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Abstract. Automatic segmentation and analysis of ancient mosaic
images can help archaeologists and experts build digital collections
and automatically compare mosaics by means of image database
indexing and content-based retrieval tools. However, ancient mosa-
ics are characterized by low contrast colors and irregular tessella
shape, orientation, and positioning, making automatic segmentation
difficult. We propose a tessella-oriented strategy whose first step
consists of isolating tessellas from their cemented network by com-
puting the watershed transformation of a criterion image generated
to exhibit the cement network as watershed crests. Then a simple
k-means algorithm is used to classify tessellas and segment mosaic
images with more accuracy than with a pixel-oriented strategy. Ad-
ditionally, we propose a method to automatically obtain the main
directional guidelines of mosaics by estimating tessella orientation.
This is done by minimizing a contextual energy computed from gray-
level means of neighboring tessellas and the orientation of their bor-
ders. Several examples of cartographies show the effectiveness of
the method. © 2008 SPIE and IS&T. �DOI: 10.1117/1.3013543�

1 Introduction
The aim of this work is �1� to analyze ancient mosaic im-
ages and �2� to characterize their structure and color by
means of automatic processing tools. The final goal is to
detect and localize objects with a semantic meaning such as
animal, human, and object in a complex mosaic scene. This
can help archaeologists and experts in their historical and
artistic studies, especially the analysis of ancient mosaicist
styles i.e., opus musivum and opus vermiculatum1�. Such
tools can also be of interest �1� for museums in order to
categorize mosaics and to draw up a digital inventory of
their collection 2 and �2� for computed-aided generation of
old-style mosaic images from a master image �see Ref. 3
for an overview of digital mosaic frameworks and refer-
ences cited therein�. A first attempt to propose a content-
based and image retrieval system dedicated to ancient mo-
saic images has been presented in Ref. 4. In this work,
efforts have been focused on pattern recognition aspects, by
using an invariant description of semantic objects present in
scenes using a Fourier-Mellin transform. 5,6 Semantic ob-
jects are isolated using statistical segmentation and mor-

phological operators, but extraction remains a difficult task
inherent to the way mosaics are built.

Mosaics are made of colored tiles, called tessera or tes-
sella, usually formed in the shape of a cube of materials
separated by a cement joint. Smart and judicious use of
orientation, shape, and size of tessellas characterize the art-
work style and exhibit the “general flow” of the mosaic
chosen by the mosaicist. Figure 1 shows a typical example
of a mosaic image to be processed. These kinds of images
show specific difficulties inherent to their age and artwork
style:

• Tessellas of ancient mosaics are characterized by pas-
tel colors, with low contrast. Color information is not
discriminant, and gray-level values are generally suf-
ficient to describe color dynamics in such an image.

• The shapes of tessellas are irregular, from square
shapes to polygonal shapes. Their positioning and ori-
entation are not aligned according to a rectangular
grid.

• The positioning of tessellas makes the joint appear as
an irregular network with numerous interconnections
throughout the mosaic. Network intensity, mainly
middle gray, is not uniform through the image because
of tessella shadows due to nonflat mosaic surfaces and
snapshot acquisition angle.

These particularities make segmentation methods based
on pixel values inefficient. Indeed, pixels associated to the
cement network interfere with and introduce confusion in
the classification process. Hence, the strategy under which
this work was conducted is to consider that tessellas are
indivisible entities with an almost uniform gray-level value.
So the first stage is to extract tessellas from the cement
network. In Sec. 2, we present a strategy adapted to the
mosaic network specificity. It is based on the watershed
transformation of a particular criterion image built from the
original image in order to exhibit the cement network as
watershed crests. At this point, mosaic images are consid-
ered tessella-oriented and not pixel-oriented, i.e., all pro-
cessing is applied on tiles and not pixels. Hence, it was
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easy to obtain a robust segmentation of mosaic images by
using a simple tessella-based k-means algorithm, which
outperforms the classical pixel-based one.

Since orientation of tiles has a strong visual influence on
the overall perception of the mosaic and also in order to
facilitate delimitation of semantic objects in the mosaic
scene, we propose a simple and efficient way of estimating
the main orientations of tessellas �allowing us to exhibit
directional guidelines of mosaics� in ancient mosaic images
in Sec. 3. The proposed approach consists of minimizing a
contextual energy computed from the mean-gray values of
neighboring tessellas and the orientation of their borders.
Conclusions and further works are presented in Sec. 4.

