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Abstract To track objects in video sequences, many studies have been
done to characterize the target with respect to its color distribution. Most
often, the Gaussian Mixture Model (GMM) is used to represent the object
color density. In this paper, we propose to extend the normality assump-
tion to more general families of distributions issued from the Pearson’s sys-
tem. Precisely, we propose a method called Pearson Mixture Model (PMM),
used in conjunction with Gaussian copula, which is dynamically updated to
adapt itself to the appearance change of the object during the sequence.
This model is combined with Kalman filtering to predict the position of the
object in the next frame. Experimental results on gray-level and color video
sequences show tracking improvements compared to classical GMM. Espe-
cially, the PMM seems robust to illumination variations, pose and scale
changes, and also to partial occlusions, but its computing time is higher
than the computing time of GMM.

1 Introduction

Video object tracking is a primary task required by various applications such
as visual surveillance, automated video analysis, robotic, biometry, . . . Most
of applications require the tracker to be robust to partial occlusions, scale
and appearance variations of the object of interest. The problem is difficult
when no prior information can be used from the scene background. Moreover
the algorithm should run in “real time” and have some computer resources
left for higher level tasks such as target recognition and semantic interpreta-
tion. Hence, efforts are still needed to improve the compromise between the
model sophistication and computing time. Strategies for tracking depend es-



2 W. Ketchantang, S. Derrode, L. Martin and S. Bourennane

sentially on the way the object is described and characterized. There is two
principal cues: (i) the object contour in which case the tracking is realized
by following the shape [1,2], or (ii) the intensity/color distribution of pixels
within the object and the tracking is then done by dynamically updating a
distribution model [3]. Each of these cues may fail under certain conditions
such as rapid changes in shape or fast variations in illumination, respec-
tively. Recent works, such as the ones by Leymarie et al. [1] for snakes and
Xiong et al. [4], McKenna et al. [3] and Stern et al. [5] for statistical color
modeling, try to compensate for and get more robust tracking systems. This
work lies within the second category and we propose some improvements
for characterizing object color distribution.

Several approaches have been proposed to characterize color distribu-
tions. Among them Peng et al. [6] used a non parametric model based on
the mean shift algorithm to find modes, whereas McKena et al. [3], Störring
et al. [7], Xiong et al. [4] proposed a parametric Gaussian Mixture Model
(GMM). Most of the time, Gaussian distributions are used to character-
ize the colors distribution. This choice is motivated by some common, and
generally well-accepted, assumptions on natural scene, sensor noise and col-
orimetric space characteristics. Another important fact promoting the nor-
mality assumption comes from its ease of use and its low computation time.
However, this assumption may sometimes appear too strong. For example,
it is not well-suited to certain kind of sensors, like infra-red video cameras
or those from medical modalities. Also it is usual for tracking to work on
other color spaces than RGB to make the system more robust to illumina-
tion changes. But certain nonlinear transformations between color spaces
may result in an inadequacy of the statistical model. Hence, the mixture
does not suit the object histogram well and, as a consequence, the target
may be lost. In this paper, we propose to model the color distribution by a
statistical mixture coming from the Pearson’s system of distributions. This
system holds a large set of shapes, among them Gaussian, Gamma and Beta
families, and has been used with success in satellite images [8]. The “best
distribution” can be automatically selected and their parameters estimated
by adapting the SEM (Stochastic Estimation Maximization) principle to the
context. When the number of bands in the image is greater than one (i.e.
non intensity video sequences), we face the classical problem of modeling
multidimensional non Gaussian densities. We then use the theory of copu-
las [9], first introduced in image processing in [10], and especially a Gaussian
copula with margins from Pearson’s system, to model the correlation be-
tween bands. Kalman filtering is introduced to predict target position in
the next frame.

This paper is organized as follows. The PMM model for both intensity
and color sequences with Pearson’s system and Gaussian copula is presented
in section 2. The tracking principle is then detailed in section 3, by adapting
previous works to the new context. Section 4 presents tracking experiments
on gray level video sequences and on color video sequences. Section 5 draws
conclusion and recommendations.
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2 PMM-based object tracking

This section presents the non-Gaussian model used to describe the distri-
bution of the object to track. We start by presenting the case of intensity
sequences by means of the Pearson’s system of distributions and followed
by the more difficult case of color sequences by means of Gaussian copulas.

