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Fast Filtering in Switching Approximations of
Nonlinear Markov Systems With Applications

to Stochastic Volatility
Ivan Gorynin, Stéphane Derrode, Senior Member, IEEE , Emmanuel Monfrini, and Wojciech Pieczynski

Abstract—We consider the problem of optimal statis-
tical filtering in general nonlinear non-Gaussian Markov
dynamic systems. The novelty of the proposed approach
consists in approximating the nonlinear system by a re-
cent Markov switching process, in which one can perform
exact and optimal filtering with a linear time complexity.
All we need to assume is that the system is stationary
(or asymptotically stationary), and that one can sample its
realizations. We evaluate our method using two stochastic
volatility models and results show its efficiency.

Index Terms—Conditionally Gaussian linear state-space
model, filtering in switching systems, Kalman filter, nonlin-
ear systems, optimal statistical filter, stochastic volatility
model.

I. INTRODUCTION

L ET US consider two random sequences XN
1 = (X1, . . . ,

XN ) and YN
1 = (Y1, . . . ,YN ), taking their values in

Rm and Rq, respectively. XN
1 is hidden, while YN

1 is observed.
In this paper, we focus on the optimal filtering problem, which
consists in the sequential search of XN

1 from YN
1 . More

precisely, we present a nonstochastic iterative algorithm which
computes the expectation of Xn conditional on Yn

1 .
We present a workable approach for filtering in general

stationary (or asymptotically stationary) Markov dynamic sys-
tems, provided that one can sample a realization of the systems.
This approach makes use of a recent switching model, in which
fast exact optimal filtering is computationally feasible.

The idea is to approximate a given nonlinear non-Gaussian
system by a switching Gaussian system. Such ideas are not new,
as it is well known that a wide range of probability distributions
can be approximated by a Gaussian mixture. In the standard
switching models, e.g., in jump Markov linear systems (JMLSs),
there is no known fast exact optimal filtering algorithm [1]–[4];
therefore, such approximations are useless in their context.
However, there are some recent switching models, in which fast
exact optimal filtering is computationally feasible, e.g., the con-
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ditionally Markov switching hidden linear model (CMSHLM
[5]) and the conditionally Gaussian observed Markov switching
model (CGOMSM [6], [7]). The novelty of the paper is to use
them as an approximation of some given model, then to apply the
corresponding filtering algorithms. Besides, let us notice that
any standard JMLS can be approximated by a CMSHLM[8], [9].

To be more precise, CMSHLMs are Markov triplet (XN
1 ,

RN
1 ,YN

1 ) models, where RN
1 is a chain of switches, and where

there exists an exact fast filtering algorithm which is as fast
as the standard Kalman filter. The main difference between
CMSHLMs and JMLSs is that in CMSHLMs (RN

1 ,YN
1 ) is

Markovian and (XN
1 ,RN

1 ) is not necessarily Markovian, con-
trary to JMLSs where (XN

1 ,RN
1 ) is Markovian and (RN

1 ,YN
1 )

is not necessarily Markovian.
The CGOMSM is a sub-model of CMSHLM, in which

(XN
1 ,YN

1 ) is Gaussian conditional on RN
1 . As the main nov-

elty, deriving from its prior simplified version introduced in
[10], we put forward a method for approximating any station-
ary nonlinear non-Gaussian Markov model by a CGOMSM,
in order to perform fast filtering in this approximation. The
other main novelty compared with [10] is the design of a new
expectation-maximization (EM)-based approximation algo-
rithm, as well as several new experiments. In particular, we
present consistent results that we obtained for a recent asym-
metric stochastic volatility model.

Our method can be used as an alternative to the particle filter
(PF) based methods, which are widely used in different areas
like finance [11]–[15] and tracking [2]–[4], [16]. Although PFs
are asymptotically optimal, their use may be problematic due to
the particle degeneracy phenomenon, or to the need of a large
amount of particles when the dimension of the hidden space is
high. The method proposed is fundamentally different and is
free of these impediments. Besides, our filtering algorithm
is exact and is as fast as the standard Kalman filter.

Let us mention some other nonlinear non-Gaussian filters
which similarly use a mixture model to represent the filtering
pdf. Such examples include the Gaussian sum filter (GSF)
[17], [18], the unscented Kalman filter (UKF) [19], the un-
scented Gaussian sum filter (UGSF) [20], and the Gaussian
sum unscented Kalman filter (GSUKF) with adaptive scaling
parameters [21]. The main difference between these methods
and ours is that they rely on a supplementary approximation to
prevent the number of mixands to growth exponentially with
time (this number remains constant in our representation). We
show through some experiments that the GSF may be disad-
vantaged due to this additional approximation, whereas our
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method attains the optimal accuracy. Moreover, contrary to PF
and GSUKF, our filter is designed for stationary (or asymptot-
ically stationary) systems only. However, let us notice that the
context of stationary systems is relevant for many applications,
and different efficient approaches have been recently proposed
[22], [23].

