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Abstract: Lower limb locomotion activity is of great interest in the field of human activity recognition.1

In this work, a semi-Markov triplet model-based method is proposed to recognise the locomotion2

activities when lower limbs move periodically. In the proposed algorithm, the gait phases (or3

leg phases) are introduced into the hidden states, and Gaussian mixture density is introduced to4

represent the complex conditioned observation density. The introduced sojourn state forms the5

semi-Markov structure, which naturally replicates the real transition of activity and gait during6

motion. Then, batch mode and on-line Expectation-Maximization (EM) algorithms are proposed7

respectively for model training and adaptive on-line recognition. The algorithm is tested on two8

datasets collected from wearable inertial sensors. The batch mode recognition accuracy reaches up9

to 95.16%, whereas the adaptive on-line recognition gradually obtains high accuracy after the time10

required for model updating. Experimental results show an improvement of performance compared11

to the other competitive algorithms.12

Keywords: Gait analysis; lower limb locomotion activity; triplet Markov model; semi-Markov model;13

on-line EM algorithm14

1. Introduction15

Locomotion activity has recently raised great research interest because of its significant potentials16

in many fields, e.g. rehabilitation for injured people [1], surveillance systems or health care for the17

elderly [2], daily activity management. . . Among these researches [3], many different types of sensors18

are used, such as camera, wireless beacon, electromyogram (EMG) sensors, electrocardiography (ECG)19

sensors, and inertial measurement units (IMUs). In a smart home, camera system or wireless beacon20

can help to understand the activity pattern of the host, and then provide suggestions for a healthy life21

or make decision when emergency is coming [4]. On the other hand, for the wearable sensors, EMGs22

can measure the electrical signal of muscles, while ECGs placed on specific body parts can monitor the23

heart rate. These kinds of signals can be used for evaluating the activity intensity. However, camera24

systems need to be pre-installed and calibrated, they are also sensitive to the light. While EMGs and25

ECGs have cables with the host, and they are sensitive to the moisture. By contrast, IMU sensors are26

small enough to be placed on the body and can be taken anywhere, providing information like 3D27

acceleration, angular rate, and magnetic field readings. In this work, given the advantages of using28

IMUs, we propose to use these sensors to collect the acceleration and angular rate of motion for the29

purpose of activity recognition.30
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Numerous single sensor-based and multiple sensors-based applications were developed under31

different scenarios. It seems that using multiple sensors is quite interesting and can help to recognise32

more complex activities. For example, Hsu et al. [5] utilized two IMU sensors placed on wrist and33

ankle to detect 10 daily activities and 11 sport activities. Xie et al. [6] used a hybrid system of inertial34

sensor and barometer to detect locomotion and static activities. While in this paper we are studying a35

generic model that can be applied to the recognition of lower limb locomotion activity. This kind of36

model can work for both single sensor-based and multiple sensors-based applications, the difference is37

that multiple sensors generate a higher observation dimension than single sensor. For simplification,38

the proposed model will be validated through only one IMU sensor placed on the lower limb.39

The work proposed here is, to some extent, the continuation of our previous work [7], where a40

non-parametric triplet Markov chain (TMC-HIST) was designed to detect four lower limb locomotion41

activities: walking, running, stair ascent and stair descent. TMC [8,9] is an extension of hidden Markov42

chain model (HMC) that includes: the observation Y and hidden state X processes and a third auxiliary43

hidden state U process. While it keeps a similar parameter estimation and restoration algorithm as44

HMC. In the TMC-HIST, the hidden state process represented the considered activities, the auxiliary45

one modelized the gait cycle, and histograms were used to represent the non-Gaussian observation46

density conditioned on each hidden state. We also developed an adaptive on-line algorithm that47

based on TMC-HIST to recognise the targeted activities. Results showed that the combination of lower48

limb activity and gait cycle can significantly improve the recognition performance, and the adaptively49

parameter updating can gradually fit the motion pattern of people. However, the non-parametric50

histogram represented the marginal density of observation along one sensor axis, it does not involve51

the correlation among the three axes of sensor. As a consequence, this weakness may cause a failure52

when recognising the activity. In addition, the precision of histogram is highly dependent on the53

volume of data and the width of bins, which require large storage memory and will slow down the54

processing speed of on-line recognition.55

In this work, in order to overcome the weaknesses of TMC-HIST, we focus on developing a new56

parametric TMC model that can recognise lower limb locomotion activities using one single IMU57

sensor. Besides, the proposed algorithm should be adaptive and on-line applicable as well, i.e. it can58

adjust its parameters at run-time to suit for the user. By introducing a sojourn hidden state process to59

form semi-Markov structure, it allows the hidden states X and U keep the same for a while, which is60

consistent with the activity and gait transition during the motion. Semi-Markov structure is embedded61

into the TMC to better mimic the real state transition properties. Multi-dimensional Gaussian mixture62

model (GMM) is introduced to represent the non-Gaussian conditioned observation densities, at the63

mean time, it involves the observation correlation among the sensor axes. With the introduction64

of semi-Markov structure and Gaussian mixture density, the specific TMC model will be referred65

as SemiTMC-GMM in the remaining of this paper. Because of the parametric densities, an on-line66

parameter learning algorithm based on EM is applied. Therefore, our claimed contributions in this67

paper are:68

• Semi-Markov structure is embedded into the TMC model to make the hidden state transition69

closer to the realistic motion.70

• GMM is adopted to overcome the weakness of non-parametric density, while still allowing to71

model non-Gaussian data.72

• EM-based on-line learning algorithm is adopted to SemiTMC-GMM for making the algorithm73

work on-line.74

The remaining of the paper is organized as follows. Section 2 depicts the state-of-the-art works in75

the field of activity recognition using wearable sensors. Section 3 gives the definition of conventional76