2 Tessella Extraction for Mosaic
Segmentation

The extraction of a network in an image is a recurrent prob-
lem, especially for road extraction from aerial photos7,8 or
for vascular network segmentation from angiographies.9,10

Several approaches have been proposed. Methods based on
contour extraction are widely used and mainly rely on the
assumption that the network pixels and neighboring ones
have different gray levels in order to compute gradients.
But methods based on high-pass filters, such as Harris’s
corner detector, highlight pixels belonging to the network,
not connected components. Higher-level processing detects
lines with varying widths.11,12 Strategies that track the en-

tire network from a starting point13,14 are difficult to justify
in our case study due to the high number of intersections in
a typical mosaic network.

Numerous methods based on Markov modeling15,16 or
active contours17,18 have also been proposed. These meth-
ods are quite efficient but time consuming. In the case of
mosaics, these methods are not suited because of the high
density of the network to be extracted in images. In Ref. 16,
a Markov model is applied on a graph of adjacency crests,
detected by a watershed transformation �WT� applied on a
criterion image. This criterion image, computed from the
original image, exhibits the potential of each pixel to be-
long to the network.

Among those methods, the WT approach appears inter-
esting for mosaic images since this method is a good com-
promise between low-level methods �contour detection�
and approaches by energy minimization �Markov model or
active contours�, which are unworkable due to cement net-
work complexity in mosaic images. To work well, the WT
needs to be computed on a criterion image that shows tes-
sellas as catchment basins and the network as crests. But
the network, mainly middle-gray-valued, is sometimes
darker than the tessellas and sometimes lighter in the same
image. Hence, for each pixel in the image, we study the
gray-level profile around it according to four directions
�0 deg, 45 deg, 90 deg, and 135 deg� and compare them to
two templates characteristic of the two situations, i.e., dark
network and light tessellas and light network and dark tes-
sellas. The value of a pixel in the criterion image is the
minimum value among the eight values. If this value is
high, we face a somewhat flat profile that indicates a pixel
inside a tessella.

Figure 2 shows the criterion image obtained by applying
the method to a boar image. As can be seen in this example,
the network appears dark. However, tessellas are not uni-
form in texture and show local gray-level crests that should
be deleted before WT in order to avoid oversegmentation.
Following Ref. 16, we first compute an area closing19 of the
criterion image that gives fewer minima while retaining
crest locations. The WT result is illustrated in Fig. 3. The
crest contours now correctly represent the network, which
is confirmed by the close-up shown in Fig. 4�a�. To deter-
mine the width of the network �and not only a one-pixel
skeleton, as is done by WT�, which varies through the im-
age, a simple threshold is applied on neighboring pixels of

(a)

(b)

Fig. 1 Detail of an ancient mosaic showing a boar �a� with a
close-up of its hind legs �b�. This image will be used later as a
guiding thread for the algorithm illustration.

Fig. 2 Criterion image obtained from the boar image in Fig. 1.

Benyoussef and Derrode: Tessella-oriented segmentation and guidelines estimation…

Journal of Electronic Imaging Oct–Dec 2008/Vol. 17(4)1-2



crests; a pixel is aggregated to the crest if its gray value
differ by no more than 10% from the skeleton mean-gray
value. The result of applying such a threshold is shown in
Fig. 4�b�.

For segmentation, we are now able to consider only the
tessellas of the mosaic, not its network. Moreover, instead
of using all pixels from the tessellas, and since tessellas are
almost homogeneous in color, we can segment the image
by using a tessella-oriented strategy: each tessella is char-
acterized by one or more features used for classification.
Simple examples of features are mean gray-level value or
variance of the tessella, number of pixels in the tessella,
etc. For our application, a simple k-means algorithm on the
mean gray-level value of tessellas was sufficient to get a
nice segmentation, as illustrated in Fig. 5. This result can
be compared with a classical pixel-based k-means strategy.
A second segmentation example is given in Fig. 6.

Note: The entire processing is based on two parameters:
�1� the length l of the profile to compute the criterion image
and �2� the area closing threshold s. These parameters can
be set proportional to the mean tessella size �, which is
almost constant in a mosaic. Parameter l should be greater
than 2� for the profiles to fit at least two tessellas, and
parameter s should be less than �2 to avoid small tessellas
being deleted by the morphological operator. In our experi-
ments, values l=3� and s=�2 /2 give good results. Coeffi-
cient � depends on the image zoom and can be either set by

an operator or estimated automatically on a small uniform
part of the mosaic for example.