We provide two series of experiments. The first one is de-
voted to filtering for a standard stochastic volatility model (SV)
[24]–[27]. The second is dedicated to filtering for the asym-
metric stochastic volatility model (ASV) [28]–[30], which ex-
tends the SV model by incorporating a leverage effect. We
conclude from these experiments that once the approximation
is established, our method has the same performance in terms
of the mean squared error that the particle filter, while being
significantly faster.

The rest of the paper is organized as follows. In Section II, we
describe and justify our approximation setting. In Section III,
we recall some crucial properties of the CGOMSM, and then
explain our approximation algorithm in Section IV. Section V
contains experiments and Section VI gives some concluding
remarks and prospects for further works.

II. SWITCHING MODEL APPROXIMATION

Let us consider two random sequences XN
1 and YN

1 as
previously described. The common model for (XN

1 ,YN
1 ) is

the hidden Markov model (HMM), where XN
1 is Markovian,

Y1, . . . ,YN are independent conditional on XN
1 , and the dis-

tribution of each Yn depends only on Xn given XN
1 . We can

define the joint pdf p(xN
1 ,yN

1 ) via p(x1,y1) and two recursions
as follows:

Xn+1 =F(Xn,Un) (1a)

Yn =G(Xn,Vn) (1b)

where F , G are appropriate mappings representing the Markov
kernel and the observation kernel respectively, and U1,V1,
. . . ,UN ,VN are appropriate independent variables. Equiva-
lently, any HMM is given by p(x1,y1) and conditional den-
sities p(xn+1|xn), p(yn|xn) for each n in {1, . . . , N − 1}
(in {2, . . . , N}, respectively). We recall that if, in addition,
(XN

1 ,YN
1 ) is Gaussian, then we deal with a Gaussian linear

model in which the Kalman filter is statistically optimal.
The HMM can be extended to the “pairwise Markov model”

(PMM), where the recursion

(Xn+1,Yn+1) = H(Xn,Yn,Wn) (2)

replaces(1), H being any mapping, and W1, . . . ,WN being in-
dependent variables. Likewise to the HMM, any PMM is given
by p(x1,y1) and the conditional pdf p(xn+1,yn+1|xn,yn).
We note that

p(xn+1,yn+1|xn,yn)=p(xn+1|xn,yn) p(yn+1|xn,yn,xn+1)
(3)

and thus (1) is a particular case of (2) where p(xn+1|xn,yn) =
p(xn+1|xn) and p(yn+1|xn,yn,xn+1) = p(yn+1|xn+1).

In our setting, we suppose that XN
1 and YN

1 are stationary sig-
nals, which means that the distributions p(xn,yn,xn+1,yn+1)
do not depend on n, i.e., for any n, (Xn,Yn,Xn+1,Yn+1)
is equal in distribution to (X1,Y1,X2,Y2), what we note by
p(xn,yn,xn+1,yn+1) = p(x1,y1,x2,y2). However, in prac-
tice, the algorithm that we put forward applies to asymptotically
stationary signals as well, which is detailed in Remark II.1.

The idea proposed in [10] is to approximate p(xN
1 ,yN

1 )with a
CGOMSM marginal distribution. That is to perform an exact fast
filtering afterwards. More precisely, since the model (2) is sta-
tionary, its distribution derives from p(x1,y1,x2,y2), as it pro-
vides p(x1,y1) and p(xn+1,yn+1|xn,yn) = p(x2,y2|x1,y1)
for each n = 1, . . . , N − 1. Besides, p(x1,y1,x2,y2) can be
approximated using a mixture of K2 components

p(x1,y1,x2,y2) ≈
∑

1≤i,j≤K

αijpij(x1,y1,x2,y2) (4)

where pij(x1,y1,x2,y2) are Gaussian distributions which ver-
ify some further detailed hypotheses. Then, the scalars αij are
seen as a discrete distribution αij = P [R1 = i, R2 = j] of a
pair of random variables (R1, R2) taking their values in Ω =
{1, . . . ,K} and the approximation (4) may be seen as a mar-
ginal distribution of

p(x1,y1, r1,x2,y2, r2) = p(r1, r2)p (x1,y1,x2,y2 |r1, r2 ) .
(5)

Then the main idea is to consider the stationary triplet Markov
model TN

1 = (XN
1 ,RN

1 ,YN
1 ), with RN

1 = (R1, . . . , RN ),
whose distribution is defined by (5) and which would belong
to the CGOMSM family. As specified in Remark II.2, such a
model approximates (5) in that for any n in {1, . . . , N − 1}
the distribution p(xn,yn,xn+1,yn+1) in the CGOMSM is as
close to the distribution p(xn,yn,xn+1,yn+1) in the PMM as
the distribution p(x1,y1,x2,y2) in the CGOMSM is close to
the distribution p(x1,y1,x2,y2) in the PMM.

