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Abstract

This study focuses on the segmentation and characterization of oil slicks on the sea surface from synthetic aperture radar (SAR)
observations. In fact, an increase in viscosity due to oil notably reduces the roughness of the sea surface which plays a major part in the
electromagnetic backscattering. So, an oil spill is characterized by low-backscattered energy and appears as a dark patch in a SAR image.
This is the reason why most detection algorithms are based on histogram thresholding, but they do not appear to be satisfactory since the
number of false alarms is generally high.

By considering that a film has a specific impact on the ocean wave spectrum and by taking into account the specificity of SAR
images, a vector hidden Markov chain (HMC) model adapted to a multiscale description of the original image is developed. It yields an
unsupervised segmentation method that takes into account the different states of the sea surface through its wave spectrum. Thanks to
mixture estimation, it is possible to characterize the detected areas and thus avoid most false alarms.

Results of segmentation are shown in two types of scenarios. The first one concerns an oil spill in the Mediterranean sea detected by
the ERS SAR sensor at a resolution of 25 m. The second scenario is related to the wreck of the Prestige acquired by the Envisat ASAR
sensor in a wide swath mode at a resolution of 150 m.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

This study focuses on the segmentation and characteriza-
tion of oil slicks in the marine environment, from data ac-
quired by a synthetic aperture radar (SAR) sensor. On the
contrary of optical sensors, SAR sensors have all-weather
and all-day capabilities, which is more suitable for an op-
erational framework (ship accidents or illegal discharges).
The following introduces the oceanographical and physical
motivations for the proposed multiscale strategy to detect
oil slicks [1,2].
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1.1. Oceanophysical background

The oceanic sea surface is complex and often governed by
non-linear dynamic systems. Surface waves, that are found
in the ocean, range from the millimeter scale to hundreds of
meters. And, one can divide the sea surface wave spectrum
into three domains [3]:

(1) long waves (100 m in length) such as the swell;
(2) intermediate waves (tens of meters in length) i.e., gravity

waves;
(3) short waves (less than 1 m), i.e., shortest gravity waves,

gravity–capillary (few centimeters in length) and capil-
lary (less than 1 cm in length).

By considering an infinite sea surface, the wind induces cap-
illary waves by friction. Capillary waves cannot propagate
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far away and they vanish with the wind. But they transfer
their energy to waves with a longer wavelength until they
reach an equilibrium that depends on the wind. In addi-
tion, gravity waves transfer their energy to gravity–capillary
waves. Several models have been proposed to characterize
the sea surface spectrum with an accuracy that depends on
the wavelength bandwidth. Those models integrate the wind,
but also the current, atmospheric pressure and so on. An in-
teresting comparison of some models may be found in Ref.
[4] in the context of SAR imagery. On the one hand, capil-
lary waves are generated by friction, and more specifically
by friction stress related to wind speed and surface proper-
ties, and die down when the friction stress decreases. On the
other hand, gravity waves are generated indirectly by sea
spectrum energy spreading and propagating over long dis-
tances far from their origins. The sea surface may be roughly
modeled through its wave spectrum that is governed by the
following dispersion equations [3]:⎧⎪⎪⎨⎪⎪⎩

�2 = �

�
�3 for capillary waves,

�2 = g� for gravity waves,

�2 = g� + �

�
�3 for gravity.capillary waves.

(1)

�=2�/� and � is the wavelength, � the surface wavenumber,
g is the gravity acceleration, � is the surface tension and
� the water density. It is obvious from Eq. (1) that long
waves are governed by gravity forces while the smaller are
induced by surface tension. The next section will show that
backscattering phenomena are directed by gravity–capillary
waves (due to the wavelength of electromagnetic waves)
while typical SAR systems are sensitive to gravity waves
(due to their resolution).

Marangoni explained the process of wave damping in
presence of a film on the sea surface in 1872 [5], which is
detailed in several works by Alpers and co-authors [6–8].
When gravity–capillary waves propagate, successive com-
pressions and extensions increase dissipation. When a film
covers the sea surface, the wind has less effect on capillary
waves. Peak-to-peak wave amplitude decreases, implying a
surface stress gradient that induces an opposite force to this
alternating motion. So-called Marangoni waves are created
when this gradient appears, that is, with a visco-elastic film
on the sea surface. The Marangoni waves are partly longitu-
dinal in the upper layer, where dissipation is attenuated and
partly tangential, linked with the stress gradient associated
with visco-elastic film properties [7]. Small wave damp-
ing is associated with a decrease in surface tension. The
latter being linked to the film’s elasticity. It stabilizes the
sea surface and stops short wave generation by the wind.
Non-linear interactions are efficient enough to transfer en-
ergy from gravity-waves to wavelengths where Marangoni
damping occurs to counterbalance viscous dissipation. This
transfer acts as a diffusion process through the wave spec-
trum. The more Marangoni damping occurs, the more non-
linear energy transfer [8]. So, the overall wave spectrum

is modified by oil spills: either by energy damping (short
waves vanishing), or by spreading the energy uniformly.

