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Abstract This paper presents a contextual algorithm for the
approximation of Baum’s forward and backward probabili-
ties, which are extensively used in the framework of Hidden
Markov chain models for parameter estimation. The method
differs from the original algorithm by taking into account
only a neighborhood of limited length and not all the data
in the chain for computations. It then becomes possible to
propose a bootstrap subsampling strategy for the computa-
tion of forward and backward probabilities, which greatly
reduces computation time and memory saving required for
EM-based parameter estimation. Comparative experiments
regarding the neighborhood size and the bootstrap sample
size are conducted by mean of unsupervised classification
error rates. Practical interest of such an algorithm is then
illustrated through the segmentation of large-size images;
classification results confirm the validity and the accuracy of
the proposed algorithm while greatly reducing computation
and memory requirements.
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1 Introduction

The discrete Hidden Markov chain (HMC) model has shown
to be very performing in a number of different contexts, cov-
ering economical prediction, health sciences and, especially,
signal and image processing, with applications in automatic
speech recognition [25], gesture analysis [28], and image
segmentation [3], for examples. From its first introduction
in the seventies, a great amount of effort has been devoted
to the development and improvement of the HMC structure
at several levels. Indeed, the HMC model has been extended
with different topologies including pairwise [10], triplet [24],
and higher-order [4] HMCs, and with other architectures like
HMM2 [27], factorial [16], and coupled [29] HMCs, among
others. All those methods improve the capabilities of the clas-
sic HMC to model more complex situations (correlated noise,
coupled data, …), but to the cost of an increase of algorithms
complexity and memory requirements when model parame-
ters have to be estimated.

In an unsupervised context, HMC model parameters need
to be estimated from available data before Bayesian clas-
sification, either using EM (Expectation–Maximization) [9],
SEM (Stochastic EM) [7], or ICE (Iterative Conditional Esti-
mation) [22] procedures. Such algorithms become very time
and memory demanding in case of huge datasets like network
traffic data or large satellite images for which size can exceed
108 pixels. One solution proposed in [6] is to divide data into
overlapping windows of fixed size (say 100 pixels length for
example) and to classify the central data of each window
using parameters estimated on the window only. However,
this sliding window method faces the following problem.
Suppose that the entire dataset must be classified in two clas-
ses. All windows do not necessarily contain data from the two
classes but can contain data from one class only (think about
an homogeneous region in an image for example). This leads
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to estimation problems. To remedy, authors proposed to esti-
mate the number of classes in each window using Bayesian
or Akaike Information Criteria (BIC and AIC).

One main reason for time and memory consumption of
the HMC model comes from the computation and saving
of Baum’s Forward and Backward (F&B) probabilities [2],
which are extensively used for unsupervised parameter esti-
mation (whatever the estimation procedure). Especially, the
memory requirements needed to save those probabilities can
become prohibitive for large-size datasets or when the num-
ber of classes is high. Since data collections tend to grow,
it is interesting to propose a solution that preserves the nice
properties of the HMC model which as proved itself to be
very effective in a number of situations, especially in case
of strongly noisy signals [15]. In this work, we propose a
contextual algorithm for the computation of F&B probabil-
ities. The algorithm differs from the original one since it
takes into account a neighborhood of limited extent and not
all the chain for probability computations. As explained lat-
ter in details, the approach is justified by the short memory
property of Markov processes, that is, the correlation between
data “decreases quickly to zero” as the distance between them
increases. It then becomes possible to select a bootstrap rep-
resentative subsample of data, for which F&B probabilities
are computed. By adapting the original EM procedure to this
resampling context, the estimation of HMC parameters is
performed on the selected dataset only, which greatly reduces
computing time and memory requirements.

The paper is organized as follows. Section 2 recalls basic
facts about HMC-based Bayesian classification and unsuper-
vised parameter estimation using EM procedure. Section 3
presents the main novelties of the paper, that is, a new con-
textual algorithm for the approximation of F&B probabili-
ties and its integration in a bootstrap subsampling scheme
for fast unsupervised parameter estimation. Performance of
algorithms is systematically evaluated on numerous exper-
iments using synthetic noisy data. Finally, algorithms are
illustrated in the context of large-size images segmentation
in Sect. 4. Conclusion and further work are drawn in Sect. 5.

2 HMC model and EM-based estimation

This section is devoted to set notations and to recall some
basics facts about EM-based parameter estimation in the
HMC context.