2.1 PMM for gray level object based tracking

The object intensity is modeled by a mixture of K probability density func-
tions (pdf) {fk (. |θk )} parameterized by θk, according to:

p (x |Θ ) =
K∑

k=1

αk fk (x |θk ) , (1)

with Θ = {(θ1, α1) , · · · , (θK , αK)} and weights αk are such that
∑

αk = 1.
Most of the time, all pdf in the mixture are supposed Gaussian [11] and θk =
(µ1,k, µ2,k), µ1 denoting the mean and µ2 the variance. When the Gaussian
assumption is not considered reliable, it is always possible from eq. (1)
to choose for another family of densities, such as Gamma, Beta, . . . The
selection of a specific family requires some prior knowledge on the physics
of the sensor and/or the scene. When this information is not available, a
simple and quite efficient solution consists in automatically selecting the
best family within the Pearson’s system of distributions [8]. These families
are solutions of the following differential equation:

1
f(x)

d f(x)
d x

= − x + a

c0 + c1 x + c2 x2
.

This system is made up of mainly eight families of densities (including
Gaussian, Gamma and Beta) and offers a large variety of shapes (symmet-
rical or not, with finite or semi-finite support, . . . ) [12]. Each density is
defined uniquely by its mean (µ1) and its first three centered moments (µ2,
µ3 and µ4). All of them can be represented in the so-called Pearson diagram
(as shown in Fig. 1) in which axes β1 and β2 are given by:

– Skewness
√

β1 with β1 = µ2
3

µ3
2
,

– Kurtosis β2 = µ4
µ2

2
.

Gaussian densities are located at (β1 = 0, β2 = 3), Gamma ones (III) on
the straight line β2 = 1.5 β1 +3 and inverse Gamma ones on the curve with
equation

β2 =
3

β1 − 32

(
−13β1 − 16− 2 (β1 + 4)3/2

)
, for 0 < β1 <

96
25

.

First kind Beta densities are located between the lower limit and the Gamma
line, second kind Beta densities are located between the Gamma and the
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Fig. 1 The Pearson’s (β1, β2)-diagram (left) and examples of pdfs for each main
family of distributions (right). Note that the β2 axis is reversed in (a). Densities
in (b) are drawn with β1 > 0 and shifted for a better visualization.

inverse Gamma ones, and Type IV densities are located between the inverse
Gamma densities and the upper limit.

Once parameters θk = (µ1,k, µ2,k, µ3,k, µ4,k) have been estimated for
each pdf k in the mixture, it becomes possible to assess (i) the family of dis-
tributions within the Pearson’s system from coordinates (β1,k, β2,k) and (ii)
the parameters that precisely characterize the pdf within its family, e.g. the
Gamma parameters can be expressed in term of its four first moments. Note
that the GMM is a particular case of PMM since Gaussian distributions be-
long to the Pearson’s system, with parameters θk =

(
µ1,k, µ2,k, 0, 3 µ2

2,k

)
,

which gives β1,k = 0 and β2,k = 3.
Similarly to the GMM case, the estimation of parameters in set Θ can be
done by maximizing the log-likelihood L (χ) of an identically and indepen-
dently distributed sample χ = {x1, · · · , xN}:

L(χ) = log p (χ; Θ) = log
N∏

n=1

p (xn |Θ ) =
N∑

n=1

log
K∑

k=1

αk fk (xn |θk ). (2)

No analytic solution exists to maximise the log-likelihood, and we use the
SEM algorithm proposed by Celeux et al. [13] to estimate parameters.
The SEM algorithm is an iterative process which updates estimations of
{αk, θk}k=1,...,K until convergence. The principle of SEM consists in sim-
ulating a realization of the hidden process Y using draws according to
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p
(
yn = k

∣∣∣xn, α
[i−1]
k , θ

[i−1]
k

)
, followed by an estimation step from completed

data using empirical estimators.

2.2 PMM with Gaussian copulas for object color based tracking

When dealing with video sequences, color information plays an important
role and tracking algorithms should try to take benefit of it. In such a
context, the mixture becomes M -dimensional, M being the number of com-
ponents in the color space, i.e. the number of colorimetric bands of the
sequence (e.g. 3 for RGB, 2 for Cb Cr sequences, . . . ). In the GMM case,
the bands are supposed to be correlated and it requires the estimation of
K covariance matrices for the K multidimensional Gaussian distributions.
However, in a non-Gaussian context, multidimensional pdfs are quite hard
to obtain. One can deal with multivariate versions of classical distribu-
tions [14]. But they are very few and impose all margins to be from the
same family (e.g. Gamma margins for a multidimensional Gamma distri-
bution). Another solution consists of using tools from multivariate data
analysis such as Principal Component Analysis (PCA) which considers cor-
relation between bands. However, PCA estimates the principal component
and not the marginales.