1.2. Sea surface observation with SAR data

Radar electromagnetic waves are backscattered by the
sea surface. They are sensitive to surface roughness which
is linked to gravity–capillarity waves and damped by slicks.
Detecting slicks from SAR data depends on [9,10] (i) radar
configuration (wavelength, polarization, incidence angle
[11]), (ii) slick nature (natural or oil-based) and properties
(viscosity, elasticity, thickness, temperature [8]) and, (iii)
meteorological and oceanic conditions (wind and current
strengths and directions). From numerous experimental
studies (e.g. [12,8,11]), the wind appears to be the most
important feature when characterizing a slick from SAR
data. On one hand, at low wind speed the surface rough-
ness is not uniform and the calmer areas look like oil spills
since capillarity waves are not created and the contrast be-
comes very weak. On the other hand, at high wind speed,
backscattering remains high in the slick and then contrast
decreases. For the C band, which is generally prefer to X
and Ku bands, a wind speed range from 2/3 to 10/14 m s−1

allows an efficient detection [12].
For a 20–70◦ incidence angle �, the Bragg resonance ef-

fect that links the sea surface and electromagnetic wave-
lengths is generally adopted to describe the backscattering
process [3,13]. According to this model, the sea surface
waves of wavenumber �sea = 2�SAR sin �, with �SAR the
wavenumber of the electromagnetic wave, contribute to the
scattering process. By considering incidence angles from 15◦
to 45◦ according to the sensors and their acquisition modes,
gravity–capillary waves of wavelengths from 4 to 14 cm in-
tervene in the scattering process for the C band (i.e. a wave-
length of about 5.6 cm). Nevertheless, SAR image resolution
is much larger than the wavelength and the sensor is sen-
sitive to large scale oceanographic phenomena. In fact, the
Bragg mechanism considers waves of one wavelength only
[14] while it is necessary to consider a bandwidth or, even
better, the overall wave spectrum. Moreover, wave motion
induces specific modulation on the wave spectrum acquired
by the SAR sensor. Hence, surface roughness induced by
short waves is modulated by longer waves allowing SAR im-
agery to characterize “indirectly” oceanophysical phenom-
ena such as swell, internal waves, coastal bathymetry or oil
slicks.

1.3. Oil spill detection strategies

A film-covered area is seen smoother than a clean sea
surface since small wave generation and propagation is
stopped by the viscosity of a spill. From the SAR sensor
point of view, a spill is characterized by a lack of backscat-
tered energy and then restituted through a dark area in com-
parison with the surrounding regions in a radar image [15].
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According to the Bragg scattering theory, the backscattering
process is mostly due to surface roughness. This typical
effect is mostly found in the Mediterranean sea. This is due
to oil characteristics and the sea surface spectrum shape
where swell is less significant than in an ocean. That is why
many spill detection algorithms are based on a thresholding
technique [16–18]. Nevertheless, this process is not efficient
when:

• the wind is increasing (basically over 10 m s−1);
• the sea state is different (more precisely its wave spectrum

shape);
• visco-elastic oil properties are different (different kinds

of oil and degradation);
• possible bad-detection with look-alikes (e.g. no wind area,

up-welling, phytoplankton, algae, etc.).

Moreover, a radiometric point of view shows some limita-
tions since wave slopes that are not oriented to the sensor
are restituted with a reduced radar backscatter that may be
confused with small spills. That is why most spill detection
strategies include a post-processing stage to remove small
slicks through geometrical, morphological or contextual
criteria [19–21]. A priori, the proposed multiscale strategy
that is implemented to detect oil spills may be justified by
several concepts mentioned above:

• the SAR sensor is only sensitive to surface roughness (at
a centimeter scale) which is modulated by larger scale
phenomena that induce shades of texture;

• the increase of viscosity, due to the presence of an visco-
elastic film on the sea surface, affects the sea surface wave
spectrum shape;

• oil films induce dark areas on the SAR images under
certain conditions, such as a limited wind (i.e. under
10/14 m s−1).

The paper is organized as follows: Section 2 presents the
multiscale transformation and explains how the initial sea
surface observation is represented as coarse radiometric
information associated with a set of coefficients linked to
the surface roughness at several scales. Section 3 presents
the statistical segmentation procedure. Since the vector
extension of the hidden Markov chain (HMC) model is
straightforward, we focus on the way to deal with mul-
tidimensional non-Gaussian probability density functions
(pdf) arising in the statistical model. Section 4 shows
some results of oil spill detection from ERS and EN-
VISAT SAR images. Section 5 concludes and gives some
perspectives.

2. Multiscale representation

The wavelet transform is an appropriate tool for local
analysis of the sea wave spectrum. It is based on a mother

wavelet � and is defined as

Wf (b, a) =
∫ ∞

−∞
f (t)

1√
a
�∗
(

t − b

a

)
dt .

Many shapes may be found in mother wavelets (but they
are subject to admissibility conditions [22]) and the choice
of the best wavelet remains an open question, depending on
the application. In this study, we focus on the multiscale de-
composition with wavelet transform which is shift invariant.
Hence, details and texture have the same signature whatever
their location.

