape.

3.1 An elementary algorithm

One straightforward way to estimate parameters between two similar objects
f 1 and f 2 can be derived directly from the shift theorem. Taking the modulus
and phase of both sides of Eq. (5) leads to the explicit expression of the
parameters:






α =

∣∣∣∣∣
Mf1

σ
(k, v)

Mf2
σ
(k, v)

∣∣∣∣∣

1

σ

β =
1

k

(
argMf2

σ
(k, v) − argMf1

σ
(k, v) − v lnα

)
mod

(
2π

k

)
(8)

for k, Mf1
σ
(k, v) and Mf2

σ
(k, v) non zero.

Under these assumptions, every AFMT harmonic can be used to estimate the
geometrical parameters. This algorithm has been used in [22], with v = 0.
A similar method has also been designed in the case of geometric moments
and the estimation of affine motion [23]. In this work, the affine parameters
between two objects are estimated with six moments up to order three.

Although very quick, this kind of algorithm suffers from the following major
drawbacks:

(1) The algorithm supposes the two objects have the same shape and the
matching task is assumed to have been done previously.

(2) The estimation β̂ depends on the estimation α̂ so that errors are cumu-
lated. Furthermore, due to the 1

k
term in the expression of β, a phase

wrapping problem occurs.
(3) Different couples (ki, vi) may produce several estimations α̂i and β̂i, since

we only get an approximation of Fourier-Mellin harmonics. The reliability
of the estimation depends on the choice of the harmonics. One solution is
to compute the mean of several estimations, but the second point remains.
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Fig. 3. Illustration of the elementary algorithm using images (a) and (b) in Fig. 2.
The cross symbol denotes the real parameters (α = 0.75, β = 1 rad) whereas a
diamond shows an estimate.

The last two points are illustrated in Fig. 3 where different estimates of the
parameters between the two similar objects in Fig. 2 are reported. We used
about 20 couples (ki, vi) within the range [−5, 5]× [−5, 5]. The scale factor is
often underevaluated by 5 to 10% while the rotation angle can appear far
from the expected value, mainly due to the phase wrapping problem (2).
One important practical point is that the accuracy of estimations is more
reliable when relatively small order Fourier-Mellin harmonics are involved in
the computation.

3.2 AFMT-based Euclidean matching algorithm

A rigorous solution is now presented, based on the results in section 2. The
algorithm described below can both detect whether two objects have the same
shape and estimate their relative position.

The Euclidean norm in Eq. (1) can be used to compare two objects f and g by
computing ‖fσ − gσ‖L2(G). It is zero if and only if the objects are strictly iden-
tical and cannot be used to compare objects of different size and orientation.
To take into account possible changes in orientation and size, we formulate
the problem as follows: for all (ρ, ψ) in R

∗
+
× S

1, we define the functional E

according to:

Efσ ,gσ
(ρ, ψ) = ‖fσ(r, θ) − gσ(ρr, θ + ψ)‖

L2(G) . (9)

By using the Parseval equality (4) and the shift theorem for gσ (5), E can be
rewritten with the appropriate norm in the Fourier-Mellin domain: ∀(ρ, ψ) ∈

9
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Fig. 4. Three-dimensional plots of E for (a) the similar images, and (b) the distinct
images in Fig. 2. Figure (b) clearly shows no prevailing minimum.

R
∗
+
× S

1,

Efσ ,gσ
(ρ, ψ) =

∥∥∥Mfσ(r,θ) −Mgσ(ρr,θ+ψ)

∥∥∥
L2(Ĝ)

,

=




∫ +∞

−∞

∑

k∈Z

∣∣∣Mfσ
(k, v) − ρ−σ+iv eikψ Mgσ

(k, v)
∣∣∣
2
dv





1

2

.

(10)

When parameters ρ and ψ go through the similarity group, we get a measure
of the objects’ correspondance for each location of the transformation group.
If E = 0 for a certain couple (α, β), then the matching between the objects
is achieved (the objects should be considered as similar) and the parameters
(α, β) correspond to the similarity transformation that should be applied on
the first object to match the second. Note that the couple of parameters is
not necessarily unique, e.g. rotationally symmetric images, see section 4.