TMC model, and gradually extends the model to SemiTMC-GMM. Then, how to apply the proposed77

model to recognise lower limb locomotion activities is presented in detail at the end of this Section.78

Section 4 depicts both batch mode and on-line mode parameter learning for the proposed model. In79

Section 5, the proposed recognition algorithm is tested on two datasets, one is the public dataset [10],80
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another one is our own dataset. Also, the performance of the proposed algorithm are discussed81

compared to the competitive works. Finally, conclusions and future work are presented in the last82

Section.83

2. Related works84

Numerous works have investigated human activity recognition (HAR) in the last decade. The85

methodologies used recently can generally be classified into two dominant categories: (i), traditional86

classifiers; (ii), deep learning methods.87

For the first category, numerous classiffers have been investigated. Parri et al. [11] proposed a88

fuzzy-logical classifier to identify lower limb locomotion mode, with the assistance of gait phases.89

The authors developed a lower limb wearable robot system that can help impaired people to perform90

locomotion activity. Chen et al. [12] proposed a robust activity recognition algorithm based on principal91

component analysis (PCA) and on-line support vector machine (OSVM), the algorithm obtained92

a robust recognition accuracy over a smartphone dataset collected in six different orientations. In93

the work [13], the authors compared the performances among the classifiers of SVM, Naive Bayes,94

k-Nearest Neighbour (kNN) and kStar. Results showed that kNN and kStar obtained the highest95

accuracy while Naive Bayes obtained the lowest. Zhao et al. [14] proposed a 2-layer model to detect six96

gait phases of walking, the algorithm used Neural Network (NN) to provide a pre-decision of gait97

phases to Hidden Markov Model (HMM), the final decision of gait phase from HMM obtained an98

accuracy of 98.11%. The limitation of this study is that only the activity of walking was considered, and99

the authors only tested their algorithm on straight forward walking, not free walking. In [15], hidden100

semi-Markov model (HSMM) and semi-Markov conditional random field (SMCRF) were applied to101

recognise human activity in smart home. The results showed that HSMM consistently outperformed102

HMM, while SMCRF obtained a similar result to CRF. However, because daily activities at home do103

not have stationary property, it is not practical to use a stationary transition matrix to represent the104

activity switches. Moreover, the authors only used Gaussian density to represent the conditioned105

observation density, which is quite limited for a complex scenario.106

In the second category, deep learning-based methodologies are very prevalent. Generally, this107

kind of method are more inclined for image processing, so it needs to convert sensor data to image108

discription to support extraction of discriminative features [16]. As reported in [17], convolutional109

neural network (CNN) is an important category of discriminative deep learning model for HAR. The110

work [18] proposed convolutional recurrent neural network to recognise daily activity; their algorithm111

gained an improvement of 6% compared to the state-of-the-art works. Recently, as reported in [19],112

transfer learning and semantic approach have raised great research interest. Bao [20] and Rokni [21]113

used transfer learning to automatically construct model for newly added wearable sensors; they114

obtained an accuracy enhancement between 9.3%-10%. However, the recognition accuracy highly115

depends on the performance of labeling from source devices, thus it still requires a reliable method for116

recognition on a single sensor.117

Some other methods can also be applied to the dedicated applications and obtain good results.118

Schneider et al. [22] proposed an automatic extraction and selection method of highly relevant features,119

the method was tested on eight datasets and obtained a general accuracy over 90%. Rezaie et al. [23]120

proposed a feedback controller framework to adapt sampling rate for better efficiency and higher121

accuracy. Dao et al. [24] introduced a man-in-loop decision architecture and data sharing among users,122

and gradually obtained a high accuracy.123

In fact, people perform lower limb locomotion activities everyday, such as moving from one place124

to another place, doing sports like running and cycling. . . There are a lot of methods that have been125

proposed for HAR, while to our best knowledge, very few methods can be found that are especially126

designed for lower limb locomotion activities, including but not limited to activities like walking and127

joging [25].128
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3. Model129

In this section, the conventional TMC model is firstly introduced, then it is gradually equipped130

with more sophisticated structures, i.e. applying Gaussian mixture to TMC to obtain the TMC-GMM131

model and then applying semi-Markov structure to TMC-GMM to obtain the SemiTMC-GMM model.132

Afterwards, a detailed description of on-line EM algorithm suited for SemiTMC-GMM is given. As a133

matter of fact, these additional processes can be naturally added because of the high generality of the134

TMC model through the flexibility of the auxiliary processes.135

3.1. Triplet Markov Chain136

Consider two discrete stochastic processes X = (X1, · · · , XN) and U = (U1, · · · , UN) as hidden137

states, where Xn ∈ Λ = {1, · · · , r} and Un ∈ Γ = {1, · · · , τ}, n ∈ {1, . . . , N}. Let Y = (Y1, · · · , Y N)138

be a real-valued process representing the observation of the model, each Yn ∈ Rw, where w is the139

observation dimension. Then, the triplet T = (V , Y), with V = (X, U) is a TMC if T is Markovian.140

It should be noted here that, in classic TMC, none of processes X, U, Y , (X, U), (X, Y), (U, Y) are141

necessarily Markovian.142

Let the realizations of Xn, Un and Yn be denoted by their lower cases xn, un and yn respectively, so
vn = (xn, un), tn = (vn, yn). Also, for simplification, we will denote the probability p(Xn = xn, Un =

un|Y1 = y1, · · · , Y N = yN) by p(xn, un|yN
1 ) for example. In a general TMC, the transition probability

of T , p(tn+1|tn), is assumed to be of the following form:

p (tn+1|tn) = p (vn+1|vn, yn) p
(
yn+1|vn+1, vn, yn

)
, (1)

where hidden state vn+1 depends on vn and yn, and observation yn+1 depends on yn, vn and vn+1.
However, in the applications of this paper, yn+1 has no links with vn and yn. So the transition can be
simplified in

p (tn+1|tn) = p (vn+1|vn) p
(
yn+1|vn+1

)
, (2)

which provides process T with the structure of a classical HMC. For simplification, this simplified TMC
is referred as TMC in the remaining. The first term p (vn+1|vn) in Equation (2) is the state transition
probability, the dimension of the matrix is (r × τ)× (r × τ). The second term is the probability of
observing yn conditionally to each state. Most of the time, this kind of density is modeled by Gaussian
distributions:

p (yn|vn = i) ∼ N (µi, Σi) , i ∈ Λ× Γ. (3)