3 Tessella Orientation Estimation for Directional
Guidelines Detection

Ancient mosaicists avoided aligning their tiles according to
rectangular grids. Indeed, such grids emphasize only hori-
zontal and vertical lines and may distract the observer from
seeing the overall picture. Hence, mosaicists placed tiles in
order to emphasize the strong edges of the subject to be
represented, influencing the overall perception of the mo-
saic. Thus, organization and positioning of tessellas are
therefore interesting information for experts since they em-
phasize the main directional guidelines chosen by the artist.
This information is of crucial interest for mosaic-dedicated
applications such as content-based retrieval of mosaic ele-
ments or region-based mosaic image compression.

To get directional guidelines, one can first think of using
the principal axes of an ellipse-equivalent shape of each
tessella, using well-known formulae based on geometrical
moments �minor and major axes�. However, ancient mosaic
tessellas are not box- or regular-shaped, and principal axes
quickly appear not robust enough. One major drawback of
such a method is that it does not take into account informa-
tion about neighboring tessellas, which is of great impor-
tance for regularization and for recovering the main guide-
lines that emphasize the general flow of a mosaic.

We propose an energy-based contextual algorithm for
retrieving main directional guidelines in a mosaic. The en-
ergy to be minimized is constructed by using two key fea-

Fig. 3 Extraction of tessellas from the criterion image in Fig. 2, with-
out �a� and with �b� area closing operator.

Fig. 4 �a� Result of tessella extraction on the close-up in Fig. 1�b�,
and �b� network/tessellas classification.
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tures: the mean-gray value and the border directions of
each tessella. The optimization is done either by gradient
descent or by simulated annealing.

3.1 Methodology
We denote by N the number of tessellas detected in the
mosaic. Each tessella i is represented by

• Its barycenter �xi ,yi� computed on the support �i of i:

�xi,yi� = �m1,0

m0,0
,
m0,1

m0,0
�

with mp,q =� �
�i

xpyqf i�x,y� dx dy .

• The list of its neighboring tessellas: Vi
= �vi,1 , . . . ,vi,Ti

�. A neighbor is a tessella that shares at
least one pixel with i.

It should be noted that the number of neighbors Ti is
different from one tile to the other since tessellas are not
organized according to a regular grid.

Each tessella i is characterized by an energy of configu-
ration that links itself to each of its neighbor vi,t�Vi. This
energy, denoted by Ei,t , t� �1, . . . ,Ti	, is the sum of two
complementary terms:

• The first term Q is based on the mean-gray value of
tessellas. It is proportional to the sum of the difference
of gray-level means �1� between i and vi,t and �2� be-
tween i and the symmetrical tessella of vi,t with re-
spect to i. This feature favors alignment of tessellas
with low contrast, which is a characteristic of direc-
tional guidelines.

• The second term R is based on the orientation of tes-
sella contours. We compute the histogram of the ori-

Fig. 5 Segmentation of the mosaic image in Fig. 1 with a pixel-
based strategy �a�, and the tessella-based strategy proposed here
�b�, using a k-means algorithm with two classes.

Fig. 6 Segmentation of a mosaic representing a bird �a�, with a
pixel-based strategy �b�, and with a tessella-based strategy �c�, us-
ing a k-means algorithm with three classes.
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entation of segments constituting the contour of tes-
sella i. This histogram is regularized using a Gaussian
kernel, the result of which is illustrated in Fig. 7. It
should be noted that the two modes at approximatively
90 deg to each other correspond to the two ambiguous
orthogonal main directions of a square-shaped tile. It
is then possible to estimate the pdf at angle �i,t given
by the barycenter of i and that of vi,t.

Terms Q and R are normalized to belong to range �0, 1	.
We can then initialize the “main direction” of a tile, i.e., the
direction of the neighboring tessella that gives the highest
Q+R value:

ti,max = arg max
t��1,. . .,Ti	

Ei,t.

The energy of a tessella is then defined as Ci= �2
−Ei,ti,max

�+�Vi, with � a weighting factor set manually.
Term Vi is defined as

Vi =
1

Ti


t=1

Ti

��i,ti,max − �t,tt,max� ,

which is the normalized sum of the absolute difference be-
tween the main direction of tile i and the main direction of
its neighbor t.

We try next to minimize the mosaic energy, defined as
the sum of Ci for all tessellas in the mosaic. This is done by
selecting the tessella i that gives the highest value for Vi. To
reduce the contribution of this tessella, we try another main
direction and recompute the mosaic energy. At that point,
two strategies have been tested:

• Deterministic framework �gradient descent �GD�	 If
the mosaic energy reduces, then the new main direc-
tion is validated; otherwise, another main direction is
tested. When all directions for this tile have been
tested, we repeat the process for the next tile with high
Vi value.