2.1. Multiscale wavelet transform

The decomposition is implemented in order to analyze
the local shape of the sea surface wave spectrum. Then, a
multiscale differential operator is used to characterize the
sharp structures of a signal f . The wavelet operator is then
defined (in one-dimensional) as

W�{f }(b, a) = a� ��

�b�
(f ∗ �a)(b),

where � is the decomposition level (0�� < L) and �a(x) =
(1/

√
a)�(−x/a). Convolution f ∗�a acts as a smoothing of

f over a domain a.
When considering the first derivatives, the modulus of

W1{f }(b, a)=a(�/�b)(f ∗�a)(b) is maximum where (f ∗
�a)(b) fluctuates. When considering the second derivative,
the modulus maxima of W2{f }(b, a) = a2(�2/�b2)(f ∗
�a)(b) correspond to the points of maximum curvature of
f . More generally, wavelet coefficients are proportional to
the components of the gradient of f smoothed by �a . Then,
with such a multiscale differential operator each singularity
of f is detected by following the modulus maxima of the
wavelet coefficients towards finer scales. Moreover, it has
been shown that if f adopts a band-limited Fourier trans-
form and if the wavelet (�=−��/�x) has compact support,
then the wavelet modulus maxima define a complete and
stable signal representation [23].

In order to analyze the sea surface wave spectrum shape
yielded by a SAR observation, a wavelet-based multiscale
edge detector is defined as a two-dimensional separable
dyadic wavelet. Its Fourier transforms (in two-dimensional)
may be written as

F�hori(�hori, �vert)=Fg

(�hori

2

)
F	

(�hori

2

)
F	

(�vert

2

)
,

F�vert (�hori, �vert)=Fg

(�vert

2

)
F	

(�hori

2

)
F	

(�vert

2

)
with

F	(�) =
(

sin �
2

�/2

)m+1

e−jε �
2 , ε =

{
1 m even,

0 m odd.

This yields low-pass filter coefficients Fh(�) =√
2(cos �/2)m+1 e−jε�/2 that correspond to a box-spline
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of degree m. g(·) is a discrete approximation of the
derivative operator, of Fourier transform: Fg(�) =
−j

√
2(sin �/2)m+1 e−j�/2.

In order to analyze the observations as locally as possi-
ble, a scale function �(·) was chosen as short as possible
and its Fourier transform is a cubic spline. The multiscale
decomposition yields a set of images for which the wavelet
coefficients represent the details at a coarser and coarser
scale � (0�� < L), associated with a smooth image which
is a coarse radiometric approximation (at scale L) of the
original image (see Fig. 1). Then, an observation f may be
represented with its details at different scales by

f −→
{
L = f ∗ �(2−(L−1)x, 2−(L−1)y),

�hori
� = f ∗ �hori(2−�x, 2−�y), 0�� < L,

�vert
� = f ∗ �vert(2−�x, 2−�y), 0�� < L,

(2)

which corresponds to cutting the Fourier spectrum into a
dyadic sequence: �max/2�+1, 0�� < L.

Original image

hori
0 Θ 

Θ 

Θ 

Ψ

hori
1Ψ

Ψ Ψ −−

Ψ1
vert
0

Ψvert
1 2

0 < < L

hori
L 1  L

vert
L 1

Horizontal gradient Approximation Vertical gradient

Fig. 1. Multiscale decomposition of a SAR image. Lossless characteriza-
tion of the initial information is performed through images of wavelet coef-
ficients (�� coming from the convolution with functions �(2−�x, 2−�y))
and the coarse image at level L (coming from the convolution with
�(x/2L−1, y/2L−1)).

Remark. The vector (�hori
� , �vert

� )t is proportional to the
gradient of f smoothed by �2� . In this kind of decompo-
sition, there is no diagonal decomposition as is the case in
most dyadic multiresolution decompositions. Moreover, this
decomposition acts as a multiscale edge detector and there
is no consideration to orthogonality between the subspaces
generated by �hori

2� , �vert
2� and �2L . Hence, it is necessary to

consider a relationship between wavelet coefficients of dif-
ferent scales through the correlation. When applied to SAR
images, it is not necessary to use more than three or four lev-
els since 
L=3 or 
L=4 contains details at the swell scale,
which is enough for our application.

2.2. Statistical characterization of the wavelet coefficients

The distribution of each band of the multiscale de-
composition is characterized by parametric families of
distributions. On the one hand, the Pearson system of dis-
tributions is used to describe low-pass coefficients 
L of
Eq. (2), in accordance with laws that have to be taken into
account for SAR images [24]. On the other hand, the gen-
eralized Gaussian family was selected for its capacity to
better represent the shape of high-pass coefficients �hori

�

and �vert
� .

2.2.1. Characterization of low-pass coefficients through
the Pearson system

The low-pass image, 
L, obtained by convolution with a
low-pass filter �2L , shows a smooth histogram with a shape
similar to the histogram of the original image.

