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Abstract

Various types of moments have been used to recognize image patterns in a number of applications. However, only few works have
paid attention to the completeness property of the invariant descriptor set, which is of fundamental importance from the theoretical as
well as the practical points of views. This paper proposes a systematic method to extract a complete set of similarity invariants (trans-
lation, rotation and scale), by means of some linear combinations of complex moments. The problem of image reconstruction from a
finite set of its moment invariants is then examined by exploiting the link between the discrete Fourier transform of an image and its
complex moments. Experimental results are presented that confirm theoretical properties as well as numerical effectiveness of the method.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Geometric and complex moments are ones of the most
common tools for the construction of object descriptors
for pattern recognition, target identification and scene
analysis. The pioneering works by Ming-Kuel (1962), Davis
(1977) have been extended to a variety of new moments,
especially orthogonal polynomial moments: Zernike (Kho-
tanzad and Hong, 1990) and Fourier–Merlin (Sheng and
Shen, 1994) moments, and more recently, Tchebichev
(Mukundan et al., 2001), Krawtchouk (Yap et al., 2003)
and radial harmonic Fourier (Ren et al., 2003) moments.
The orthogonality property insures that the information
coded in the descriptors is not redundant, which is generally
considered as an advantage over non orthogonal moments.
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It is however well known that information redundancy can
be of practical interest, especially when images are noisy.

The most important properties to be verified by those
descriptors are (i) invariance against some geometrical
transformations (translation, rotation, scaling, stretching,
etc.), (ii) stability to noise, to blur, to non rigid and small
local deformations and (iii) completeness. While the two
first properties are commonly studied, less attention has
been paid to the third one. A set of invariant descriptors
is said to be complete if it encodes all the information on
the shape of an object, i.e. everything except the geometri-
cal information characterizing the pose of the object in the
image. The first significant work on completeness was due
to Crimmins (1982) who derived a complete set of Fourier-
based invariant descriptors from object contour. A com-
plete set of similarity (translation, rotation and scale)
invariant descriptors computed from the Fourier–Merlin
transform has been proposed in (Ghorbel, 1994; Derrode
and Ghorbel, 2001).
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Regarding moment invariants, the seven descriptors
proposed by Ming-Kuel (1962) and the extended sets latter
proposed in (Wong et al., 1995; Balslev, 1998), do not
achieve completeness. More recently, complex moments
have received a renew of interest, notably from works by
Flusser and co-workers, with several extensions of classical
similarity invariance (Abu-Mostafa and Psaltis, 1984,
1985) to blur (Flusser et al., 1996; Liu and Zhang, 2005),
affine (Suk and Flusser, 2003, 2004) and projective (Suk
and Flusser, 2004) transformations. They also proposed a
complete and independent set of rotation invariants by
normalizing complex moments (Flusser, 2002; Flusser
and Suk, 2003), which appears to be a particular case of
a more general class of complete similarity invariant fami-
lies introduced earlier in (Derrode et al., 2000) (see Section
2). This family is constructed in a systematic way by using a
normalization method inspired by the relation that links
complex moments of two objects with the same shape but
distinct orientation and scale. Numerical behavior and per-
formance of the set are compared to Mukundan’s and
Flusser’s families of rotation invariants (Mukundan,
2004; Flusser and Suk, 2003) and to Hu’s set of similarity
invariants, in Section 3.

The inverse problem of complex moments is examined
in Section 4, i.e., how it is possible to reconstruct an image
from a finite set of its complex moments. The new
approach we propose consists in constructing the discrete
fourier transform (DFT) of an image from its complex
moments and then applying the inverse DFT to recover
the original image. We next present some reconstruction
experiments showing the practicality of the method and
how well an image can be characterized by a small set of
its complex moments. Finally, Section 5 summarizes the
most important results and mentions future works.
2. A complete set of similarity invariants from complex

moments

For an integrable function f (x,y), complex moments can
be defined by

cf ðp; qÞ ¼
Z Z

R2

ðxþ iyÞpðx� iyÞqf ðx; yÞdxdy; ð1Þ

where p, q 2 N. In polar coordinates, Eq. (1) becomes

cf ðp; qÞ ¼
Z 1

0

Z 2p

0

rpþqþ1eiðp�qÞhf ðr; hÞdr dh. ð2Þ

The origin of the coordinate system is taken at the center
of mass of the objects in order to achieve translation invari-
ance of the representation. This center of mass is classically
computed from the firsts geometric moments of the object.