2.1 Hidden Markov chain model

Let X = (X1, . . . , X N ) and Y = (Y1, . . . , YN ) be two ran-
dom processes corresponding to the (hidden) state sequence
and the observed sequence. N denotes the number of obser-
vations to be classified. Each random variable Xn takes

its values in a finite set of classes � = {1, . . . , K }, and
each random variable Yn takes its values in the set of real
numbers R. The problem of estimating X from Y , which
occurs in numerous applications, can be solved with Bayes-
ian methods once one has chosen some accurate distribution
p (x, y) for Z = (X, Y).

For time series, the hidden Markov chain model is the sim-
plest and most well-known model for Z [14]. In this model,
X is assumed to be a homogeneous Markov chain, that is,
the entries of the C matrix c(i, j) = p (Xn = i, Xn+1 = j),
for all i, j ∈ �, are independent of n. The distribution of X
is consequently determined by an initial distribution vector,
denoted by π , which entries are defined by

∀i ∈ �, π(i) = p (Xn = i) =
K∑

l=1

c(i, l) (1)

and a transition matrix T which entries are given by:

∀i, j ∈ �, t (i, j) = p (Xn+1 = j |Xn = i )

= c(i, j)

π(i)
(2)

Following usual assumptions

– random variables Y1, . . . , YN are conditionally indepen-
dent with respect to X , and

– the distribution of each Yn conditionally on X is equal to
its distribution conditional on Xn ,

we write p ( y |x ) = ∏N
n=1 p (yn |xn ). The K data-driven

densities p (yn |xn ) = fxn (yn) model the “noise” or the var-
iability of each class.

Hence, the distribution of Z writes

p (x, y) = π(x1) fx1(y1)

N∏

n=2

t (xn−1, xn) fxn (yn)

It is well-known that process X |Y is a Markov chain and
Bayesian restoration1 is made possible according to the MAP
(Maximum A Posteriori) criterion

x̂MAP = arg max
x∈�N

p (x | y ) (3)

using Viterbi’s algorithm [25], or the MPM (Maximum
Posterior Mode) criterion

x̂MPM( y) = (̂x1, . . . , x̂N ) (4)

with x̂n = arg maxxn∈� p (xn | y )

Bayesian classification requires the entries of the C matrix
and the set � of parameters for the K data-driven densities,

1 that is, minimum mean error rate-based restoration
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for example, means and standard deviations when assum-
ing Gaussian distributions. Most of the time, these parame-
ters are not known and must be estimated from observations
only. This can be achieved using EM [5,9,20], SEM [7], or
ICE [8,22,23] iterative procedures. The first two methods
are based on likelihood maximization, whereas the third one
is based on conditional expectation of complete data esti-
mators in a mean-square error sense. SEM and ICE require
the simulation of X |Y , which cannot be adapted to the con-
text described here (see remark 2) so that we only consider
EM-based estimation.

2.2 EM-based parameter estimation

One of the nice properties of HMC we are interested in this
paper is that all the posterior distributions p (Xn = k | y ) and
p (Xn = l, Xn+1 = k | y ) are calculable, even for large N .
The method is based on the so-called Baum’s forward and
backward recursion algorithm [2,11,20] and recalled in the
sequel for latter use. According to the synoptic sketched in
Fig. 1, all probabilities presented below are computed at each
iteration EM � ∈ [1,L] and notations should depend on �.
However, we omit reference to � for clarity and simplicity.

The forward probabilities are defined by

αn(k) = p (Xn = k |y1:n )

with

α1(k) = π(k) fk (y1)

K∑

l=1

π(l) fl (y1)

αn(k) = 1

Sn
p (Xn = k, yn |y1:n−1 ) (5)

and can be computed using the following recursion

αn+1(k) = 1

Sn+1
fk (yn+1)

K∑

l=1

t (l, k) αn(l), (6)

with S1 = p (y1) and for 1 ≤ n ≤ N , Sn = p (yn |y1:n−1 ).
The backward probabilities are defined by βN (k) = 1 and,
∀n < N

βn(k) = p (yn+1:N |Xn = k )

p (yn+1:N |y1:n )

= 1

Sn+1

p (yn+1:N |Xn = k )

p (yn+2:N |y1:n+1 )
(7)

They can also be computed recursively using

βn(k) = 1

Sn+1

K∑

l=1

t (k, l) fl (yn+1) βn+1(l) (8)

for all k ∈ �

Fig. 1 Flowchart for unsupervised HMC classification: initialization,
EM-based estimation, and classification. � denotes the iteration number
and L the number of iterations to reach convergence