It is now well accepted that the statistical model of radar
data follows a Gaussian circular complex law in homoge-
neous regions (where physical characteristics of backscatter-
ing are stationary) [25]. In fact, in each radar resolution cell,
a large number of Nd elementary backscatters is summed in
a coherent way (by a contribution in magnitude and phase of
the electromagnetic wave, and not only in energy). The con-
tribution of the Nd elementary backscattered fields remains
random since the number of backscatters and their orienta-
tion are unknown. In most radar images, it is well accepted
that the intensity is distributed according to a Gamma or a
generalized Gamma law, with statistical moments depending
on the reflectivity of the homogeneous area. The multiplica-
tive model of the speckle was introduced since the mean
of the intensity of the pixel is proportional to its variance.
However, for an image of the sea surface, usual assumptions
of the fully developed speckle are not necessary acceptable
and may be wrong since:

• the number of scatters may not be significant enough to
make the law of large numbers valid and to consider the
speckle as fully developed;

• the elementary backscatters are not independent. The de-
scription of the wave spectrum of the sea surface does
not allow us to consider that the wave spectrum energy is
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Fig. 2. Eight families of the Pearson system in the (�1,�2)-diagram. Note
that the �2 axis is reversed: (a) wavelet coefficient pdf; (b) generalized
Gaussian distributions.

Gaussian for each wavelength and independent from the
wavelength;

• the elementary backscatters are moving.

This is the reason why we decided not to filter the speckle
before processing but, conversely, to use statistical laws in-
duced by this phenomenon to segment the surface rough-
ness.

Then, the Pearson system [26] was used since it appears
adapted to the segmentation of SAR images [27,28]. This
system is made up of mainly eight families of distributions
(including Gaussian, Gamma and Beta) and offers a large
variety of shapes (symmetrical or not, with finite or semi-
finite support, etc.). Each law can be uniquely defined by its
mean (
1) and its first three centered moments (
2, 
3, 
4).
All of them can be represented in the so-called Pearson
diagram (as shown in Fig. 2) in which axes �1 and �2 are
given by

• Skewness
√

�1 with �1 = 
2
3/


3
2,

• Kurtosis �2 = 
4/

2
2.

Gaussians are located at (�1 = 0, �2 = 3), Gamma distribu-
tions (III) on the straight line �2 = 1.5 �1 + 3 and inverse
Gamma distributions on the curve with the equation

�2 = 3

�1−32
(−13�1 − 16−2(�1+4)3/2) with �1 <

96

25
.

First kind Beta distributions are located between the lower
limit and the Gamma line, second kind Beta distributions

are located between the Gamma and the inverse Gamma
distributions, and Type IV distributions are located between
the inverse Gamma distributions and the upper limit. Then,
it is possible to estimate empirical moments of a distribu-
tion from a sample and to assess the family of distributions
from coordinates (�1, �2) and the parameters that precisely
characterize the pdf within its family.

2.2.2. Characterization of high-pass coefficients through
generalized Gaussians

We observed [29,30] that the pdf of wavelet coefficients,
from most mother wavelets, can be globally modeled by the
generalized Gaussian family, given by

p(x; 
, �, �) = �

2� �(1/�)
e−(|x−
|/�)� ,

where �(·) is the Gamma function, 
 is the mean, � is a scale
parameter which characterizes the width of the pdf (i.e. the
variance), and where � is a shape parameter. For example,
the Laplace law comes from � = 1, and the Gaussian pdf of
variance �/2 from � = 2.

Several parameter estimation methods have been pro-
posed [31], especially by means of the moment method like
for the Pearson system. However, the maximum likelihood
estimation is more robust for heavy-tailed distributions and
when the number of samples is low. From an independent
and identically distributed sample x = {xi; i = 1, 2, . . . , N},
the log-likelihood L to be maximized is given by

L(x; 
, �, �) = log
N∏

i=1

p(xi; 
, �, �). (3)

This optimization problem is similar to minimizing the dif-
ference of entropy between a generalized Gaussian with pa-
rameters (
, �, �) and the pdf of sample x. In general, this
minimization gives an unique root in the case of generalized
Gaussians. We obtain this system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min



N∑
i=1

|xi − 
|�,

�L

��
= −N

�
+ �

��+1

N∑
i=1

|xi − 
|� = 0,

�L

��
=N

�
+N�(1/�)

�2 −
N∑

i=1

( |xi−
|
�

)�

log

( |xi−
|
�

)
=0,

where �(·) = �′(·)/�(·) is the Digamma function. It is im-
portant to note that even if, globally (in the whole image),
coefficients are centered, this not necessarily true for a local
neighborhood of a pixel. Then, the estimation of the three
parameters is necessary.

The first equation is not derivable and depends on two pa-
rameters. So we developed a numerical method that involves
in minimizing

∑N
i=1|xi − 
|� from successive estimations
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of parameters � and 
 according to⎧⎪⎪⎪⎨⎪⎪⎪⎩
�̂ such that

�(2/̂�)√
�(1/̂�)�(3/̂�)

= 1/N
∑N

i=1|xi−
̂|√
1/N

∑N
i=1(xi−
̂)2

,


̂ such that min

̂

N∑
i=1

|xi − 
̂|̂�.

The first estimation of 
 is obtained by the empirical mean
of the sample: 
̂= (1/N)

∑N
i=1xi . It is possible to refine the

estimation of �, once 
̂ is fixed, by looking for the root of

1 + �(1/̂�)

�̂
−
∑N

i=1|xi − 
̂|̂� log |xi − 
̂|∑N
i=1|xi − 
̂|̂�

+ log(̂�/N
∑N

i=1|xi − 
̂|̂�)

�̂
.