An interesting solution to our problem comes from the theory of copu-
las [9] which has been introduced in the signal and image processing field
recently [10]. A bi-variate copula is a cumulative density function (cdf) on
the unit square with uniform margins. Such functions have the capability
of giving an exhaustive description of the dependence between two random
variables. Indeed, Sklar [9] has shown that the link between any continuous
joint distribution FX1,X2 and its marginal distributions FX1 , FX2 is achieved
with a copula C:

FX1,X2 (x1, x2) = C (FX1 (x1) , FX2 (x2)) . (3)

Copulas act as a parametric model of the dependence between observations,
whatever the marginal distributions. By derivation, the density may be
written as

fX1,X2 (x1, x2) = fX1 (x1) fX2 (x2) c (FX1 (x1) , FX2 (x2)) , (4)

with c(u, v) = ∂2C(u,v)
∂u ∂v is the density of the copula. These results are also

available for a cdf F on RM with margins F1, . . . , FM .
Many parametric copulas exist, namely Normal, Student’s t, Frank’s and

Clayton’s for examples. We only consider here the Normal copula whose
density is given by

c (u1, . . . , uM ; ρ) = |ρ|− 1
2 e−

1
2 (ζt (ρ−1 − I) ζ), (5)

where ζt =
(
φ−1(u1), . . . , φ−1(uM )

)
with φ the cdf of the normalized Gaus-

sian density, I the identity matrix, ρ the correlation matrix and |ρ| its
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determinant. The correlation matrix can be estimated using SEM by esti-
mating variances and covariances. The Gaussian copula is very useful since
computations are rather easy and the dependence structure is very intuitive,
based on the usual correlation coefficients. The main advantage on multi-
variate Gaussian densities is that the margins are not necessarily Gaussian
and can be chosen from the Pearson’s system. Also, note that a Gaussian
copula with Gaussian margins gives precisely a multivariate Gaussian den-
sity. Finally, the product copula, which is defined by c(u1, . . . , uM ) = 1,
corresponds to the independence case since we can write from eq. (4)

fX1,...,XM
(x1, . . . , xM ) = fX1 (x1) · · · fXM

(xM ) .

We can notice that the product copula, contrary to the Gaussian copula,
does not take into account the correlation between bands.

As a conclusion, the mixture in eq. (1) can be re-written as

∀ x = (x1, . . . , xM )t ∈ RM ,

p (x |Θ ) =
K∑

k=1

αk fk (x |θk,1, . . . , θk,M ,ρk )

=
K∑

k=1

αk

M∏
m=1

fk,m (xm |θk,m ) c (x1, . . . , xM ;ρk),

(6)

where θk,m is the set of the four moments defining the mth 1-D margin fk,m

of the kth M -dimensional density fk.

3 Adaptive target tracking with PMM

The overall tracking process follows the same steps than e.g. [3]. It has been
adapted to suit the new description of objects by a mixture of densities
described by Pearson distributions for margins and Gaussian copulas for
the dependence structure (i.e. correlation between bands). An overview of
the different steps of the algorithm is presented in Fig. 2.

3.1 Adaptive target detection and segmentation

The prediction of the object position in the next frame is done by using
a standard Kalman filter [15]. Using the predicted position of the object
at image t, the Research Box (RB) is defined by a rectangle centered on
the predicted position, with a size equal to twice the size of the object at
previous image: 2h[t−1]×2w[t−1]. Indeed, a factor two is a good compromise
between a good object localization and a low computing time.

The Kalman filter is not used to manage total occlusions. The reason
is the following: if a second moving target (B) hides the object of interest
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STEP 4 - Target Localization

Color stability

STEP 5 - PMM update
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k )k=1,...,K

Next location of the target

Position C [t] and size (h[t], w[t])

STEP 3 - Target Detection

Object is found in RB?

L[t] > T [t]?