Then, it can easily be shown that a posteriori marginal
and joint distributions can be expressed as follows:

γn(k) = p (Xn = k | y ) = αn(k) βn(k) (9)

ξn(l, k) = p (Xn = l, Xn+1 = k | y )

= αn(l) βn+1(k) t (l, k) fk (yn+1)

Sn+1
(10)

Remark 1 Due to the sum-to-one property of forward prob-
abilities in (5), the normalization coefficients write

Sn+1 =
K∑

k=1

fk (yn+1)

K∑

l=1

t (l, k) αn(l). (11)

At iteration �, re-estimation formulae for mean and vari-
ance of Gaussian data-driven densities are given by
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μ[�](k) =
∑N

n=1
γ [�]

n (k) yn

∑N

n=1
γ [�]

n (k)

, (12)

σ 2 [�](k) =
∑N

n=1
γ [�]

n (k)
(

yn − μ[�](k)
)2

∑N

n=1
γ [�]

n (k)

, (13)

while re-estimation formula for C matrix entries is given by

c[�](l, k) = 1

N − 1

N−1∑

n=1

ξ [�]
n (l, k). (14)

A priori and transition probabilities are obtained using
Eqs. (1) and (2), respectively.

To start the iterative procedure, good initial value is
required for each parameter. For all experiments presented
below, we used the k means segmentation algorithm with K
classes and classical estimators from complete data.

3 Resampling-based EM parameter estimation

The section intends to present an original algorithm for quick
but accurate approximation of HMC model parameters based
on EM principle. First, a contextual approximation of for-
ward and backward probabilities is presented and evaluated
through a set of experiments on synthetic noisy data. Then,
the algorithm is integrated in a subsampling scheme to make
HMC parameter estimation fast and memory saving, while
keeping accuracy as confirmed latter by extensive experi-
ments.

3.1 Contextual approximation of forward and backward
probabilities

The gradual computation of forward and backward probabili-
ties illustrates the global behavior of Markov chain modeling,
that is, each data of a time series are linked to all previous
data by the one just before. Given the nth data, one can ask for
the influence of a data with index m < n on the computation
of αn(.), knowing that a Markov chain is a “short memory”
process. The same question arises for βn(.).

To evaluate such an influence, the following experiment
has been conducted: for each observation, the forward and
backward recursion rules are applied only considering a lim-
ited number of neighboring data around it:

– Extract a subchain around the data with index n delimited
by range [n − λ; n + λ], see Fig. 2. The window size is
then 2λ + 1.

– Apply the forward and backward recursion algorithms
[see Eqs. (5) and (7)] considering the subprocesses
˜X1:2λ+1 = Xn−λ:n+λ and ˜Y 1:2λ+1 = Y n−λ:n+λ.

Fig. 2 Neighborhood used to estimate αn and βn

– Store probabilities αn(k) = α̃λ+1(k) and βn(k) =
β̃λ+1(k) for all k ∈ � and discard all other probabili-
ties.

These steps are reproduced for all data of index n ∈ [1, N ],
with special care on the first and last λ observations. Hence,
this way we get a contextual approximation of forward and
backward probabilities for all the data. The next steps to
parameter estimation remain the same (see Fig. 1).

The influence of the neighborhood on the algorithm accu-
racy is now evaluated with respect to λ, by means of clas-
sification error rates computed on noisy synthetic data. To
simulate noisy data, we first simulate N = 65536 samples
(which corresponds to an image with size 256×256) follow-
ing a K = 2 classes Markov chain model (x) and then add
some Gaussian noise to each class to get a set of N noisy data
( y). More precisely, parameters used for data generation are:

– Markov chain parameters: π =
(

0.5
0.5

)
, T =

(
0.9 0.1
0.1 0.9

)
.

– Gaussian data-driven densities: means μ1 = 0 and μ2 =
1; standard deviations σ1 = σ2 = 1.

For each experiment, the number of iterations for EM was set
to L = 60, assuming convergence. The simulated Markov
chain x is used as a ground truth for comparison with unsu-
pervised restorations obtained from y only. The MPM-based
classification results are means of 50 independent experi-
ments.

The supervised restoration of y2 gives a mean error rate of
17.85% (std: 0.28). The unsupervised restoration of y with
parameters estimated using the classical algorithm described
in Sect. 2 gives a mean error rate of 17.86% (std: 0.27). These
results confirm the very nice behavior of EM in the context
considered here.