Finally, the scale parameter � is computed according to

�̂ =
(

�̂

N

N∑
i=1

|xi − 
̂|̂�
)1/̂�

.

In order to illustrate the method, Fig. 3 shows the histograms
of the wavelet coefficients at three different levels from the
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Fig. 3. Histograms of wavelet coefficients from the three band decompo-
sitions (a) and the three corresponding generalized Gaussians estimated
from the maximum likelihood (b).

multiscale decomposition of Fig. 1 and the estimated gen-
eralized Gaussians.

3. Segmentation using a vector HMC model

From the multiscale decomposition, the initial observation
is characterized by a vector of data with M = 2L + 1 com-
ponents: (
L, �hori

L−1, �
vert
L−1, . . . ,�

hori
� , �vert

� , . . . , �hori
0 ,

�vert
0 )t . The segmentation of the multiscale representation

of the original image requires the implementation of a
vector-based classification algorithm. We propose to adapt
the HMC model to the vector context. This method is quite
general and has been applied in different situations (multi-
spectral [32], multitemporal [33]). The specifications of this
algorithm in the multiscale context come from the choice
of the pdf shapes that characterize observations.

3.1. Hidden Markov Chain

The interest of Markovian models is mainly due to the
fact that when the unobservable signal process X can be
modeled by a finite Markov chain and when the noise is not
too complex, then X can be recovered from the observed
process Y by using Bayesian classification techniques such
as a maximum a posteriori (MAP) or a marginal posterior
mode (MPM). For unsupervised classification, Markovian
parameters have to be estimated from the observed data only.
Well-known iterative methods like estimation–maximization
(EM) or stochastic EM (SEM) can be used. In this work,
we considered a third strategy called iterative conditional
estimation (ICE) [34], whose interest in image segmentation
has been illustrated several times (in remote sensing [35],
in SAR [27,36], in sonar [37], or in medical [38] imaging)
and for various structures like field, chain or tree.

Recently, it has been shown that, in some situations, the
HMC model can compete with hidden Markov random field
(HMRF) based methods in terms of classification accuracy,
while being much faster, even though the latter provide a
finer and more intuitive modeling of the spatial relation-
ships [36]. In a vector context, the first step is to transform
the M images into M one-dimensional chains by using a
Hilbert–Peano scan [39]. The size of each chain is equal to
the number of pixels (N ) in the image. Then, M series of
N data have to be considered. Let ym = (ym

1 , . . . , ym
N) be

the data sequence for each component m, 1�m�M . For
each index n, let �yn = (y1

n, . . . , yM
n )t be the M-component

vector, and �y = (y1, . . . , yM)t = (�y1, . . . , �yN) the set of all
sequences (see Fig. 4).

3.2. Segmentation algorithm

The statistical approach involves considering that each
observation �yn ∈ RM is a realization of a random vec-
tor �Yn that has to be classified among a set of K classes
� = {�1, . . . ,�K}. The segmentation result is a realization



S. Derrode, G. Mercier / Pattern Recognition 40 (2007) 1135–1147 1141

x n +1x n  1

y 1

y 2

y M

x Nx nx 1

 Y

x X

 y 1 y n  y n +1 y n  1

 y

 y N−

−

Fig. 4. Hilbert–Peano scan for a 8×8 multicomponent image (M: number
of bands in the image, N : number of pixels in each band).
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Fig. 5. Hidden Markov chain dependence graph. The M components of
the observations (y1

n, . . . , yM
n ) are linked (dotted line) by correlation.

x of the process X = (X1, . . . , Xn, . . . , XN), with Xn ∈ �,
assumed to be Markovian and stationary. Given the two clas-
sical assumptions:

• random vectors (�Yn)1�n�N are independent condition-
ally to X:

p(�Y = �y|X = x) =
N∏

n=1

p(�Yn = �yn|X = x),

• the distribution of �Yn conditionally to X is identical to its
distribution conditionally to Xn:

p(�Yn = �yn|X = x) = p(�Yn = �yn|Xn = xn),

we obtain the dependence structure of Fig. 5. It should be
emphasized that no assumption has been made about the in-
dependence of components Ym

n conditionally to Xn. Thus, it
is possible to take into account the statistical links between
the bands of the multiscale decomposition (links are repre-
sented by dotted curves)—see Section 3.3.

In unsupervised classification, the distribution p(�Y=�y|X=
x) is unknown and must first be estimated in order to apply

a Bayesian classification technique (MAP or MPM). There-
fore, the following sets of parameters need to be estimated:

� set : The K2 parameters c(��, �k)=p(Xn−1=��, Xn=
�k) have to be estimated in order to calculate a priori prob-
abilities p (�k) and the transition matrix of components
p(Xn =�k|Xn−1 =��). All these probabilities are indepen-
dent of n since X is assumed to be stationary.

� set : The parameters of the K M-dimensional pdfs
f�k

(�yn) = p(�Yn = �yn|Xn = �k) have to be estimated. For a
Gaussian pdf, M × (M + 1) parameters have to be consid-
ered: M-component mean and an M ×M covariance matrix.

The extension of the ICE algorithm to the vector case is
almost straightforward; further details of the method can
be found in the appendix. Nevertheless, at each ICE itera-
tion and for each class, an estimation of an M-dimensional
density—which is not necessarily Gaussian—has to be
performed.