(α
(t)
k , θ

(t)
k )k=1,...,K

C [t] = C [t−1]

h[t] = h[t−1]

w[t] = w[t−1]

α
(t)
k = α

(t−1)
k , k = 1, ..., K

θ
(t)
k = θ

(t−1)
k , k = 1, ..., K

No

Yes

No

Yes

t = t+1

Frame t
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Fig. 2 Synopsis of the overall tracking algorithm.

(A), its color distribution will be learned automatically, and consequently,
Kalman filter will focus on B instead of A. To avoid such situation, the pres-
ence of the object of interest in the prediction window is first verified. The
prediction is stopped when A is considered lost. To do that, all pixels x such
that p

(
x

∣∣Θ[t−1]
) ≥ P are selected as target pixels. If a given percentage of

pixels in RB do not verify this condition, then the object is considered lost.
Consequently, Kalman prediction is stopped, until object reappears near to
its previous localization. In order to cope with illumination changes, the
threshold P is adaptively obtained using P = µp + k σp (in our experiment,
we set k = 0.5), where

µp =
1
N

∑

x∈RB

p
(
x

∣∣∣Θ[t−1]
)
, σ2

p =
1
N

∑

x∈RB

(
p

(
x

∣∣∣Θ[t−1]
)
− µp

)2

, (7)
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(a) Target in area
search

(b) (c) (d)

Fig. 3 Face segmentation results in image (a) with thresholds set to Cb ∈ [77, 127]
and Cr ∈ [133, 173] (b), with GMM (c) and with PMM (d).

We denote by S(x) the binary image obtained from probability thresh-
olding. This technique reduces sensitivity to illumination variations and
when the background color is similar to the object one.

Our segmentation algorithm using PMM visually provides good results
even if color background distribution is almost similar to color object distri-
bution (see Fig. 3(d)). The segmentation technique using GMM also visu-
ally gives good results but some object pixels are considered as belonging to
background pixels (see Fig. 3(c)). Face segmentation method using heuristic
thresholds on Cb, Cr [16] introduces some errors on face pixels classification,
see Fig. 3(b). Indeed, some background pixels are considered as belonging
to the face and conversely. The next step consists in locating precisely the
object within the research box.

3.2 Update of target localization parameters and color stability criterion

We now search for the Localization Box (LB) inside the RB, its position
C [t](c, l) and its width w[t] and height h[t]. Since the geometric center may
be too sensitive to misclassified pixels in image S, we propose the following
estimations for c and l

c =

∑

x∈RB

a p
(
x

∣∣∣Θ[t]
)

∑

x∈RB

p
(
x

∣∣∣Θ[t]
) , l =

∑

x∈RB

b p
(
x

∣∣∣Θ[t]
)

∑

x∈RB

p
(
x

∣∣∣Θ[t]
) ,

where (a, b) denotes the coordinates of the pixel x and p
(
x

∣∣Θ[t]
)

is given
by eq. (6).
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Using image S, we compute w[t] and h[t] according to [16]

w[t] =
(

4
π

)1/4 (
I3
2

I1

)1/8

, h[t] =
(

4
π

)1/4 (
I3
1

I2

)1/8

,

with
I1 =

∑

x∈RB

(a− i)2, I2 =
∑

x∈RB

(b− j)2,

where (a, b) denotes the coordinates of pixel x and (i, j) the coordinates of
the gravity center of S.

Once the LB is defined, we check if the object color distribution is stable,
i.e. it does not vary quickly between frames t and t + 1. An unstable object
color distribution can be expected in case of abrupt illumination changes,
partial or total occlusions. To quantify the criterion, we check if the log-
likelihood L[t] of the data in the LB is higher than a threshold T [t]. This
threshold is computed with respect to the L previous values of the log-
likelihood, according to

T [t] = µ−k1σ−k2, with µ =
1

L + 1

t∑

l=t−L

L[l], σ2 =
1

L + 1

t∑

l=t−L

(L[l]−µ)2,

where k1 = e−10 σ, k2 = 2 and L = 3 are fixed experimentally. The PMM
is updated if the stability criterion is achieved.

3.3 PMM parameters update

The color distribution of the target changes along the video sequence be-
cause of natural variations in the scene (illumination changes, shadows,
partial occlusion of the object, . . . ). It is then important to update it in
order to be robust to these changes. So, for a parameter ν[t] estimated at
image t by the SEM algorithm, we add a correcting term depending on
previous estimations, with decreasing weights, and get the final estimation
of parameter ν(t) according to

ν(t) = ν(t−1) +
L∑

l=1

(
ν[t] − ν(t−l)

)
e−l (L+3).