3.3 Algorithm efficiency, optimization and experimental results

The computation of E in the Fourier-Mellin domain (10) is much more effi-
cient and reliable than the direct computation in the orignal shape space (9).
Indeed, rotation and scale transformations are not suited to the Cartesian grid
and interpolation between gray-levels is necessary for each polar coordinates
(ρr, θ+ψ). This can be an important source of numerical error. On the other
hand, the computation from (10) needs only complex multiplications, with-
out additional error and the complexity in greatly reduced. Furthermore, this
formulation makes it possible to use a discrete and finite extent set of AFMT
harmonics.

10
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Figure 4 shows a 3D representation of the matching functions obtained from
the AFMT representations of the butterfly images in Fig. 2. The spectrum
sizes were set to k ∈ [−20; 20] and v ∈ [−20; 20], that is to say 1681 harmonics
for each image. The surface exhibits a well-pronounced pit for similar objects
with a minimum value located at the expected parameters (a). Such a pit
cannot be found in the case of the two distinct objects (b). In this case, it
should also be pointed out that the surface decreases more and more slowly as
the scale parameter increases and the rotation angle has almost no influence
on the measure.

Due to approximations and the anisotropy of the Cartesian grid to similarity
transformations, the minimum value is not exactly zero for similar objects and
the estimation of motion parameters becomes the search for a couple (ρ̂E, ψ̂E)
which minimizes the functional (10):

(
ρ̂E, ψ̂E

)
= arg

(

min
ρ∈R∗

+
,ψ∈S1

Êfσ ,gσ
(ρ, ψ)

)

︸ ︷︷ ︸
Ê

min
fσ,gσ

. (11)

The location of the minimum value is estimated using a classical optimization
algorithm based on a modification of Powell’s algorithm [24]. The method
does not need derivatives and the descent along the gradient is reiterated
until convergence is attained, according to a given threshold. This algorithm
is known to be quite simple but sensitive to the presence of local optima.
Therefore, the choice for a convenient initial value is of importance. We used
the estimation provided by the elementary algorithm described in section 3.1,
computed from the harmonic defined by (k = 1, v = 1). When the optimization
process does not converge to values within reasonable limits (given by the
image borders), we may conclude that the objects have distinct shapes and
the estimation of parameters is not required.

The optimization process is illustrated in Fig. 5 for the butterfly images (a)
and (b) in Fig. 2. The 3D surface shows a zoom on the pit of figure 4(a). The
smoothness of the surface on the small scale is mainly due to the robustness
of the AFMT approximation algorithm.

The five steps toward the optimization process are reported in table 1. The
initial values obtained from the elementary algorithm are ρ̂0 = 0.6832, ψ̂0 =
59.63◦ and Ê0

a,b = 313.21. The final estimation was obtained after 5 iterations.

We get the following values : ρ̂E = 0.7489, ψ̂E = 59.95◦ and Êmin
a,b = 85.63.

One interesting point is the great improvement for the estimation of the scale
parameter: the error reduces from 8.9% to 0.15%. The minimum value is also
divided by a factor of 3.7.

11
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Fig. 5. Zoom on the pit in figure 4(a). The path through the surface shows the
five optimization steps from the initial estimation (ρ̂0, ψ̂0) to the final estimation
(ρ̂E, ψ̂E) (cf. Table 1). The threshold has been set to 10−5.

Table 1
Optimization steps for images (a) and (b) in Fig. 2.

Iteration (i) ρ̂i ψ̂i Ê
i
a,b

0 0.6832 1.0408 (59.63◦) 313.21

1 0.7032 1.0470 (59.99◦) 227.03

2 0.7432 1.0468 (59.98◦) 89.34

3 0.7488 1.0467 (59.97◦) 85.64

4 0.7489 1.0464(59.95
◦) 85.63

A second estimation result is reported in Fig. 6. Two pictures of an electronic
board lying on a nearly uniform background were acquired with a digital
camera. The change of pose was obtained by performing a camera zoom and
a rotation of the board. The pit in Fig. (c) is less sharp than the one in
Fig. 4 but is still well pronounced. We obtained the following estimates after
six iterations : ρ̂6 = 0.76, ψ̂6 = −0.61 (34.7◦) and Ê6

a,b = 221.5. We verified
that these parameters correspond to the similarity transform that should be
applied on the (b) image to match the (a) one.