3.3. Multidimensional pdf estimation

At an ICE iteration p and for a given class �k , let �z be
the subset of �y that belongs to class �k . The parameters that
characterize f�k

have to be estimated. In a non-Gaussian
context, multidimensional estimation is quite difficult. The
multivariate analysis involves decomposing the estimation
of the M-dimensional pdf into M estimations of one-
dimensional pdfs. Several strategies are available, depend-
ing on the assumptions made on the statistical links between
the data.

• If data are considered independent [40], then f�k
is the

product of M densities f m
�k

:

f�k
(�zn) =

M∏
m=1

f m
�k

(zm
n ). (4)

However, this assumption cannot be justified in our con-
text (as shown in Section 2).

• Independent component analysis (ICA) allows us to
project random vectors �zn in a new space where com-
ponents are statistically independent [41]. The Central
Limit Theorem says that the sum of � random variables
tends to a law towards a Gaussian distribution when
� tends to infinity. The corollary of this theorem says
that the sum of two independent random variables has
a more Gaussian distribution than any of the two initial
random variables. Then, the estimation of independent
components involves finding a linear mixture of the ob-
servation so that the yielded vector has the least Gaussian
component [42,43]. Unfortunately, most of the time, the
maximization of a non-Gaussianity criterion leads to
multimodal distributions.

• A sub-optimal solution involves using a PCA. The prin-
ciple is to decorrelate the original data in order to use
Eq. (4) as in Ref. [44]. If there exists a matrix A such
that data �tn = A�zn are not correlated, then the covariance
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Fig. 6. ERS SAR image of an oil spill (a) and its histogram (b).

matrix of data �tn is diagonal (unary matrix for example).
Hence, it is possible to write A��zAt = Id, with ��z the co-
variance matrix of data �z. By using the Choleski decom-
position, a solution A of this equation is given by

At = (Choleski(��z))−1.

It can be easily verified that variances of the projected data
are unitary and their covariances are zero. For example,
for M = 2 components, we get

A =
⎛⎜⎝

1

�1
0

−�

�1
√

1 − �2

1

�2
√

1 − �2

⎞⎟⎠ ,

where �2
1 and �2

2 denote variances of �z1 and �z2, respec-
tively, and � the intercorrelation. If distributions gm(·),
1�m�M , denote the one-dimensional pdf estimated
from the decorrelated data �tn, thus

f�k
(�zn) = | det A|

M∏
m=1

gm
�k

(tmn ). (5)

No assumption about the shape of densities in principal com-
ponents is necessary. The method can be applied in a Gaus-
sian context (where decorrelation stands for independence)
as well as in a generalized mixture context where compo-
nents belong to different families of distributions. This is the
case for the multiscale data used here to detect and charac-
terize oil spills.

4. Detection of oil spills

The multiscale segmentation method is the following. The
multiscale decomposition described in Section 2 is applied
to a sea surface SAR observation y. Then, the observation
is characterized by �y = (
L, �hori

L−1, �
vert
L−1, . . . ,�

hori
� , �vert

�

, . . . ,�hori
0 , �vert

0 )t as in Eq. (2), without loss of informa-
tion. This multicomponent information is segmented via the
vector HMC model presented in Section 3. The pdf of the
low-pass coefficients 
L has been modeled by families from

the Pearson system of distributions, and the pdf of the high-
pass coefficients �hori

� and �vert
� (0�� < L) by the general-

ized Gaussian family.
The number of classes used to segment the images is set

manually. This value is typically equal to two if one wants
to detect the presence or absence of oil slicks. Neverthe-
less, one or two more classes may be necessary to take into
account a meteorological phenomenon like a wind front, a
squall or a particular state of oil such as an emulsion of oil
and sea water. We tested the algorithm on two types of SAR
images showing oil spills. Below, local results from a high-
resolution image (decametric resolution for a satellite sen-
sor) with ERS data are shown first, then more global results
with a lower resolution image (Envisat ASAR, Wide Swath
mode, 150 m resolution).

4.1. Results on ERS data

We used an ERS SAR image showing an oil slick in the
Mediterranean sea (cf. Fig. 6). The dark part of the image
shows a compact spill, whereas the free sea appears lighter
due to a lower viscosity and the presence of waves. Mixed
areas are observable on the right-hand part of the image.
Since the size of these zones is small, these cannot be as-
signed to local variations in the wind speed. But they could
be an emulsion or, on the contrary, volatile oil in which the
damping of waves is not so great. This scene is a typical
spill in the Mediterranean sea. The difficulty in the location
of oil spills is not in detecting large slicks but in determin-
ing precisely frontiers and detecting more ambiguous areas
like the dark zones in the right-hand part of the image. It is
known for example that a marginal spill does not have the
same behavior windward or leeward.