It is easy to verify that the relation between complex
moments of two images f and g having the same shape
but distinct orientation (b) and scale (a), i.e., g (r,h) =
f (ar,h + b), is given by

8p; q 2 N; cgðp; qÞ ¼ a�ðpþqþ2Þe�iðp�qÞbcf ðp; qÞ. ð3Þ
From (2), Flusser (2002), Flusser and Suk (2003) derived a
complete and independent set of rotation invariants (Uf)
given by

8p; q 2 N; Uf ðp; qÞ ¼ cf ðp0 � 1; p0Þ
p�qcf ðp; qÞ; ð4Þ

where p0 > 0 is an arbitrary index and cf (p0 � 1,p0) 5 0
acts as a normalization factor to make the complex mo-
ments invariant to rotation.

Earlier, Derrode et al. (2000) proposed a complete set of
both rotation and scale invariants (If), given by

8p; q 2 N; If ðp; qÞ ¼ C�ðpþqþ2Þ
f e�iðp�qÞHf cf ðp; qÞ; ð5Þ

with Hf = arg(cf (1, 0)) and Cf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cf ð0; 0Þ

p
.

Coefficients Cf and Hf normalize independently the
magnitude and the phase of complex moments. It is easy
to verify that other normalization factors can be used if,
for g (r,h) = f (ar,h + b), we get

Hf �Hg ¼ bð2pÞ; and
Cf

Cg
¼ a. ð6Þ

For example, if we introduce

Hf ¼�argðcf ðp0� 1;p0ÞÞ; and Cf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jcf ðp1;p1Þj;

2ðp1þ1Þ
q

in Eq. (5), with p0 > 0 and p1 P 0, we get another complete
family of invariants. Hence, Flusser’s complete set of invar-
iants appears as a particular case, with invariance only to
rotation since the normalization of magnitude does not
make the family invariant to scale transformations.

It is easy to verify that sets of the form (5) are complete
since

8p; q 2 N; cf ðp; qÞ ¼ Cpþqþ2
f eiðp�qÞHf I f ðp; qÞ. ð7Þ

Hence, if one knows all invariants If (p,q) and the two nor-
malization factors Cf, Hf, it becomes possible to reconstruct
back all complex moments cf (p,q). The question of how it
is possible to reconstruct back the original image from its
complex moments is addressed in Section 4.

All families of the form (5) with conditions (6) are
theoretically equivalent. The choice for the normalization
factors should be driven by numerical considerations such
as robustness to noise and numerical stability. Generally,
factors using small order moments are preferred due to
their weak sensitivity to numerical approximation. Experi-
ments presented in next section are performed with the ori-
ginal family (Derrode et al., 2000).
3. Numerical experiments

This section is intended to test the complete family of
similarity invariants in Eq. (5) using Lena image in Fig. 1.
The set is compared to Hu’s similarity invariants (Appendix
A), Flusser’s complex moment family (Eq. (4)) and Mukun-
dan’s radial Tchebichef moment family (Mukundan, 2004)
(Eq. (8)) of rotation invariants.



Fig. 1. Lena image, size 200 · 200.
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Rotational invariants can be obtained by taking the
magnitude of radial Tchebichef moments according to

Sf ðp; qÞ ¼
1

nqðp;mÞ
Xm�1

r¼0

Xn�1

h¼0

tpðrÞe�jqhf ðr; hÞ; ð8Þ

where the image size is N · N, m = (N/2) + 1 and n denotes
the number of angular sampling points. Also tn(r) denotes
Tchebichef polynomials which satisfy the following recur-
rence formula

ðnþ 1Þtnþ1ðrÞ � ð2nþ 1Þð2r � N þ 1ÞtnðrÞ

þ n 1� n2

N 2

� �
tn�1ðrÞ ¼ 0;

with the initial conditions t0(r) = 1 and t1(r) = (2r �
N + 1)/N. The squared-norm q (p,m) is given by

qðp;mÞ ¼ m
2p þ 1

Yp

i¼1

1� i
m

� �2
 !

; p ¼ 0; . . . ;m� 1.

The set fjSf ðp; qÞjgp;q2N is not complete since the phase of
each moment Sf (p,q) is not taken into account.