3.4 Plane rotation group and Hausdorff distance between shapes

When the group of transformations is restricted to the compact group of rota-
tions, we now show that the minimum of E is precisely the Hausdorff distance
between shapes when expressed in the AFMT domain. For pattern matching,
the Hausdorff distance has mainly been used for comparing point sets and

12
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Fig. 6. Two still pictures of an electronic board acquired with a digital camera. The
(c) image represents the three-dimensional plot of E and exhibits a minimum that
corresponds to the estimated scale and rotation parameters between (a) and (b).

straight lines between an image and a pattern [25, 26, 27].

If the set of transformations is restricted to the one parameter plane rotation
group S

1, a shape is formed by all similar objects up to a rotation. In the
Fourier-Mellin domain, we get from Eq. (7) (setting α = 1):

F =
{(

eikβ Mfσ
(k, v)

)

(k,v)∈Ĝ
, β ∈ S

1
}
, Mfσ

∈ L2(Ĝ).

The restriction of E in Eq. (10) to S
1 is then:

Efσ ,gσ
(ψ) =




∫ +∞

−∞

∑

k∈Z

∣∣∣Mfσ
(k, v) − eikψ Mgσ

(k, v)
∣∣∣
2
dv





1

2

. (12)
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Shapes are now compact and bounded sets since there exists a continuous
bijection with S

1. The shape space becomes the quotient space L2(Z × R)/S
1

which is a metric space with the Hausdorff distance [16, 7]. We now extend the
result obtained on closed contours and Fourier coefficients [20] to gray-level
images and AFMT.

The Hausdorff distance between two shapes F and G is given by:

∆ (F,G) = max (δ (F,G) , δ (G,F)) ,

in which δ (F,G) = max
f∈F

min
g∈G

d2(f, g) and d2 is the Euclidean distance derived

from the L2-norms. In the Fourier-Mellin domain, the Hausdorff distance can
be written:

δ(F,G) = max
ϕ∈S1

min
φ∈S1

∥∥∥eikϕMfσ
(k, v) − eikφMgσ

(k, v)
∥∥∥
L2(Ĝ)

,

= max
ϕ∈S1

min
φ∈S1

∥∥∥Mfσ
(k, v) − eik(φ−ϕ)Mgσ

(k, v)
∥∥∥
L2(Ĝ)

.

Using the following change of variable ψ = φ− ϕ, we get:

δ(F,G) = min
ψ∈S1

∥∥∥Mfσ
(k, v) − eikψMgσ

(k, v)
∥∥∥
L2(Ĝ)

,

= min
ψ∈S1

Efσ ,gσ
(ψ),

since parameter ϕ no longer exists.

In a similar way, we also get:

δ(G,F) = min
ψ∈S1

Egσ ,fσ
(ψ) = min

ψ∈S1
Efσ ,gσ

(ψ),

and the Hausdorff distance is reduced to the following quantity :

∆(F,G) = min
ψ∈S1

Efσ ,gσ
(ψ). (13)

Hence, the minimum value of E in Eq. (12) is exactly the Hausdorff distance
between shapes. This result ensures the uniqueness of parameters and is the
basis for the symmetry detection algorithms presented in the next section.

For illustration purposes, figure 7 shows the Hausdorff distance (b) computed
from the two images in (a). The minimum value is attained for ψ = 35◦ which
is precisely the orientation difference between the two images.

14
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Fig. 7. Plot of the Hausdorff distance (b) computed from the two images in (a).
The second picture has been artificially computed from the first one. The minimum
value ∆ = 23.61 is attained for ψ = 35.02◦.

(a) (b) (c) (d)

Fig. 8. Four test images used for symmetry detection and estimation experiments.
(a) and (b) are binary images whereas (c) and (d) are gray-level ones.

4 Rotation and reflection symmetry estimation

Two algorithms are now derived for the detection and estimation of both ro-
tational and reflectional symmetries in gray-level images. For algorithm illus-
tration purposes, experiments are conducted on the four test images in Fig. 8.
Image (a) shows nine rotation and reflection symmetries. The image in (b)
represents a special case of an image with an ”infinite number” of symmetry.
The butterfly (c) presents one reflection and no rotation symmetry whereas
the starfish (d) shows five prevailing axes of both symmetry types. We finish
with some symmetry detection results obtained from real gray-level images of
aerial images of roundabouts.
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Z
a[

Fig. 9. Magnitude of central Fourier-Mellin harmonics of the images (a), (d) and
(b) in Fig. 8, respectively.