Fig. 7 groups all the segmentation results in order to make
some comparisons. The segmentation of the image was per-
formed with different methods and two or three classes (first
and second columns). The thresholding value was set man-
ually, according to the histogram shape. The thresholding
and the blind ICE algorithms illustrate the limits of methods
based on radiometry only. Even if the slick is well localized,
Fig. 7(a) and (d) show a large number of false alarms in clean



S. Derrode, G. Mercier / Pattern Recognition 40 (2007) 1135–1147 1143

Fig. 7. Segmentation results of the image in Fig. 6 for K = 2 and K = 3 classes. The first raw corresponds to the thresholding algorithm (2 classes) and
blind ICE method (3 classes). The second raw corresponds to the scalar HMC applied to the original image directly. The third raw corresponds to the
vector HMC algorithm applied on a multiscale decomposition.

water. The algorithms cannot take into account the texture
of the sea surface, and the third class introduced in Fig. 7(d)
split up clean water. Regarding the two Markovian models,
the error rate in clean water was reduced in the case of two
classes—Fig. 7(b)—but detection of the spill is not satis-
factory. Nevertheless, the image Fig. 7(e) shows the precise
location of the spill. Radiometric and spectral information
from the contextual Markovian model allows the quality of

detection to be improved significantly. But the clean water
inside the spill has been absorbed by the class representing
the oil spill.

The specific interest of the vector HMC model in mul-
tiscale decomposition is illustrated by the image Fig. 7(f).
In addition, the algorithm achieves the segmentation of the
local texture variations and gives much more satisfactory
results. This shows that the quality of segmentation is not
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Fig. 8. (a) ASAR image from Envisat acquired during the wreck of the Prestige �ESA. (b) Segmentation of oil by using the vector HMC model on the
multiscale decomposition of the image.

only due to the markovianity but also to the way the scene
is represented. The meaning of the multiscale representa-
tion is twofold: the coarse information �L acts as a regu-
larization of the initial observation, while the set of wavelet
coefficients �hori or vert

� characterizes all the shades of local
texture. From a thematic point of view, the slick is perfectly
detected. In a similar way, the clean water and the oil spill
are characterized without any false alarms. The intermediate
class can be found in two areas: first, at the interface be-
tween the sea and the spill and, second, in ambiguous zones
where ground measurements could show fragmented spills
or volatile oil. In fact, when oil is in contact with the sea,
it loads up water and on disintegration makes an emulsion
whose viscosity is very different from that of the initial oil.
On the contrary, light oil diffuses on the water surface.

4.2. Results on envisat data

On November 19, 2002, the wreck of the Prestige con-
firms the interest of radar remote sensing for the location of
oil spills in an operational context. In adverse weather con-
ditions with a cloudy sky or at night, SAR sensors yield im-
ages of identical quality, while optical sensors are useless.
However, the presence of dark areas in images is not suffi-
cient to claim the presence of oil slick on the sea surface.
Such areas can be generated by a lack of wind, by really
strong wind, by oceanographic phenomena like up-wellings
or the presence of phytoplankton, etc.

The additional interest of the proposed approach is the
simultaneous estimation of a mixture of laws. So, once the
segmentation is achieved, an analysis of the type and shape
of laws in the mixture can be used to confirm or not the
presence of oil in a dark area. The image in Fig. 8 (a) shows
an oil trail just before the Prestige wreck, on November 17,
2002. The oil spill has divided into two trails due to the
sea state, the wind and the viscosity of oils. So, the charac-
terization of the oil between these two trails becomes dif-
ficult. Furthermore, atmospheric conditions induce a partic-
ular pressure on the sea surface and a front appears with a

Table 1
Histograms and pdfs of the three classes obtained by the vector HMC
method during the segmentation process of the multiscale decomposition
of the original image

Band
Class

oil ambiguous sea free of pollution

Θ

Ψ

Ψ

Ψ

Ψ

L =2

�1= 0.1
�

�
�

�

�

2 = 2.25

= 255
= 1.62

= 280
= 1.69

= 150
= 1.29

= 151
= 1.36

= 244
= 1.74

= 286
= 1.94

= 228
= 1.60

= 281
= 1.91

= 460
= 1.92

= 549
= 1.94

= 406
= 1.79

1= 0.25
2= 2.53

1= 0.4
= 3.2

= 499
= 1.87

hori
=1

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

vert
=1

hori
=0

vert
=0

lower radiometry without revealing an oil spill. The image
in Fig. 8(b) presents the result of segmentation with three
classes. A first class is characteristic of the oil spill, a second
one of the ambiguous zone where the sea surface appears
darker, and a third one of the sea free of pollution.

If the presence of an ambiguous class makes the seg-
mentation result ambiguous, the analysis of statistical laws
(Table 1) can be used to decide the presence of oil with more
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safety for each class. It is interesting to note that wavelet
coefficients from oil spills are characterized by pdfs with a
shape closer to a Laplace pdf than laws of wavelet coeffi-
cients from clean water, which are more similar to Gaussian
densities. Hence, this ambiguous class can be assigned a
posteriori to an area free of pollution, and surely represents
an atmospheric phenomenon, like a squall. Finally, we can
conclude that this kind of classification segments the local
wave spectrum observed from a SAR sensor.

Remark. From an operational point of view, radar images
represent a huge amount of data (8000 × 8000 for ERS im-
ages) that it is necessary to take into account during the
process. However, the Markov chain model is not suited to
dealing with large images due to the amount of memory
needed for computation. To mitigate this problem, it is pos-
sible to apply the algorithm on a partition of the image into
blocks (of size 1000 × 1000 for example). This approach is
coherent for the following two reasons:

(1) The multiscale description is local since it is built by
convolution with finite impulse response filters. Further-
more, tiling (overlapping of blocks) is possible, to reduce
border effects in the segmentation of the whole image.