Unsupervised restoration results of y are reported in Fig. 3,
with parameters estimated using the algorithm described
above for increasing values of λ. As expected, the error rate
decreases when the size of the window increases. Indeed,
as λ grown, we get a better approximation of forward and
backward probabilities, and so a better estimation of model
parameters used for Bayesian classification. In this experi-
ment, the supervised error rate is reached for λ ≤ 3.

2 that is, restoration with true parameters
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Fig. 3 Classification error rates versus the neighbor size (λ) for MPM
classification, when model parameters are estimated using the contex-
tual approximation proposed

This experiment confirms that the influence of far apart
data decreases rapidly on forward and backward probability
computations, as a consequence of the so-called “short mem-
ory” property of Markov processes. Next subsection tries to
follow up this behavior to design a fast and accurate algorithm
for EM-based parameter estimation. It should be, however,
noted that the λ value is application dependent and should
be carefully chosen. For example, in speech modeling appli-
cations, the structure of HMM is generally left-to-right and
the number of states very large (a few dozens). In that case,
the context must be large enough to avoid confusion between
phonemes and words in recognition.

3.2 Subsampling-based parameter estimation

Even if forward and backward recursion algorithms make
posterior probabilities γn(.) and ξn(., .) computable for large
N , computer memory requirements for storing all probabil-
ities limit its usage in practice. In satellite image segmen-
tation for example, we more and more face the problem of
segmenting image with more than 108 pixels. Furthermore,
since computation time is linear with respect to N , estimation
time can be prohibitive for such datasets. We now propose to
combine the algorithm described in previous section to esti-
mate parameters with a representative subset of the original
dataset.

According to previous experiments, it is possible to get a
good approximation of forward and backward probabilities
at index n without requiring to compute αn−1(.) and βn+1(.)

(if λ is large enough). The main idea the proposed algo-
rithm relies on is to estimate HMC parameters based only
on a subsample w = {w1, . . . , wM } of the original dataset
y = {y1, . . . , yN }, with M � N .

The choice of an optimal representative subset A is cru-
cial, and we make use of the bootstrap resampling technique
as proposed by Efron [12,13]. A bootstrap sample is obtained
by independent drawings with replacement from the empiri-
cal distribution (given by data histogram H ). The question of
finding an optimal number M = card {A} of representative
data has been addressed in [1] (see also [21]): if G denotes
the number of bins in H then M is the highest value such
that T (M) < ε with

T (M) =
G∑

g=1

H(g) e−M H(g)

1 − e−M H(g)

and ε a fixed small value set to 0.03 for image segmentation
experiments.

Parameters re-estimation formulae in Eq. (12) to (14)
rewrite

μ[�](k) =
∑

a∈A γ [�]
a (k) ya

∑
a∈A γ [�]

a (k)
, (15)

σ 2 [�](k) =
∑

a∈A γ [�]
a (k)

(
ya − μ[�](k)

)2

∑
a∈A γ [�]

a (k)
, (16)

c[�](l, k) = 1

M1

∑
a∈A ξ [�]

a (l, k), (17)

with

γ [�]
a (k) = α[�]

a (k) β[�]
a (k), (18)

ξ [�]
a (l, k) = α

[�]
a (l) β

[�]
a+1(k) t [�](l, k) f [�]

k (ya+1)

S[�]
a+1

. (19)

for all a ∈ A. Probabilitiesα[�]
a (.) and β

[�]
a (.) are computed

at each EM iteration � using the contextual approximation
presented in previous subsection. Regarding Eq. (19), S[�]

a+1

can be computed using (11) that only requires α
[�]
a (.). The

computation of β
[�]
a+1(.) can be easily obtained by solving the

square system in Eq. (8), which only requires β
[�]
a (.).

To illustrate the algorithm, we continued experiments
reported before (all parameter values remain). From each
of the 50 simulated samples, we extracted a representative
subset of size M that is used for parameter estimation accord-
ing to the algorithm detailed above. More precisely, the sub-
sample is redrawn at each EM iteration to avoid degenerate
behaviors. To measure performances, we have studied the
influence of λ and M on misclassification rates. Results are
reported in plots of Fig. 4. As expected, whatever the sub-
sample size, error rates decrease as λ increases. It can be
observed that, for a value of λ between 5 and 10, the error
rates reach a constant value. For low sample sizes, classifi-
cation results show a higher variability as suggested by the
increase of the standard deviation of error rates.
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Fig. 4 Error rates versus the neighbor size (λ) when model parameters are estimated using the contextual approximation with varying subsample
sizes. a M = 14288 (21.80 %), b M = 3368 (5.13 %), c M = 2003 (3.06 %), d M = 911 (1.39 %),