The dependency graph of this particular TMC is shown in Figure 1a, where the node V consists in X143

and U. Regardless of the probabilistic links inside the node V , the dependency of Y and V is just in the144

form of HMC.145

For obtaining the probability of individual xn and un conditioned on yn
1 , yN

1 , we only need to
compute the marginal probability of p(xn, un|yn

1 ) and p(xn, un|yN
1 ) by

p(xn|yn
1 ) = ∑

un

p(xn, un|yn
1 ),

p(xn|yN
1 ) = ∑

un

p(xn, un|yN
1 ).

(4)

Likewise, p(un|yn
1 ) and p(un|yN

1 ) can be obtained in a similar way. Commonly, the probability146

p(xn, un|yn
1 ) and p(xn, un|yN

1 ) are called filtering probability and smoothing probability, respectively.147

3.2. TMC embedding a Gaussian Mixture Model148

When extending TMC to TMC-GMM, it needs to introduce Gaussian mixture density into the
conditioned observation probability. In fact, embedding GMM in TMC can be regarded as introducing
a new statistic process H = (H1, · · · , HN) into TMC, where Hn takes its value hn in a finite set
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K = {1, · · · , κ} and κ is the number of Gaussian components in the mixture. Let cij be the weight of jth
Gaussian mixture component when vn = i, with the constraint ∑κ

j=1 cij = 1. µij and Σij are the mean
value and co-variance of the Gaussian mixture component. Denote Z = (T, H), and assuming that
each Hn is independent from each other. Then Z is Markovian with transitions p(zn+1|zn) given by

p(zn+1|zn) = p(vn+1|vn)p(hn+1|vn+1)p(yn+1|vn+1, hn+1), (5)

where p(yn|vn) is

p(yn|vn) =
κ

∑
j=1

cij · p(yn|vn = i, hn = j),

p(yn|vn = i, hn = j) ∼ N
(

µij, Σij

)
, i ∈ Λ× Γ, j ∈ K,

(6)

with p(hn = j|vn = i) = cij. We can see that Equations (5) and (6) are extensions of Equations (2)149

and (3), by introducing a new process H. The dependency graph of TMC-GMM is shown in Figure 1b.150

One point should be noticed here is that we do not need to compute neither the probability of151

p(hn|yn
1 ) nor p(hn|yN

1 ), since the transition probability in Equation (5) is not conditioned on hn , i.e.152

Hn+1 does not have connection with Zn at the previous time epoch. As a matter of fact, introducing H153

helps us to establish the model more intuitively, however, it does not change the infra structure of the154

transition of hidden state V n. Therefore, estimating the individual xn and un in TMC-GMM follows155

the same as in TMC, by using Equation (4). The only difference between TMC and TMC-GMM is the156

way of computing the observation probability.157

3.3. Semi TMC-GMM158

Considering the stochastic process V is semi-Markov means that the hidden state has a remaining159

duration, which determines the time that the hidden state will keep the same. Generally, this kind of160

remaining duration is called as sojourn time. In a classic hidden semi-Markov model (HSMM) [26],161

there is a fixed sojourn time for each possible value of V . When V switches to a new value, it will162

stay the same in a fixed length of remaining duration according to what is the new value. However,163

in most of the real practices, the sojourn time is not always the same. Then, a more commonly used164

semi-Markov model is that the sojourn time is distributed in a finite set, i.e. the remaining duration165

may probably be different when V switches to a value twice. Here, we utilize the latter one to establish166

our model. As described in [27], semi-Markov chain has two different ways of transition when the167

sojourn time becomes zero. The first one is that the probability p(vn+1 = vn) = 0 when the sojourn168

time is 0 at time n, this guarantees that the hidden state will be switched to another value. While, the169

second one does not require the hidden state to be different when the sojourn time is 0; in fact, the170

transition at this exact time yields to a normal transition just like TMC and TMC-GMM. In this paper,171

we utilize the latter one to extend TMC-GMM into SemiTMC-GMM.172

Let consider a new stochastic process D = (D1, · · · , DN) that represents the sojourn state, and
the realization of each Dn (denoted by dn) takes its value in L = {0, 1, · · · , `}. Then, we can extend
TMC-GMM model into SemiTMC-GMM by using the couple (Z, D), and the transition probability
p(zn+1, dn+1|zn, dn) according to

p(zn+1, dn+1|zn, dn) = p(vn+1|zn, dn)p(hn+1|vn+1)p(dn+1|vn+1, dn)p(yn+1|vn+1, hn+1), (7)

p(vn+1|zn, dn) =

{
δvn(vn+1), dn > 0

p∗(vn+1|vn), dn = 0
, (8)

p(dn+1|vn+1, dn) =

{
δdn−1(dn+1), dn > 0

p(dn+1|vn+1), dn = 0
, (9)

where δ is the Kronecker function (δa(b) = 1 for a = b and δa(b) = 0 for a 6= b).173
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The properties of the four terms on the right side of Equation (7) are clarified in following:174