(2) The Markovian model assumes that process X is sta-
tionary, so that blocks are also assumed stationary. This
assumption is not always true for images with oil slicks.
However, the influence of the neighborhood of each
pixel is spatially limited since correlation reduces expo-
nentially with distance in a Markovian model.

Finally, it is possible to join all the blocks together to
yield a global segmentation map for the overall image.

5. Conclusion

In this work, an unsupervised method for the segmenta-
tion of oil spills based on a multiscale decomposition and a
Markovian model have been presented. More precisely, the
multiscale decomposition was implemented with a wavelet
transform which acts as a multiscale differential operator.
The segmentation is performed thanks to a vector extension
of the HMC model. The estimation of the multidimensional
pdf arising in the algorithm was achieved by PCA in which
each component comes from the Pearson system of distri-
butions (for the low-pass coefficients) or from the family of
generalized Gaussians (for the high-pass coefficients). This
method performs the segmentation of the sea surface thanks
to a local characterization of the wave spectrum observed by
a SAR sensor. This segmentation strategy may detect differ-
ent phenomena that have an impact on the sea surface wave
spectrum and seems to be appropriate for the detection of
oil spills on the sea surface.

However, the stationarity assumption of the Markov
chain can be a limitation for the analysis of full size radar
images in an operational context. The lack of validity of this

assumption induces a wrong segmentation where the
oceanographic phenomena are mixed together in order to
yield a Markov chain where parameters are stationary. It be-
comes difficult to make the distinction between an oil spill
with low viscosity and a slow wind area. Hence, a natural
evolution of the method will involve taking into account the
non-stationary characteristic of a sea surface in presence of
oil. In addition, an interesting point to consider for further
work is to measure the ability of the method to discriminate
between oil spills and look-alikes such as natural films or
other pollutants. One idea is to use the shape of the distri-
butions estimated during the segmentation step, compared
to other features based on the shape or the backscatter of
the segmented regions [45]. Finally, ships induce strong
scatters with a high level of radiometry on SAR images.
These anomalies are highly penalizing for the statistical
characterization of wavelet coefficients and have a strong
impact on the segmentation result. It is thus necessary to
suppress the ship signatures and two solutions are possible:
by detecting ships in a pre-processing step or by using a
non-linear decomposition with median filters. This latter
idea constitutes the main perspective for further work.

Appendix A. ICE description

The skeleton of the entire segmentation algorithm is
divided into three steps, see Fig. 9, denoting � = (�, �):

Step 1—Initialization. The objective is to make a prelim-
inary estimation of model parameters. The low-pass image
(
L) is segmented with a blind ICE algorithm, in a Gaussian
context, yielding x0. The estimation is performed according
to the complete data (x0, �y) and gives �0;

Step 2—ICE parameter estimation. This step is per-
formed according to ICE. Each iteration gives an estimation
�p. Since the number P of iterations cannot be set a priori,
the algorithm stops when parameters do not vary under a
limit or when the maximum number of iterations is reached.

original image (
→
y ).

Step 1:Initialization
with a blind ICE algorithm

 0

Step 2 : Parameter estimation
"Iterative Conditional Estimation" (ICE)

 P

��

�

p= 1...   P

Step 3 : Segmentation
"Marginal Posterior Mode" (MPM)

Segmented image (x).

Fig. 9. Overall skeleton of the segmentation algorithm. Step 2 is detailed
in Fig. 10.
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Fig. 10. Skeleton of the ICE parameter estimation procedure (stage 2).

Step 3—Bayesian segmentation This last step involves
segmenting the image from estimated parameters (�P ) by
using the MPM criterion.

The ICE principle is based on the conditional expectation
of some estimators from the complete data (x, �y) [34]. ICE
is an iterative procedure which gives a series of estimations
�p of parameter � in the following way:

(1) Initialization of �0.
(2) Calculation of �p+1 = E�p

[̂�(X, �Y)|�Y = �y], where

�̂(X, �Y) is an estimator of � from the complete data
(X, �Y).

(3) Stop at iteration P if �P 	 �P+1.

In the context considered here, this procedure gives two
different situations:

� set : The expectation of estimators of parameters �̂ can
be calculated analytically, by using the Baum–Welch algo-
rithm (“Forward” and “Backward” probabilities) [46].

� set : The expectation of estimators of parameters can-
not be calculated analytically. However, it can be estimated
by computing the mean of several estimations according to
�p+1 = (1/L)

∑L
l=1̂�(xl , �y), with xl an a posteriori realiza-

tion of X conditionally to �Y, simulated by using �p. Indeed,
it can be shown that the distribution p(X = x|�Y = �y) is a
non-homogeneous Markov chain whose parameters can be
computed with the Baum–Welch algorithm, which allows its
simulation.

The skeleton of the ICE parameter estimation procedure
is given in Fig. 10 and corresponds to a zoom on stage 2 of
the general skeleton of Fig. 9.
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