To make comparisons possible between all families of
invariants, we constructed a 1D vector from a 2D array
of invariants by using a zigzag scan starting with order
(p = 0, q = 0)! k = 0 and following the path (1, 0)! 1,
(0,1)! 2, (2, 0)! 3, (1, 1)! 4, (0, 2)! 5, etc. The com-
parison is performed according to the relative error
between the invariant vector I1 from the original image
and the invariant vector I2 from the transformed image:

EI1;I2
ðkÞ ¼ I1ðkÞ � I2ðkÞ

I1ðkÞ

����
����. ð9Þ
Fig. 2. Several rotations o
The term I1(k) in the denominator normalizes the invariants
of the four families to the same dynamic range and makes the
comparison between the different types of moments possible.

3.1. Invariance to rotation

To test invariance against rotation, we have rotated the
Lena image in Fig. 1 by 30�, 60�, 90� and 95�, as shown in
Fig. 2. Plots in Fig. 3 compare the relative errors between
the invariant vector of the original image and the invariant
vectors of the rotated images. Plots clearly show that the
relative error is much more higher in the case of Flusser’s
and Mukundan’s families of invariants than in the case
of the new set of similarity invariants, whatever the rota-
tion angle. Also, one important point to note is the smooth
behavior of the relative errors when computed for the com-
plete set of invariants, compared to others families.

3.2. Invariance to scale

To test invariance against dilatation, we have scaled the
Lena image by 85%, 90%, 110% and 125%, as shown in
Fig. 4. Plots in Fig. 5 compare the relative errors between
the invariant vector of the original image and the invariant
vectors of the scaled images, for the complete family and
Hu’ set of similarity invariants (see Appendix A). If the rel-
ative errors are very close for 110% and 125% dilatations,
they are higher for Hu’ set in the case of 85% and 95% dil-
atations. This result confirms the robustness of the set to
numerical approximations. In addition, one great advan-
tage of the new set against Hu’s invariants is the possibility
to use as many invariant descriptors as needed for a given
pattern recognition application.

3.3. Robustness against noise

To test the robustness of the family against noise, we
have added to the Lena image a white Gaussian noise
with mean l = 0 and variance r2 = 13, 20, 28 and 34, as
shown in Fig. 6. Plots in Fig. 7 compare the relative errors
between the invariant vector of the original image and the
invariant vectors of the noisy images. It can be seen that
there is no fundamental differences between all the families
and, as expected, that higher-order moments are more
sensitive to noise. One can however note that the draws
f the original image.
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Fig. 3. Relative error against rotation, for the Mukundan’s, Flusser’s and the new complete set of similarity invariants (logarithmic scale except for the
third image).

Fig. 4. Several scaled images of the original image.
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corresponding to the new similarity invariant family seem
to be smoother with respect to the order.

4. Image reconstruction from complex moments

In Section 2, we have seen that it is possible to recover
the complex moments of an image from the complete set
of invariants by mean of Eq. (7). We are now interested
in the second step which consists in reconstructing the ori-
ginal image from its complex moments.

This inverse problem is known to be difficult in the case
of non orthogonal moments, such as geometric and com-
plex moments. The technic called ‘‘moment matching’’ by
Teague (1980) is based upon creating a continuous func-
tion which moments match exactly the moments of the ori-
ginal function, through order Nmax. However, the method
is impractical as it requires the solution to an increasing
number of coupled equations, when higher order moments
are considered (Prokop and Reeves, 1992). In this section,
we propose an original method which consists in recover-
ing the Fourier transform of an image from its complex
moments. Then, the inverse Fourier transform is used to
recover the original image.

4.1. Principle

The DFT F (u,v) of an image can be expressed in terms
of its complex moments according to (see Appendix B):
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Fig. 5. Relative error against scale, for Hu’s and new complete set of similarity invariants (linear scale).
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Fig. 6. Several noisy images of Lena.
F ðu; vÞ ¼
X1
p¼0

ð�ipÞp

p!

Xp

k¼0

p

k

� �
uþ iv

N

� �p�k u� iv
M

� �k

� cf ðk; p � kÞ. ð10Þ
To be computed, each Fourier harmonic needs all geomet-
ric moments which is not realistic from a computational
point of view. However, we will see latter in experiments
that only a limited number of moments has a real contribu-
tion in computation. The image function can then be recov-
ered by computing the inverse DFT, according to
f ðx; yÞ ¼ 1

NM

XN�1

x¼0

XM�1

y¼0

F ðu; vÞe2ip ux
Nþ

vy
Mð Þ.
4.2. Reconstruction error analysis

The normalized mean-square reconstruction error
between a discrete image f (n,m) of size N · M and its

reconstructed version ~f ðn;mÞ from a finite set of its
moments (up to order Nmax) is defined as
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Fig. 7. Relative error against noise, for the Mukundan’s, Flusser’s and the new complete set of similarity invariants (logarithmic scale).
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�e2ðNmaxÞ ¼
PN�1

x¼0

PM�1
y¼0 ½f ðx; yÞ � ~f ðx; yÞ�2PN�1

x¼0

PM�1
y¼0 ½f ðx; yÞ�

2
ð11Þ

This error is considered as a good measure of the image
representation and reconstruction ability of moments (Liao
and Pawlak, 1996).