1. p(vn+1|zn, dn) is the transition probability of vn+1 conditioned on (zn, dn). In Equation (8), p∗175

is introduced for representing the transition probability when dn = 0. We can see that vn+1 is176

only probably be different from vn when dn = 0, otherwise vn+1 will be exactly the same as177

vn. When dn = 0, the transition p∗(vn+1|vn) behaves the same as the state transition of TMC178

and TMC-GMM, which means that vn+1 can be different from or same as vn, depending on the179

distribution of p∗(vn+1|vn).180

2. p(dn+1|vn+1, dn) is the sojourn state transition probability conditioned on zn and dn. In181

Equation (9), the function δdn−1(dn+1) makes sure that the sojourn time is decreasing, and182

p(dn+1|vn+1) is the distribution of sojourn time conditioned on vn+1.183

3. p(hn+1|vn+1) and p(yn+1|vn+1, hn+1) are same as the ones in TMC-GMM, shown in Equation (6).184

Now, the Equations (8) and (9) together describe how the hidden states, Vn and Dn, transfer in185

SemiTMC-GMM.186

The dependency graphs of the three models, i.e. TMC, TMC-GMM and SemiTMC-GMM, are187

shown in Figure 1. The couple V = (X, U) is regarded as one hidden state for reducing the complexity188

of the graphs. Also remind that the total number of processes involved in the three models are 3, 4 and189

5 respectively.

(a) TMC. (b) TMC-GMM. (c) SemiTMC-GMM.
Figure 1. Dependency graphs.

190

Estimating the individual xn and un is different from both TMC and TMC-GMM, for the sense of
introducing the sojourn state Dn. The probabilities of xn can be obtained by

p(xn|yn
1 ) = ∑

un
∑
dn

p(xn, un, dn|yn
1 ),

p(xn|yN
1 ) = ∑

un
∑
dn

p(xn, un, dn|yN
1 ).

(10)

The probabilities p(un|yn
1 ) and p(un|yN

1 ) are obtained in a similar way.191

3.4. Application of SemiTMC-GMM192

The question is now how to apply the proposed model to recognise lower limb locomotion193

activities. In our previous work [7], gait cycle was introduced into the estimation of four locomotion194

activities, and the results show that it can improve the accuracy. As introduced in [28], one gait cycle195

can be divided into four gait phases, i.e. stance, push-up, swing and step down. In this work, we are196

pursuing a method that does not require the sensor to be placed on the feet only. On contrary, it can be197

placed on different places of the lower limb, such as thigh, shank, and foot. The segmentation of gait198

cycle is based on the motion of foot, so similarly we can define ‘leg cycle’ based on the motion of leg.199

One leg cycle can be segmented into four leg phases, which are low position, lifting, high position and200

dropping.201
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Let assume the hidden state X represents the activity, and U be the gait cycle or leg cycle. Thus,202

the dimension of Λ (r) depends on the number of activities; while for Γ, τ is equal to 4. The transition203

of X and U follows a specific order, because the feet move from attaching on the ground to swinging204

in the air alternately, or the legs switch between lifting to dropping. Therefore, we define a specific205

transition graph for X and U. As shown in Figure 2, the numbers 1-4 represent the hidden state U,206

the four gait and leg phases. We can see that U transfers from phase 1 to phase 4 and back to phase 1207

again cyclically if the activity does not change. While when the activity is switching, U transfers from208

phase 1 of the previous activity to phase 2 of the current activity.209

Figure 2. Hidden state transition graph. The activities represent X, the numbers 1-4 represent U and
stand for the four gait phases or leg phases.

The hidden states H and D are not the final goal of the recognition, and they have no physical210

meaning neither. For simplification, the dimension of L (`) is set to 9. This value was determined by211

our experience, a too small value will make the results of SemiTMC-GMM no difference from that of212

TMC-GMM, while a too large value will cost too much time for running the code. The performance of213

different GMM components number (κ) is evaluated on two datasets, as depicted in Section 5.214

The observation is obtained by the feature extraction from the sensor readings. The utilized215

features are the sliding mean value and standard deviation. Since IMUs measure 3-dimensional216

acceleration and angular rate, then the dimension of the observation Y (w) equals to 12. The217

initialization of the hidden states is the same as the one in our previous work [7], so it will not218

be repeated here. Afterwards, based on the initial hidden states and features, the initial GMM density219

can be easily obtained. When the initialization is done, batch mode EM algorithm can be applied to220

train the model. Then, the trained model can be used for the batch mode testing, or, as the initial model221

of on-line EM algorithm.222

4. Parameter estimation223

From previous section, it is now clear how the hidden state transfers and how to compute224

the observation probability. In this section, we focus on how to obtain the filtering and smoothing225

probabilities, and to apply parameter updating based on the on-line EM algorithm.226

Before starting the explanation, we need to introduce the parameter set first. As described in the227

previous Section, the parameter set can be defined as θ = {ζk, alk, cij, µij, Σij}, in which ζk is the initial228

probability of hidden state, and alk is the l-th row and k-th column element in the transition matrix229

A. Because GMM density only depends vn, then i ∈ Λ× Γ, j ∈ K. While in SemiTMC-GMM, the230

entire hidden state is (V , D), then l, k ∈ Λ× Γ× L, and l, k equal to the couple of (i, dn). Therefore,231

the initial probability becomes ζk = p((v1, d1) = k), and alk = p((vn+1, dn+1) = k|(vn, dn) = l). For232

simplification, the indices i, j, l, k will keep the same meaning and will no longer be specified in the233

remaining.234
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4.1. Batch mode EM algorithm235

The batch mode parameter restoration using EM algorithm is quite simple and has been utilized
in many researches. A dominated way to do this is using the well-known Baum-Welch algorithm. This
is an algorithm that make the expectation step and maximization step recursively. Here we simply
describe how to extend the expectation and maximization steps to SemiTMC-GMM model, within one
iteration of the EM algorithm. It is assumed that the forward result αn(k) and backward result βn(k)
have already been obtained according to [7]. Then, the algorithm requires the following probabilities:

γn(k) = p((vn, dn) = k|yN
1 ) =

αn(k)βn(k)
∑

k′∈Λ×Γ×L
αn(k′)βn(k′)

, (11)

γ̃n(i) = ∑
dn

γn((i, dn)) = ∑
dn

p(vn = i, dn|yN
1 ), (12)

γ̃n(i, j) = γ̃(i) ·
cij p(yn|vn = i, hn = j)

∑
j′∈K

cij′ p(yn|vn = i, hn = j′)
, (13)

ξn(l, k) =
αn(l) · p

(
yn+1, hn+1, (vn+1, dn+1) = k | yn, hn, (vn, dn) = l

)
· βn+1(k)

∑
l′ ,k′∈Λ×Γ×L

{
αn(l′) · p

(
yn+1, hn+1, (vn+1, dn+1) = k′ | yn, hn, (vn, dn) = l′

)
· βn+1(k′)

} .

(14)
γn(k) is the probability of (vn, dn) conditioned on all observed data yN

1 . γ̃n(k) is the marginal
probability of γn(k) over dn, this probability is the one that we are looking for to estimate the concerning
hidden state vn. γ̃n(i, j) is the probability of each Gaussian component w.r.t. γ̃n(k); this probability
helps to compute the parameters related to Gaussian mixture, i.e. ckj, µkj, Σkj. ξn(l, k) is the joint
probability of (vn, dn) = l and (vn+1, dn+1) = k conditioned on yN

1 . Here we give the formula of
parameter update by using Equations (11)-(14):

ζk = γ1(k), (15)

alk =

N−1
∑

n=1
ξn(l, k)

N−1
∑

n=1
γn(l)

, (16)

cij =

N
∑

n=1
γ̃n(i, j)

N
∑

n=1
γ̃n(i)

, (17)

µij =

N
∑

n=1
γ̃n(i, j)yn

N
∑

n=1
γ̃n(i, j)

, (18)

Σij =

N
∑

n=1
γ̃n(i, j)(yn − µij)

T(yn − µij)

N
∑

n=1
γ̃n(i, j)

. (19)

In fact, Equations (11)-(14) are the expectation step in one iteration of EM algorithm, while236

Equations (15)-(19) are the maximization step. Then, the parameter can be learned by recursively237
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performing the two steps until the iteration number exceeds a pre-defined value, 100 maximum238

iterations for example.239

4.2. Sufficient data statistics240

Since Gaussian Markov models belong to the exponential family, the likelihood function of
SemiTMC-GMM can be written in the form of [29]

pθ(zn, dn) = f (zn, dn) exp (〈s(zn, dn), ψ(θ)〉 − J(θ)) , (20)

where s(zn, dn) is a vector of complete-data sufficient statistics belonging to convex set S, 〈·, ·〉 denotes
the scalar product, function ψ(·) maps θ to the natural parametrization and J(·) is the log-partition
function. For SemiTMC-GMM, the definition of statistics is

s(1)n′ ,lk = 1{(vn′ , dn′) = l, (vn′+1, dn′+1) = k}, (21)

s(2)n′ ,k = 1{(vn′ , dn′) = k}, (22)

s(3)n′ ,ij = 1{vn′ = i, hn′ = j}, (23)

s(4)n′ ,ij = 1{vn′ = i, hn′ = j}yn′ , (24)

s(5)n′ ,ij = 1{vn′ = i, hn′ = j}yT
n′yn′ , (25)

where 1{·} is the indicator function, n′ = 1, . . . , N. Then, the statistics vector at time n′ is of the form
sn′ =

{
s(1)n′ ,lk, s(2)n′ ,k, s(3)n′ ,ij, s(4)n′ ,ij, s(5)n′ ,ij

}
. Consequently, the sufficient statistics Sn is the expectation of sn′

conditioned on yn
1

Sn =
1
n

Eθ

(
n

∑
n′=1

sn′

) ∣∣∣∣∣yn
1 . (26)

Denote Sn =
{

S(1)
n,lk, S(2)

n,k , S(3)
n,ij, S(4)

n,ij, S(5)
n,ij

}
, in which the elements are the expectation of the ones with

respect to sn′ . Now, comparing the equation groups (11)-(19) and (21)-(26), we can reform the parameter
update Equations (15)-(19) with sufficient statistics

S̃(2)
n,i = ∑

dn

S(2)
n,(i,dn)

, (27)

ζk = S(2)
1,k , (28)

an,lk = S(1)
n,lk

/
S(2)

n,k , (29)

cn,ij = S(3)
n,ij

/
S̃(2)

n,i , (30)

µn,ij = S(4)
n,ij

/
S(3)

n,ij, (31)

Σn,ij = S(5)
n,ij

/
S(3)

n,ij − µT
n,ijµn,ij. (32)

Remark 1. Replacing n with N in Equation (26), which means all the observed data yN
1 are used, SN is then241

called as complete sufficient statics. Therefore, using SN to compute the parameters in Equations (28)-(32) will242

be exactly the batch mode parameter learning that given in Equations (15)-(19).243
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4.3. On-line estimation244

In the previous section we have discussed about how to use sufficient statistics to learn θ in batch
mode. In order to apply the on-line estimation, a common way [29] is to update the sufficient statistics
when a new observed data come in

Sn+1 = (1− ρn+1) · Sn + ρn+1 · Eθn

(
sn+1

∣∣yn+1
)

, (33)

where ρn is the stepsize sequence that satisfies ∑∞
n=1 ρn = ∞, ∑∞

n=1 ρ2
n < ∞. Normally it is set to245

ρn = 1/n. Then, the new parameter θn+1 is available by Equations (27)-(32). The estimation of xn+1,246

un+1 can be obtained by Equation (10).247

While in this paper, we do not update θ at every sampling time. Instead, we set a window length248