4.1 Rotationally symmetric images

In this paragraph, we use the Hausdorff distance for the detection and the
estimation of folds in rotationally symmetric images. Following [28], a 2D
image is called P rotationally symmetric (P-RSI for short), if it is invariant
under rotation of 2π/P about the center of gravity of the object and P is the
largest integer:

∀(r, θ) ∈ R
∗
+
× S

1, f(r, θ) = f

(

r, θ +
2πl

P

)

, l = 0, . . . ,P − 1. (14)

The AFMT can be seen as the analytical Mellin transform of the Fourier
coefficients of an image. Since the Fourier coefficients F(k) of a P-RSI f is
zero for every k not a multiple of P, the AFMT is zero except for k multiple
of P and v real. This is illustrated in Fig. 9 which shows the magnitude of
central Fourier-Mellin harmonics of the three rotationally symmetric images in
Fig. 8. In the first two cases, the AFMT is approximately zero for k a multiple
of nine and five respectively, which corresponds to the number of fold axes in
the images. In the case of the disk, the Fourier-Mellin transform is zero except
for k = 0 and corresponds to the special case of an image with an ”infinite
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Fig. 10. Plot of Efσ ,fσ
(ψ) for the four images in Fig. 8.

number” of folds.

For the detection and estimation of folds in an RSI f , we propose to compute
Efσ ,fσ

(ψ) from (12), which can be written as:

∀ψ ∈ S
1, Efσ ,fσ

(ψ) =



2
∑

k∈Z

(1 − cos (kψ))
∫ +∞

−∞

|Mfσ
(k, v)|2 dv





1

2

. (15)

It is easy to show that Efσ ,fσ
is even and periodic with period 2π

P
. The orien-

tation of the folds is given by angles ψi such that Efσ ,fσ
(ψi) = 0. The solution

Efσ ,fσ
(0) = 0 is always true since any image is rotationally symmetric with

respect to 0◦ rotation.

The detected axes for the shapes sketched in figure 8 are reported in fig-
ure 10. Angles are given from the x-axis and clockwise. The top-left result
shows nearly zero values according to the fold axes of image 8(a). The min-
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ima of the bottom-right result correspond to the rotation symmetric axes of
the starfish (−144◦, −72◦, 0◦, 72◦, and 144◦). For the disk image (top-right
result), E should have been exactly zero everywhere, which is not the case,
due to approximations. We only get exactly zero for angles that are multiples
of 90◦ since the Cartesian grid is isotropic to these angles (every pixel finds an
exact location on the grid). Nevertheless, the curve is near zero compared to
other results. The butterfly image is not rotationally symmetric and the only
zero in the bottom left result is located at ψ = 0.

4.2 Reflection symmetric images

Two images f and g are called reflection-symmetric, if they are similar up to
a reflection with respect to one line, denoted as the reflection-symmetric axis:

∀(r, θ) ∈ R
∗
+
× S

1, f (r, φ+ θ) = g (r, φ− θ) , (16)

where φ is the angle between the x-axis and the symmetric axis. One can
easily show that the AFMT harmonics of f and g are related according to :

∀(k, v) ∈ Z × R, Mgσ
(k, v) = e−2ikφ Mfσ

(−k, v). (17)

Fourier-Mellin harmonics on both parts of the k-axis have the same magnitude
and a phase shift with angle −2kφ.

Following work done for rotationally symmetric images, the matching between
f and itself is computed according to:

∀φ ∈ S
1, Ffσ ,fσ

(φ) =

(∫ ∞

0

∫ 2π

0
r2σ |f (r, φ+ θ) − f (r, φ− θ)|2 dθ

dr

r

) 1

2

.

In the Fourier-Mellin domain and using Eq. (17), we finally get :

Ffσ ,fσ
(φ) =




∫ +∞

−∞

∑

k∈Z

∣∣∣Mfσ
(k, v) − e−2ikφ Mfσ

(−k, v)
∣∣∣
2
dv





1

2

. (18)

F is zero for each angle φ which defines a reflection symmetric axis (angle φ+π
denotes the same axis). It is easy to verify that Ffσ ,fσ

is also even and periodic
according to two times the number of reflection axes. Due to approximations,
the axes are estimated by searching for the minima in Ffσ ,fσ

.