Up to a given order Nmax, Eq. (10) can be expressed in
the form

F Nmaxðu; vÞ ¼
XNmax

p¼0

ð�ipÞp

p!

Xp

k¼0

p

k

� �
uþ iv

N

� �p�k u� iv
M

� �k

� cf ðk; p � kÞ.

It is worth noting that as Nmax approaches infinity, the
reconstructed function fNmaxðx; yÞ, computed from
F Nmaxðu; vÞ, approaches the original function f (x,y), i.e.,
more moments furnishes a higher quality reconstruction.
This is illustrated in Fig. 8 which shows a general improve-
ment in the quality of the basic and threshold reconstructed
images when the order of moments increases.

In addition, we can see in the difference images that the
number of mid-gray value pixels increases (correct recon-
struction), whereas the number of black and white pixels
decreases (incorrect pixels), as the reconstruction order
increases. The normalized reconstruction error shown in
Fig. 9 confirms this first remark.

The second remark is that a relatively small set of
moments may characterize an image adequately. In fact,
the letter ‘E’ is recognizable up to and including order
60, but fine details (high frequencies) can only be recreated
by including higher order moments. To investigate the rela-
tion between higher order moments and higher Fourier
frequencies in more depth, we have plotted the module val-
ues of some recovered DFT harmonics versus the order of
moments used in reconstruction (Fig. 10). It is clear from
this figure that higher frequencies need higher-order
moments to be well approximated and a relatively small
number of moments takes part in each harmonic (this num-
ber increases as the frequency increases).

Results in Table 1 confirm this remark. Indeed, we can
observe that the higher order Nmax needed to get F Nmax

ðu; vÞ ’ F ðu; vÞ with F (u,v) computed directly from the
original image, increases as the frequency also increases.
Indeed, F Nmaxð0; 0Þ reaches F (0,0) since the first order
(F (0,0) = C (0, 0)), whereas DFT coefficients of higher
order F Nmaxð1; 1Þ, F Nmaxð2; 1Þ, F Nmaxð2; 3Þ and F Nmaxð4; 2Þ



Fig. 8. Row (a) shows the reconstruction of a 32 · 32 letter ‘E’ with an increasing number of moments. Row (b) shows the binarized reconstructed images,
with a threshold set to 0.5. Row (c) shows a pixel-by-pixel difference image between the reconstructed and the original images.
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Table 1
Order Nmax needed to get a nearly exact approximation of a DFT
harmonic computed directly from the original image

Harmonic Value Nmax

F (0,0) 106105 0
F (1,1) �4382.5 + 8833.4i 39
F (2,1) �4758.3 � 1308.2i 53
F (2,3) 2187.3 � 1839.7i 87
F (4,2) 89.901 + 3252.8i 107
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reach the expected value when Nmax = 39, 53, 87 and 107,
respectively.

5. Conclusion

In this paper, we have presented a solution for the
inverse problem from complex moments. Indeed, from
the complete set of similarity invariants given by Eq. (5),
an image can be recovered by reconstructing, first its com-
plex moments using Eq. (7), and second, its DFT using
Eq. (10).

Experiments on numerical invariancy confirm the
robustness of the set and its interesting behavior with
respect to Flusser and Suk’s (2003), Mukundan’s (2004)
families of translation and rotation invariants. The addi-
tional scale invariance makes the complete family more
general than the two others. Regarding image reconstruc-
tion, the proposed method seems to be effective and allow
to recover the fine details of an image by including higher
and higher order moments in the reconstruction process.
One advantage of the method with respect to the ‘‘moment
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matching’’ strategy presented in (Teague, 1980) is that
there is no coupled equations to solve.

As a perspective for further work, we may mention the
application of the invariant family to the indexing of
images into large databases. In addition, we will try to pro-
pose an extension of the descriptors to 3D shapes, since we
know that the recognition of 3D objects independently of
its size, position and orientation is an important and diffi-
cult problem in scene analysis.