Wl and accumulate the latest Wl observed data first. Then use Equations (11)-(14) to get the smoothed249

result, compute the sequenced statistics sn|Wl
1 for all the Wl data by Equations (21)-(25). Afterwards,250

update the sequenced sufficient statistics Sn|Wl
1 and θn|Wl

1 by Equation (33) and Equations (27)-(32),251

respectively. It should be noticed that in on-line mode, the initial probability ζk is not necessary.252

5. Experimental results253

Two datasets are used to validate the proposed algorithm. The first dataset is the Sport and Daily254

Activities (SDA) dataset [10], in which eight subjects were enrolled to perform 19 daily and sport255

activities while wearing five IMUs on their torso, left arm, right arm, left thigh and right thigh. The256

sensor sampling rate was set to 25 Hz, and each activity lasted about 5 minutes. Because the objective257

of the proposed algorithm is to detect lower limb locomotion activities that have gait cycle or leg cycle,258

only 11 activities out of the total are selected in this work: walk in parking lot, walk on treadmill with259

incline, walk on treadmill on flat, stair descent, stair ascent, run on treadmill, jump, exercise on stepper,260

exercise of cycling in vertical position, exercise of cycling in horizontal position, exercise on cross261

trainer. These 11 locomotion activities of SDA dataset are referred as D1A1 to D1A11 in the remaining262

of this paper.263

There are only 1200 samplings for each experiment of SDA, the data length is not long enough to264

use on-line EM recognition. Therefore we utilize the second dataset for the validation of the proposed265

on-line EM algorithm. This second dataset is described in [7], is called Locomotion of Foot-mounted266

IMU (LMFIMU) dataset1. 10 subjects were enrolled to perform a specific experiment that lasts nearly267

30 minutes with an IMU mounted on the shoe. Each experiment contained two identical sections268

of a sequence of 4 locomotion activities: walking, running, stair ascent and stair descent. Therefore,269

the performance of the second section will be improved compared to the first section, if the on-line270

algorithm can gradually learn the activity pattern of the subject. The 4 locomotion activities are referred271

as D2A1 to D2A4 in the rest of this paper. The sensor sampling rate was set to 100 Hz, so the data272

length is long enough for the on-line EM algorithm.273

The proposed SemiTMC-GMM model is compared with TMC-GMM to see the advancement of274

semi-Markov structure in recognising lower limb locomotion activities. While GMM is implemented275

by different κ to see the impact of the GMM components number that has on recognition accuracy.276

5.1. SDA dataset277

The batch mode recognition is tested by a leave-one-out cross-validation (LOOCV) strategy, i.e.278

taking one subject for testing and the others for training, then make the test for all the subjects. The279

sliding window length of feature extraction is set to 5. Both SemiTMC-GMM and TMC-GMM model280

1 The dataset and its details are available on the website: https://github.com/unilee/TMC_LowerLimbActs.

https://github.com/unilee/TMC_LowerLimbActs
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are involved in the validation, the GMM mixture number κ is set to 1, 3, 6, 9 respectively. Particularly281

when κ = 1, the conditioned observation density yields to the conventional Gaussian distribution.282

Figure 3. The overall batch mode recognition accuracy on SDA dataset, according to different GMM
mixture number κ.

Table 1. The sensitivity, specificity, F1 score, MCC value of the batch mode recognition, for each activity
of SDA dataset. Up: TMC-HIST; middle: TMC-GMM when κ = 6; down: SemiTMC-GMM when κ = 6.

Activity (TMC-HIST)

D1A1 D1A2 D1A3 D1A4 D1A5 D1A6
Sensitivity 0.4900 0.5463 0.6997 0.9017 0.7885 1.0000
Specificity 0.9392 0.9883 0.9649 0.9839 0.9222 0.9939
F1 Score 0.4687 0.6574 0.6837 0.8708 0.6057 0.9709
MCC 0.4128 0.6461 0.6511 0.8587 0.5781 0.9684

D1A7 D1A8 D1A9 D1A10 D1A11 Total
Sensitivity 0.8308 0.7116 0.9489 0.9972 0.6618 0.7797
Specificity 0.9911 0.9924 1.0000 1.0000 0.9813 0.9779
F1 Score 0.8654 0.7966 0.9737 0.9986 0.7168 0.7826
MCC 0.8535 0.7854 0.9715 0.9985 0.6936 0.7652

Activity (TMC-GMM)

D1A1 D1A2 D1A3 D1A4 D1A5 D1A6
Sensitivity 0.6784 0.6797 0.5483 0.9146 0.8980 1.0000
Specificity 0.9322 0.9993 0.9866 0.9689 0.9465 0.9995
F1 Score 0.5777 0.8059 0.6525 0.8164 0.7305 0.9978
MCC 0.5353 0.8067 0.6382 0.8025 0.7151 0.9975

D1A7 D1A8 D1A9 D1A10 D1A11 Total
Sensitivity 0.8843 0.8917 0.8602 0.9876 0.8784 0.8383
Specificity 0.9961 0.9940 0.9987 0.9998 0.9999 0.9838
F1 Score 0.9197 0.9140 0.9184 0.9930 0.9348 0.8419
MCC 0.9129 0.9059 0.9132 0.9923 0.9309 0.8319

Activity (SemiTMC-GMM)

D1A1 D1A2 D1A3 D1A4 D1A5 D1A6
Sensitivity 0.6672 0.7247 0.6182 0.9638 0.8767 0.9990
Specificity 0.9457 0.9972 0.9860 0.9773 0.9563 0.9990
F1 Score 0.6054 0.8273 0.7039 0.8752 0.7509 0.9944
MCC 0.5644 0.8223 0.6862 0.8666 0.7327 0.9939