This formula is applied to all parameters in Θ, i.e. all moments and all cor-
relation matrices. This small modification leads to a more flexible system.
This heuristic method inspired from McKena et al. [3] is intuitive because
the new PMM parameters depend recursively on previous ones, and it re-
quires few computer ressources and a low computing time.

4 Experiments

This section is devoted to test both intensity-and color-based PMM tracking
methods proposed in Section 2, within the framework detailed in Section 3.
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(a) frame 0 (b) frame 16 (c) frame 100 (d) frame 139

(e) frame 165 (f) frame 339 (g) frame 476 (h) frame 480

Fig. 4 CD box tracking results using PMM. The tracker adapts the localization
box according to the object size.

4.1 Object tracking results in a gray-level video sequence

In this first experiment, the object of interest is a Compact Disk (CD) box
moving in a gray level video of a laboratory scene (see Fig. 4). The goal of
this sequence is to test and compare the tracker when used in conjunction
with PMM and GMM. The number of pdfs within the mixture was set to
three in both cases.

The CD box is manually selected in frame 0. To get the first estimation
Θ[0] of parameters, the image is first segmented with a classical K-means
classifier. Then the SEM algorithm is run until convergence. Figures 5(a)
and 5(b) show respectively the GMM and PMM mixtures at frame 0. They
constitute the initial GMM and PMM signatures of the CD box. For the
PMM-based tracker, we get a first kind Beta distribution and two Gaussian
distributions. Obviously, in the GMM case, we get three Gaussian distribu-
tions.

Then, in next frames, parameters are updated dynamically according to
the method described in Section 3.3. The family of distributions for each pdf
may vary within the Pearson’s system. This is illustrated with Fig. 6 that
shows the evolution of Pearson’s β1 and β2 coefficients for one pdf along
the sequence. In the GMM case, these parameters are constant (β1 = 0 and
β2 = 3) whatever the pdf.

The good behavior is confirmed by experiments conducted with standard
sequence from the CAVIAR dataset where the object of interest is a person
walking in a room illuminated by lamps and natural light, as shown in Fig. 7.
Object color distribution is modeled by a mixture of three distributions
from Pearson’s system (2 densities of type II and one Gaussian density) in
luminance space. We notice that our model well localizes the object even
when illumination changes, as illustrated by frames 27 and 50. But, when
the luminance distribution of the object is similar to the background one
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Fig. 5 CD box histogram at frame 0 and estimated pdfs for the GMM (a) and
the PMM (b).
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Fig. 6 Evolution of β1 and β2 parameters of one pdf in the PMM for the CD
sequence.

(see frame 255), our model confuses some background and object pixels. As
a consequence, target is not well localized.

4.2 Face tracking results in a color video sequence

The second experiment consists in tracking the face in figure 8(a), from a
Cb Cr sequence with (i) PMM and Gaussian copula and (ii) bi-dimensional
GMM. The number of pdfs within the mixture was set to two in both
cases, mostly for computational load reasons. The Cb Cr colorimetric space
was chosen from previous studies on skin color modeling [17], to make the
algorithm less sensitive to illumination variations.

From results presented in Fig. 8 with PMM and copulas, we can no-
tice that the tracker is able to adapt the size of the localization box along
the sequence, see frames (a) to (d). This is because face segmentation is
done according to the automatic threshold on probabilities p

(
x

∣∣Θ[t]
)

(see
eq. (7)), which is robust to illumination variations and non constant back-
ground (e.g. moving camera). In addition, the tracker is able to deal with
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(a) frame 0 (b) frame 27 (c) frame 34 - luminosity
increases

(d) frame 50 - luminosity
decreases

(e) frame 140 (f) frame 255 - bad locali-
sation

Fig. 7 People tracking in CAVIAR dataset using PMM. The tracker is robust to
illumination variations in the scene.

Class 1 Class 2

α 0.36 0.64

ρ

(
1 0.286

0.286 1

) (
1 0.329

0.329 1

)

Band 0 Band 1 Band 0 Band 1

Pdf family Gamma Gaussian Gamma Gaussian
β1 0.32 0.01 0.37 0.02
β2 3.48 3.01 3.56 3.03

Table 1 Some initial numerical values of PMM with Gaussian copulas.

partial occlusions, see frames (e) to (g). However the target may be lost
when a total occlusion occurs, see frames (h) and (j). In frame (h), the hair
color distribution is very different from the object distribution and the face
is considered lost. The same case arises from frame (j) where the camera
looks at the ceil. Our tracking model stops parameters update when the
object is lost or when L[t] is lower than T [t]. The tracker can recapture the
object of interest if it reappears not too far from the last detected position,
see frames 961 and 1331.