Mean computing time for all the experiments is reported
in plots of Fig. 5. The horizontal line represents the process-
ing time required by the classical EM estimation procedure
(41 s) for L = 100 iterations. The colored lines represent the
computing time for the same experiment but considering the
subsampling approximation strategy described in this work,
with varying number of samples (from M = 911 to 14, 288)
and varying window sizes (from λ = 1 to 40). As expected,
the computing time is linear with respect to λ. It is also linear
with respect to the number of samples selected for parame-
ter estimation. One can note that the gain in computational
efficiency is not given by the ratio of M by N . The reason is
twofold:

– The estimation of αa and βa for the sub-sample is more
time-consuming than the estimation of αn and βn for
the original sample. Indeed, the estimation of αa and βa

requires the computation of 2λ + 1 temporary forward
and backward probabilities.

– The time required to sub-sample the data at each iteration
of EM is not negligible.

Fig. 5 Processing time for four subsample sizes M with respect to
the neighbor size λ. The horizontal line denotes the computing time
required by the classical EM procedure

Remark 2 Unlike EM, SEM and ICE estimation proce-
dures require simulations of X conditionally to Y , which is
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a non-homogeneous Markov chain with initial law given by
p (X1 = k |y ) = γ1(k) and transition matrix given by

ãn(l, k) = p (Xn+1 = k |Xn = l, y )

= t (l, k) fk (yn+1) βn+1(k)

Sn+1 βn(l)
.

Hence, the simulation of xn requires xn−1 which is not known
in the contextual approximation proposed here. A solution is
to simulate x a posteriori according to its marginal distribu-
tion given by γn(.), as experimented in [3].

4 Application to large-size image segmentation

Experiments described in the previous section have been con-
ducted on noisy simulated Markov chains. We can now won-
der whether the same favorable behavior can be observe when
considering real data, that is, data that are not supposed to

Fig. 6 Illustration of the Peano scan on a 8 × 8 image and of the
approximation algorithm on the generated sequence (red dots represent
bootstrap subsample) (color figure online)

follow a Markov chain model, such as image data. Whatever
they are photographic, medical, or satellite based, images
reach millions of pixels due to technological improvements
in sensor resolution, which make them good candidates for
the proposed algorithm.

Hence, we propose to evaluate the contextual algorithm
to segment images according to the HMC model, following
works in [3,15,17]. Here are the main steps to process an
image with the HMC model

– The bi-dimensional lattice of pixels is first converted into
a 1D sequence of observations (y) through the Hilbert-
Peano scan [26].

– Then, parameter estimation and Bayesian restoration
techniques can be applied to obtain a restored sequence
of class data (x),

– Finally, x is converted back to a class image by inverting
the scan [3].

We only select a small representative sample of pixels in
the generated Peano sequence to estimate parameters using
the contextual algorithm described in Sect. 3, see Fig. 6.

4.1 Experiment on a photographic image

The algorithm has first been evaluated on the 4000 × 2000
photographic image in Fig. 7. The image is noisy due to
under-illumination at the time of snapshot. The image was
segmented using the classical EM-based parameter estima-
tion and the contextual approximation described in this paper.
The image size is the maximum allowed for the computer
we used. We set K = 4 and L = 100. For the contextual
algorithm, we set λ = 3 and M = 1308 pixels, which repre-
sents 1.670/000 of the total number of pixels. Estimated HMC
model parameters for the two algorithms have been reported
in Table 1. As can be seen, parameter values are very close to

Fig. 7 Original photographic
image with 8 million pixels,
showing part of the town of
Marseilles, France. The
rectangle delimits the area for
which segmentation results is
compared in Fig. 8
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Table 1 Parameters estimated
to segment image in Fig. 7 with
(a) the classical EM estimation
procedure, and (b) the
contextual estimation procedure

π T (μk , σ
2
k )k∈[1,4]

(a)

⎛

⎜⎜⎝

0.32
0.22
0.25
0.21

⎞

⎟⎟⎠

⎛

⎜⎜⎝

0.99 0.01 0.00 0.00
0.01 0.96 0.02 0.00
0.00 0.02 0.97 0.01
0.00 0.00 0.02 0.98

⎞

⎟⎟⎠

(48.6, 197.1)