D1A7 D1A8 D1A9 D1A10 D1A11 Total
Sensitivity 0.9025 0.9410 0.8561 0.9956 0.9215 0.8606
Specificity 0.9936 0.9922 0.9996 0.9994 1.0000 0.9860
F1 Score 0.9175 0.9324 0.9208 0.9948 0.9590 0.8620
MCC 0.9096 0.9255 0.9165 0.9943 0.9560 0.8516
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The overall accuracy of batch mode recognition on SDA dataset is shown in Figure 3. As283

it can be seen, SemiTMC-GMM achieves an accuracy improvement of about 2%-3% compared to284

TMC-GMM. The proposed model reaches the highest accuracy of 86.00% when κ = 6, while the one of285

TMC-GMM is 83.76%. Meanwhile, TMC-HIST obtains the lowest accuracy of 77.91%. Table 1 shows the286

sensitivity, specificity, F1 score, and Matthews correlation coefficient (MCC) of each individual activity.287

Particularly for the sensitivity of each individual activity, it equals to the accuracy of corresponding288

activity. Activities D1A1 to D1A3 are recognised with relatively poor performance, it is because that289

these three activities are all walking and are very easily misclassified. As reported in [20], the classifiers290

of kNN, SVM and decision tree are tested on SDA dataset using all the five sensors. The accuracies291

are 78.97%, 84.03% and 84.63% respectively. In [21], the authors used SDA dataset and showed single292

sensor recognition accuracy of four classifiers: kNN, decision tree, discriminant analysis and Naive293

Bayes. Specifically for the right leg sensor that is used in our paper, the four classifiers obtained294

accuracy of 81.72%, 78.78%, 87.03%, 76.93%. Therefore, we can state that SemiTMC-GMM outperforms295

the generic classifiers like kNN, SVM, decision tree and Naive Bayes, and obtains a similar performance296

of discriminant analysis. On the other hand, the authors in [30] used CNN to recognise human daily297

activities in OPPORTUNITY dataset [31], which contains activities such as open (close) door, open298

(close) drawer, clean table, drink cup. . . They obtained an accuracy of 85.8% by using 23 body-worn299

sensors, 12 object sensors and 21 ambient sensors. Also for the OPPORTUNITY dataset, [18] used CNN300

obtains an accuracy of 77.99% by using the body-worn sensors only. While in [32], CNN obtained an301

accuracy of 93.75% on six activities: walking, stair ascent, stair descent, sitting, standing and laying.302

Because of the prevalent CNNs can generate high dimensional features that suit for the recognition303

task, then CNNs may probably be suited for sophisticated activities. But it requires huge quantity304

of data to train the network, and it is difficult to make CNN work for adaptive on-line scenario. So,305

maybe CNN could obtain higher accuracy than SemiTMC-GMM, we still believe that our proposed306

model is competent in some scenarios.307

5.2. LMFIMU dataset308

For this dataset, the size of sliding window for computing features is set to 15. Firstly, the batch309

mode recognition is performed using LOOCV strategy. Figure 4 shows the recognition accuracy310

w.r.t. different κ. The accuracy of SemiTMC-GMM when κ = 9 is 95.16%, while the one of311

TMC-GMM is 92.57%. Meantime, the choice of κ has less impact on accuracy for SemiTMC-GMM. The312

recognition accuracy obtained by TMC-HIST is 80.42%, which is lower than the ones of TMC-GMM313

and SemiTMC-GMM when κ > 1. Table 2 shows the sensitivity, specificity, F1 score, and MCC of each314

individual activity. By comparing the batch mode recognition shown in Table 1 and 2, both TMC-GMM315

and SemiTMC-GMM outperform TMC-HIST. It means that considering the observation correlation316

improves the recognition performance.317

As a matter of fact, Figures 3, 4 and 5 show that introducing semi-Markov structure into the TMC318

model can improve the accuracy. Meanwhile, using GMM with κ > 1 also improves the recognition319

significantly. But it does not mean that using a larger κ allows higher accuracy to be achieved. In320

Figure 3, the accuracy when κ = 9 is slightly lower than that obtained when κ = 6, it is because the321

observation of SDA dataset is more closer to a GMM mixture of 6 densities. A too much larger κ322

may probably lead to an over fitting problem. It is sure that κ can be automatically acquired through323

the methods such as BIC [33] and AIC [34], to make κ consistent with different activities. While for324

simplification in this paper, we manually set κ to 6 for all the activities based on the experimental325

results.326

Then, the on-line EM algorithm is performed to validate the adaptive on-line recognition327

performances. The proposed algorithm is implemented in Matlab code, running on a 64-bit system328

computer with 3.2GHz CPU and 32G RAM. In the dataset, the average experiment time is 32.33329

minutes, while the computing time of SemiTMC-GMM when κ = 1, 3, 6, 9 are 9.72, 14.72, 21.53 and330

27.65 minutes respectively. Thus, using on-line EM is applicable in on-line scenarios. The window331
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Figure 4. The overall batch mode recognition accuracy on LMFIMU dataset, according to different
GMM mixture number κ.

Table 2. The sensitivity, specificity, F1 score, MCC value of the batch mode recognition, for each activity
of LMFIMU dataset. Up: TMC-HIST; middle: TMC-GMM when κ = 9; down: SemiTMC-GMM when
κ = 9.