• Stochastic framework �simulated annealing �SA�	: A
configuration that gives a higher mosaic energy can be
validated according to the simulated annealing
principle.20 This strategy allows us to search for the
global minimum, which cannot be reached with the
previous strategy because the mosaic energy function
is not convex.

The process is iterated until the mosaic energy is almost
constant. The cartography of tessella orientation consists of
the main direction of each tile at the last iteration.

3.2 Experimental Results
Figure 8 illustrates the application of the tessella orientation
methodology on the close-up of the boar image in Fig. 1.
From the initial configuration of tessellas �Fig. 8�a�	, we get
the final configuration �Fig. 8�b�	 using simulated annealing
�SA� for optimization. Figure 8�c� shows the evolution of
the computed energy during iterations of both the GD al-
gorithm and the SA algorithm. As expected, SA reaches a
lower minimum than GD, but to the detriment of numerous
additional iterations �150 for SA versus 50 for GD�. Indeed,
GD searches for a local minimum and is highly dependent
on the initial configuration, whereas SA is expected to
reach the global minimum due to its stochastic nature.

The tessella cartography obtained with SA optimization
is very satisfying when visually compared to the main di-
rectional guidelines of the mosaic. This is especially true
for regions at the borders between classes. A second ex-
ample of cartography is proposed in Fig. 9. Once again, the
tessella orientation estimation methodology, which makes
use of contextual information, gives regularized results that
emphasize the mosaic guidelines. Nevertheless, confusion
can be found in areas with homogeneous colors and where
tessellas are square-shaped. Indeed, for those kinds of tes-
sellas, two orthogonal directions are equally probable,
which generally gives ambiguous results. However, these
areas of uniform color are of limited interest for object-
based scene applications, such as mosaic pattern recogni-
tion.

Figure 10 shows a failure case in tessella orientation
estimation. Indeed, the result will not allow us to find the
main directional guidelines in the mosaic, which can be
more easily observed in Fig. 6�a�. The main reason comes
from an overdetection of tessellas from the extraction step.
This behavior is observed in mosaics built with tessellas of
different sizes �e.g., large tessellas for the background and
small ones for objects or details�. Hence, the shape of ex-
tracted tiles does not correspond to the shape of tessellas,
and the orientation is corrupted, showing no particular
guideline in the mosaic.

Note: For all experiments, the weighting factor � has
been set to 1. A study not reported here showed the low
impact of � value on the results.

4 Conclusion
In this work, a method for analyzing the structure and color
of ancient mosaic images has been presented, based on a
tile-oriented strategy. To extract tessellas from the cement
network, we applied a watershed transform �WT� on a cri-
terion image computed from the original image. The crite-
rion image was generated in order to exhibit the cement
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Fig. 7 Plot of the regularized and normalized histogram of the con-
tour orientation of one tile from the boar mosaic in Fig. 1.
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network as watershed crests and each tessella as a catch-
ment basin. Then, from the individual tiles, we were able to
compute a tessella-based k-means classification, using the
mean-gray value as a feature to characterize tessellas. Re-
sults of segmentation are distinctly of higher quality than
those obtained from a pixel-based k-means strategy.

Then, in order to help archaeologists understand mosaic
structure and mosaicists’ way of working, and also to fa-
cilitate extraction of individual semantic objects in complex

(a)

(b)
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Fig. 8 Cartography of tessellas orientation. Each tessella is charac-
terized by its center of mass �circle� and its orientation �segment
crossing the circle�.
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Fig. 9 Another example of tessella orientation cartography.

Fig. 10 Result of guidelines detection for the ‘bird’ mosaic in Fig. 6.
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mosaic scenes, we proposed a method to estimate the main
directional guidelines of tessellas in mosaics. To that goal,
each tessella is described by a contextual energy computed
from the mean-gray value and the main directions of tile
borders. The minimum energy is searched for by means of
the simulated annealing �SA� algorithm. Results showing
cartographies of tessella orientation are very interesting be-
cause most of the searched guidelines are retrieved, espe-
cially those at the borders between objects and scene back-
ground.

This processing is the first step toward a system devoted
to the indexation and retrieval of semantic objects in mo-
saic images, which should help archaeologists to compare
mosaics from different sites or built at different dates. Fu-
ture works will include a tessella-based invariant descrip-
tion of objects to enable the comparison between images of
mosaics taken at different zooms and orientations, for ex-
ample. Image compression of ancient mosaics, using a
tessella-based coding strategy, is also an interesting per-
spective, e.g., for a quick look at a remote catalog using the
Internet.
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