Appendix A. Hu’s invariants

Ming-Kuel (1962) defined seven descriptors, computed
from non-linear combinations of normalized and centered
geometric moments (gp,q) through order p + q = 3. All of
them are invariant to object scale, position and orientation:

H 1¼ g2;0þg0;2

H 2¼ðg2;0�g0;2Þ
2þ4g2

1;1

H 3¼ðg3;0�3g1;2Þ
2þð3g2;1�g0;3Þ

2

H 4¼ðg3;0þg1;2Þ
2þðg2;1�g0;3Þ

2

H 5¼ðg3;0�3g1;2Þþðg3;0þg1;2Þ� ððg3;0þg1;2Þ
2�3ðg2;1þg0;3Þ

2Þ
þð3g2;1þg0;3Þ � ðg2;1þg0;3Þ � ð3ðg3;0þg1;2Þ

2�ðg2;1þg0;3Þ
2Þ

H 6¼ðg2;0�g0;2Þ� ððg3;0þg1;2Þ
2�ðg2;1þg0;3Þ

2Þ
þ4g1;1 � ðg3;0þg1;2Þ � ðg2;1þg0;3Þ

H 7¼ð3g2;1�g0;3Þðg3;0þg1;2Þ� ððg3;0þg1;2Þ
2

�3ðg2;1þg0;3Þ
2Þ�ðg3;0�3g1;2Þðg2;1þg0;3Þ

� ð3ðg3;0þg1;2Þ
2�ðg2;1þg0;3Þ

2Þ
Appendix B. Relation between the complex moments

and the Fourier transform of an image

Consider the Fourier transform F (u,v) of the image
function f (x,y)

F ðu; vÞ ¼
Z Z

R2

f ðx; yÞe�2ipðuxþvyÞdxdy.

By expanding the exponential function as a power series,
we obtain

F ðu; vÞ ¼
Z Z

R2

f ðx; yÞ
X1
p¼0

ð�2ipÞp

p!
ðuxþ vyÞpdxdy.

If we interchange the order of summation and integration,
we obtain

F ðu; vÞ ¼
X1
p¼0

ð�ipÞp

p!

Z Z
R2

f ðx; yÞð2ðuxþ vyÞÞpdxdy.

ðB:1Þ
The expansion of (ux + vy)p according to Newton’s bino-
mial formula reveals the monomial product xkyp�k, which
represents the kernel function of geometric moments, and
consequently, results in a relation between geometric
moments and the Fourier transform. As we are looking
for a relationship between complex moments and the Fou-
rier transform, we have to introduce in this expansion the
complex monomial product (x + iy)m (x � iy)n, which rep-
resents the kernel function of complex moments. In addi-
tion, we can write

2ðuxþ vyÞ ¼ ðuþ ivÞðx� iyÞ þ ðu� ivÞðxþ iyÞ. ðB:2Þ

By substituting Eq. (B.2) into (B.1), we obtain

F ðu; vÞ ¼
X1
p¼0

ð�ipÞp

p!

Z Z
R2

f ðx; yÞ½ðuþ ivÞðx� iyÞ

þ ðu� ivÞðxþ iyÞ�pdxdy;

and using Newton’s binomial, we get

F ðu; vÞ ¼
X1
p¼0

ð�ipÞp

p!

Z Z
R2

f ðx; yÞ
Xp

k¼0

p

k

� �

� ½ðuþ ivÞðx� iyÞ�p�k½ðu� ivÞðxþ iyÞ�kdxdy.

Then, if we interchange the order of summation and inte-
gration, we obtain

F ðu; vÞ ¼
X1
p¼0

ð�ipÞp

p!

Xp

k¼0

p

k

� �
ðuþ ivÞp�kðu� ivÞk

�
Z Z

R2

f ðx; yÞðx� iyÞp�kðxþ iyÞkdxdy;

¼
X1
p¼0

ð�ipÞp

p!

Xp

k¼0

p

k

� �
ðuþ ivÞp�kðu� ivÞkcf ðk;p� kÞ.

In a similar way, we can easily show that the DFT and the
complex moments are related according to

F ðu; vÞ ¼
X1
p¼0

ð�ipÞp

p!

Xp

k¼0

p

k

� �
uþ iv

N

� �p�k u� iv
M

� �k

cf ðk;p� kÞ.
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