Activity (TMC-HIST)

D2A1 D2A2 D2A3 D2A4 Total
Sensitivity 0.7007 0.9721 0.7705 0.9385 0.8454
Specificity 0.9858 0.8931 0.9174 0.9595 0.9389
F1 Score 0.8169 0.8258 0.6885 0.8596 0.7977
MCC 0.7194 0.7833 0.6317 0.8382 0.7431

Activity (TMC-GMM)

D2A1 D2A2 D2A3 D2A4 Total
Sensitivity 0.9399 0.9475 0.9105 0.8590 0.9142
Specificity 0.9720 0.9996 0.9512 0.9787 0.9754
F1 Score 0.9547 0.9723 0.8327 0.8641 0.9060
MCC 0.9130 0.9654 0.8044 0.8419 0.8812

Activity (SemiTMC-GMM)

D2A1 D2A2 D2A3 D2A4 Total
Sensitivity 0.9608 0.9829 0.9483 0.8749 0.9417
Specificity 0.9831 0.9987 0.9634 0.9910 0.9841
F1 Score 0.9713 0.9891 0.8799 0.9071 0.9368
MCC 0.9445 0.9861 0.8600 0.8932 0.9210

length Wl for updating the parameters is set to 1000, which means that parameters are updated every332

10 seconds.333

Figure 5 shows the recognition accuracy obtained by LOOCV strategy. The solid lines are334

higher than the dashed lines which means that the on-line EM algorithm can improve the recognition335

performance. Also the GMM with κ > 1 can significantly improve the accuracy. When κ = 9,336

SemiTMC-GMM has an accuracy improved from 95.48% in the first section to 96.93% in the second337

section, while TMC-GMM achieves an improvement from 93.83% to 95.04%. By contrast, the adaptive338

on-line algorithm using TMC-HIST in our previous work, the accuracy was improved from 95.32%339

to 96.93%. However, this high accuracy is mainly because of the gait cycle complete detection in340

the adaptive on-line algorithm, which manually set the activity of all the samplings in one gait341

cycle to be identical. If without using the gait cycle complete detection, TMC-HIST will fail in the342

on-line recognition, with the accuracies of 78.32% in the first section and 65.20% in the second section.343

Comparing SemiTMC (when κ = 1) and TMC-HIST, we can conclude that semi-Markov structure344

is more robust for recognising the hidden states which have sojourn time. Therefore, the results345
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Figure 5. The on-line mode recognition accuracy of the two experiment sections in LMFIMU dataset,
according to different GMM mixture number κ.

TMC-GMM SemiTMC-GMM

D2A1

(a) (b)

D2A2

(c) (d)

D2A3

(e) (f)

D2A4

(g) (h)
Figure 6. Recognition accuracy computed in the latest 10 seconds w.r.t. each activity of LMFIMU
dataset. Left column: TME-GMM, right column: SemTMC-GMM.

indicate that both GMM density and semi-Markov structure improve the on-line recognition, and the346

combination the two improves the performance the most.347

In order to understand dynamic performance of the parameter updating, Figure 6 shows the348

recognition accuracy computed during the latest 10 seconds. Notice that the accuracies when κ = 1 are349



Version July 16, 2019 submitted to Sensors 15 of 18

not displayed in Figures 6a, 6e because TMC obtains accuracies lower than 70% for D2A1 and D2A3.350

SemiTMC-GMM obtains a relatively fast convergence rate when κ equals to 6 and 9. The activities351

D2A1 and D2A2 reach high accuracy within 20 seconds in the first section of the experiment, 97.77%352

and 99.02% respectively. By contrast, D2A3 and D2A4 are slower than the former two activities, and353

obtain lower accuracies of 92.04% and 89.48% respectively. The main reason of this phenomenon is354

that the activity patterns of D2A3 and D2A4 vary much more differently among the subjects. But in a355

general view, we can still state that the on-line EM algorithm can dynamically improve the recognition356

accuracy to a reasonable level.357

Figure 7 displays the estimated gait cycles of each activity, when the model converged, obtained358

by TMC-GMM and SemiTMC-GMM, κ is set to 1 and 6. ωx, ωy and ωz are the sliding mean of angular359

rate along the three axes of sensor. The features are 12-dimensional, but here we only display the360

acceleration of along the three axes to show how the gaits proceed. Hence, the estimated gait cycles361

are displayed w.r.t. four models, i.e. TMC, SemiTMC, TMC-GMM and SemiTMC-GMM. In fact, the362

gait phases or leg phases are introduced in the model to improve the recognition accuracy of the lower363

limb locomotion activity. The Figure shows that SemiTMC-GMM obtains the most regular gait cycle,364

with no fluctuation in short period and no missing detection. As a consequence, the well estimated365

gait or leg cycle obtained from SemiTMC-GMM leads to a higher activity recognition performance.366

(a) D2A1. (b) D2A3.

(c) D2A2. (d) D2A4.
Figure 7. Estimated gait cycle of each activity. The blue, cyan, black and magenta represent the gait
obtained by TMC, SemiTMC, TMC-GMM and SemiTMC-GMM respectively.

6. Conclusion367

In this paper, we propose an adaptive on-line algorithm using wearable IMU sensor for368

recognising lower limb locomotion activities, with the help of introducing gait cycle or leg cycle369

into the model. The algorithm is based on the developed SemiTMC-GMM model, which naturally370

replicate the real motion. Our experiments show that semi-Markov structure and GMM density can371
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better recover gait or leg cycles, which in return improve the activity recognition significantly. The372

adopted on-line EM algorithm can gradually improve the accuracy to a high level. The proposed373

algorithm is not only developed for the applications which require rum-time activity recognition, it is374

also helpful to those applications that requires gait cycles. For example, the detected gait phases can375

be beneficial for exoskeleton equipment to better assist impaired people in performing locomotion376

activities, by providing precise information to the equipment.377

While, there are still some limitations. The proposed algorithms only takes periodic lower limb378

locomotion in consideration, neither the static activity nor non-periodic lower limb locomotion activity379

is involved in our current work, such as standing and making turn. To distinguish static and motion380

activities, it is possibly to include specific features into the observations. For example, standard381

deviation will be close to zero when a person is in static, otherwise it will vary according to the motion.382

Distinguishing periodic and non-periodic can be accomplished by periodic pattern mining method,383

such as fast Fourier transform-based [35] and principle component analysis-based [36] approaches. Our384

future work will focus on adopting more types of activities, including static activity and non-periodic385

locomotion activities.386
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