(95.4, 215.5)

(134.0, 135.4)

(170.6, 187.7)

(b)

⎛

⎜⎜⎝

0.31
0.22
0.26
0.21

⎞

⎟⎟⎠

⎛

⎜⎜⎝

0.99 0.01 0.00 0.00
0.01 0.97 0.02 0.00
0.00 0.02 0.97 0.01
0.00 0.00 0.01 0.99

⎞

⎟⎟⎠

(48.0, 195.9)

(94.7, 203.8)

(133.8, 127.7)

(169.5, 163.0)

Fig. 8 Crop (1,000 × 650) of 4-classes segmentations for image in
Fig. 7 using a the classical estimation procedure and b the contextual
estimation procedure (K = 4, L = 100, λ = 3 and M = 1,308). Class
values (between 0 and 3) have been replaced by the mean gray-value of
each class, see Table 1

each other, leading to nearly identical segmentation results,
see Fig. 8. The time spent to estimate parameters with the
classical algorithm is 3 h and 3 min and only 17 min and 45 s
for the contextual approximation.

4.2 Experiment on a spot V image

The algorithm has also been evaluated on the 3000 × 3000
Spot V satellite image in Fig. 9, over the Arcachon basin,
located on the French Atlantic coast. We set K = 5, L = 100,

Fig. 9 Spot V satellite image, French Arcachon basin, ©CNES 2010—
Distribution Spot Image. The rectangle (800 × 450) delimits the area
for which segmentation results will be displayed for comparison

λ = 3, and M = 3, 248 pixels, which represents 3.60/000 of
the total number of pixels. The segmented image is reported
in Fig. 10c and can be compared to the results obtained with
two classical “blind-based” algorithms in Fig. 10a, b. Obvi-
ously one can observe the stronger regularization effect in
segmented image obtained from the HMC model. What is
important to note is that the contextual algorithm allows to
segment large images that the classical algorithm cannot deal
with.

If we account for the double precision (i.e., 8 bytes) arrays
the classical and proposed algorithms require to store the
numerous probabilities involved in EM (forward, backward,
and marginal a posteriori), the peak memory consumption
reaches the following quantities:

– classical algorithm: N (3K + 1) * 8 bytes
– proposed algorithm: M(3K + 1)+ 2(2λ+ 1)K * 8 bytes

≈ M(3K + 1) * 8 bytes
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Fig. 10 Crop (800×450) of 5-classes segmentations for image in Fig. 9
using a the k means algorithm and b an EM-based “blind” Bayesian
classification procedure (K = 5 and L = 100), and c the contextual
estimation procedure (K = 5, L = 100, λ = 3 and M = 3,248). Class
values (between 0 and 4) have been expanded to cover the range [0, 255]
for visualization

so that the memory requirement gain is given by the ratio
between N and M , which is equal to 2,770 for the Spot image
of Arcachon basin.

5 Conclusion

This work describes an algorithm for the contextual estima-
tion of forward and backward probabilities, and its appli-
cation for EM-based unsupervised segmentation of large
datasets using the HMC model. This approximation consists
in considering only a neighborhood of limited extent in the
computation of probabilities, and not all the chain as it is done

in the original algorithm. The proposed method preserves the
global property of the HMC model (still governed by only one
set of parameters) while offering a contextual approximation.
Then, a bootstrap subsampling strategy, which takes benefit
of the previous algorithm, is proposed to get a quick but
accurate estimation of model parameters based on EM. We
validate our approach through a set of experiments on syn-
thetic data and we show that the use of Bootstrap resampling
can reach similar level of accuracy and robustness as the basic
algorithm, yet it amounts to a considerable processing speed
up. It is, however, important to note that the size of the context
(λ) is application dependent and should be carefully chosen.

Experiments on large-size photographic and satellite
images are used to illustrate the algorithm in real situations,
where the original algorithm cannot be applied due to its com-
putational and memory requirements. Of course, the algo-
rithm is not restricted to deal with image data but can be
of interest in any situation where data size to be explored is
huge.

This contextual algorithm can be adapted to forward-
and backward-like probabilities defined for the recent pair-
wise [10] and triplet [18,19] Markov chain models, which
are strictly more general than the HMC model studied here.
Also, in this work, we focused on scalar data and Gaussian
mixtures for sake of clarity, but the algorithm can be extended
to deal with generalized mixtures and multi-sensor data (e.g.,
in multi-spectral imagery).
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