To compare performances between PMM with Gaussian copula, PMM
with product copula and GMM, we have computed L[t]/T [t] for the three
cases, see Fig. 9. When this ratio is greater than one the model is updated,
otherwise the model is not. We can observe that the PMM with Gaussian
or product copulas often update the object color distribution. But, contrary
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(a) frame 0 (b) frame 210 (c) frame 360 (d) frame 600

(e) frame 620 (f) frame 640 (g) frame 950 (h) frame 956 - lost

(i) frame 961 (j) frame 1306 - lost (k) frame 1331 (l) frame 1830

Fig. 8 Face tracking results using PMM with Gaussian copula with a moving
color camera. PMM initial parameters are presented in Tab. 1

to the product copula case, PMM with Gaussian copula takes into account
correlation between colorimetric bands, which allows to improve the fit be-
tween the multivariate model and the object color distribution. PMM with
Gaussian copulas presents interesting performances for color target tracking
as shown in Table 2, even if the rate of object localization failure is still high
(22%). This is because of the high complexity of the scene since

– camera sometimes moves very quickly (frame 1306 from Fig. 8);
– important natural or artificial illumination variations can be observed

(frames 210 and 360);
– sometimes, object and background color distributions are almost similar

in the Cb Cr space (frame 0);
– finally, partial and total occlusions are observed (frames 640 and 956).

All algorithms have been coded in C++, on a 2.6 GHz Pentium IV
personal computer running Linux. The computation time of PMM with
Gaussian copulas is higher than the classical GMM model and PMM with
product copulas. The small computing time difference between GMM and
product copula comes from the estimation of higher order moments for the
two Pearson’s distributions. The difference between PMM with Gaussian
copulas and PMM with product copulas can be explained by the estima-
tion of the two correlation matrices involved in the model, cf. eq. (5). It
is important to note that the model parameters estimation is more reliable
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Fig. 9 Comparison between GMM and PMM updates. Color distribution model
is updated when L[t]/T [t] > 1.

GMM PMM with PMM with
product copula Gaussian copula

Computing time 19 fps 15 fps 7 fps

Object localization
rate

41% 51% 78%

Table 2 Frames per second (fps) rates for GMM, PMM with product copulas
and PMM with Gaussian copulas. The object localization rate is computed by
dividing the number of frames where the object has been visually well localized
divided and the total number of frames where the object is present. Results are
given for CIF video images with dimension 352 × 288, acquired with a low cost
camera.

when the object size is large, but the computing time linearly increases with
the object dimensions. At the moment, the model does no allow real-time
computation on a medium PC but we can expect to reach video frame rates
in a near future with a coding optimized for a multi-core processor.

5 Conclusion

In this paper, we have proposed to model the object color distribution by
a PMM in conjunction with copula. The PMM is a mixture of pdfs auto-
matically estimated from the Pearson’s system of distributions. Moreover,
to take into account the statistical links between color channels, we have
introduced Gaussian copulas. The PMM is embedded into a tracking sys-
tem with object position prediction (by Kalman filtering) and parameter
updating switch (by log-likelihood thresholding).

Experimental results obtained on various quality videos (different SNR)
acquired with different cameras show that the PMM improves, on the one
hand, the tracking system flexibility and, on the other hand, the discrimina-
tion between the background and the object, even if the background color is
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somewhat similar to the target one. However PMM parameters estimation
becomes less reliable when object is small, in addition the PMM is 2.5 slower
than the classical GMM, mainly because of the estimation of the correlation
matrices required by Gaussian copula, . To reduce computing time, we can
think of updating the PMM only each k frames, but tracker flexibility will
decrease.

According to the tracking objectives, PMM is suggested if the aim is
to precisely localize the object in the scene, and GMM is suggested if the
aim is to track an object at real time frame rates. Future works include
the estimation of the best number of pdfs to be used for tracking a given
object. This number may evolve during the tracking, to adapt itself to the
change of appearance of the object. This can be done with the Bayesian
Information Criterion [18], but at the expense of higher computation time.
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