Fig. 11 reports the results obtained from the images in Fig. 8. Angles are
given in degrees from the x-axis and clockwise. The range of φ is restricted to
[0◦; 180◦[ due to the parity of F. The plots clearly show minima located at the
angles of the symmetric axes of the images. Each image shows either one (the
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Fig. 11. Plot of Ffσ ,fσ
(φ) for the four images in Fig. 8.

(c) image), or N symmetric axes (the other three images) with N the number
of rotational symmetries in the image.

4.3 Further experiments and discussion

The aim of this section is, first, to give the reader an idea on the reliability
of the symmetry detection algorithms and, second, to discuss the intrinsic
limitations of the method. All the experiments are conducted on the aerial
images of roundabouts in Fig. 12. These images show complex and noisy shapes
and allow to test the algorithms to non perfect symmetry, rough segmentation
and small perspective transformations due to the viewpoint. All the results
reported here come from the reflection symmetry detection algorithm.

The FMT is a global transform and applies on all pixels in the same way.
Hence, the detection algorithms are not appropriated to handle objects lost
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(a) (b) (c) (d)

Fig. 12. Images (a) and (b) show two aerial pictures of roundabouts (panchromatic
Ikonos image, ground resolution: 1 meter), by courtesy of CNES. Images (c) and
(d) show the roundabout after extraction from the background.
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Fig. 13. Plot of F(φ) for the (a) and (c) images in Fig. 12. The dashed curves
were obtained when the center of coordinates was set automatically to the center of
gravity whereas the plain curves were obtained when the center of coordinates was
set manually.

in a complex background, i.e. without a prior extraction from the scene they
belong to. Indeed, all the symmetry axes of an object necessarily intersect
each other at the center of gravity. In the case of a scene with a complex
background, the center of gravity can be far from the one obtained with the
isolated object and detecting symmetry axes becomes impossible. This remark
is illustrated in Fig. 13(a), where some of the minima are difficult to localize.
It is clear that the symmetry axes can be detected reliably only when the
roundabout has been previously extracted from the scene (Fig. 13(b)). In that
case, we obtained the four following angles: 20.4◦, 65.6◦, 110.8◦ and 155.5◦.
The same experiment was conducted on the (d) image in Fig. 12 and we
obtained the three following angles: 55.5◦, 116.9◦ and 172.8◦. Fig. 14 shows
the superposition of the estimated axes with the original images.

To conclude with these experiments, we may say that the symmetry detection
algorithms can deal with small local deformations and occlusions of shapes,
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(a) (b)

Fig. 14. Superposition of the estimated reflection axes with the images.

under the assumption that objects have been previously extracted from the
scene. As mentioned, a good localization of the center of coordinates is an
important issue to obtain reliable estimations.

5 Conclusion

In this paper, we considered the problem of estimating the scale and orienta-
tion differences between gray-level objects. This problem has been formulated
as the minimization of a functional defined from the Analytical Fourier-Mellin
Transform representation of objects. This functional was constructed accord-
ing to an appropriate Euclidean distance involving the rotation and scale pa-
rameters of the similarity group. It has also been shown to be useful for the
evaluation of global shape difference between objects since its minimum also
furnishes a measure of similarity between objects.

We also investigated the problem of estimating rotational and reflectional
symmetries in objects. We have shown that, when only the group of rotations is
considered, the shape space is metric and its natural distance is the Hausdorff
one expressed in the Fourier-Mellin domain. This result ensures the uniqueness
of parameters and extends the result obtained in [20] for planar closed contours
and Fourier coefficients to gray-level images and AFMT. As an application,
we proposed two algorithms in order to detect and localize all the rotational
and reflectional symmetry axes of any gray-level object. One advantage is
that we do not assume the images to be symmetric since the values of the
minima can be used to determine whether the input image is symmetric or
not. The experiments conducted on two noisy and non perfect symmetric aerial
pictures of roundabouts seem to confirm the reliability of the method and the
robustness of the algorithms.

Acknowledgments The authors are grateful to the Remote Sensing Image
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images of roundabouts.
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