Let us now specify what are the properties of the Gaussian
distributions pij(x1,y1,x2,y2) in (4) needed to make the
corresponding approximating switching triplet model being a
CGOMSM. Let us note Zᵀ

n = [Xᵀ
n,Y

ᵀ
n] and assume that for

each n in {1, . . . , N − 1}

p (rn+1 |xn, rn,yn) = p (rn+1 |rn) (6)

which implies the Markovianity of RN
1 . This is equivalent to

p(r2|x1, r1,y1) = p(r2|r1) by the stationarity assumption. Be-
sides, the above equation means that Z1 and R2 are independent
conditional on R1. Therefore, we obtain p(x1,y1|r1, r2) =
p(x1,y1|r1). Since (X1, R1,Y1) and (X2, R2,Y2) are iden-
tically distributed by the stationarity assumption for TN

1 , it
follows that p(x2,y2|r1, r2) = p(x2,y2|r2). Thus, Gaussian
distributions p(x1,x2,y1,y2|r1, r2) are given by the variance
matrices ΓZ1

(r1), ΓZ2
(r2) (note that the mappings ΓZ1

(.) and
ΓZ2

(.) are equal), and the cross-covariance matrices ΣZ1Z2
(r21).

Let us set

Γ
(
r21
)
=

[
ΓZ1

(r1) ΣZ1Z2

(
r21
)

Σᵀ
Z1Z2

(
r21
)

ΓZ2
(r2)

]
(7)

then we obtain

Z2 = a
(
r21
)
Z1 + b

(
r21
)
W1 + c

(
r21
)

(8)
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whereW1 is a standard Gaussian vector, independent ofZ1, and

a
(
r21
)
=Σᵀ

Z1Z2

(
r21
)
Γ−1
Z1
(r1) (9a)

b
(
rn+1
n

)
bᵀ (rn+1

n

)
=ΓZ2

(r2)− a
(
r21
)
ΣZ1Z2

(
r21
)

(9b)

c
(
r21
)
=E [Z2 |r2 ]− a

(
r21
)
E [Z1 |r1 ] . (9c)

The matrices ΓZ1
(r1), ΣZ1Z2

(r21), a(r21), b(r21) and the
vector c(r21) may be written in the following block-form:

ΓZ1
(r1) =

[
ΓX1

(r1) ΣX1Y1
(r1)

ΣY1X1
(r1) ΓY1

(r1)

]

ΣZ1Z2

(
r21
)
=

[
ΣX1X2

(
r21
)

ΣX1Y2

(
r21
)

ΣY1X2

(
r21
)

ΣY1Y2

(
r21
)]

a
(
r21
)
=

[
a1

(
r21
)

a2

(
r21
)

a3

(
r21
)

a4

(
r21
)]

b
(
r21
)
=

[
b1

(
r21
)

b2
(
r21
)

b3
(
r21
)

b4
(
r21
)]

c
(
r21
)
=

[
c1

(
r21
)

c2
(
r21
)] .

Then, by stationarity, we have for n = 1, . . . , N − 1[
Xn+1

Yn+1

]
=

[
a1

(
rn+1
n

)
a2

(
rn+1
n

)
a3

(
rn+1
n

)
a4

(
rn+1
n

)] [Xn

Yn

]

+

[
b1

(
rn+1
n

)
b2

(
rn+1
n

)
b3

(
rn+1
n

)
b4

(
rn+1
n

)] [Un+1

Vn+1

]
+

[
c1

(
rn+1
n

)
c2

(
rn+1
n

)] (10)

whereU1,V1, . . . ,UN ,VN are independent standard Gaussian
vectors.

Definition II.1: The mixture (4) will be said “Condition-
ally Gaussian Observed Markov Switching Model mixture”
(CGOMSM mixture) if it verifies p(r2|x1, r1,y1) = p(r2|r1)
and if each Gaussian pdf pij satisfies one of the two following
equivalent properties:

i) a3(r
2
1) = 0 for each r21 ∈ Ω2;

ii) ΣX1Y2
(r21) = ΣX1Y1

(r21)Γ
−1
Y1

(r1)ΣY1Y2
(r21) for each

r21 ∈ Ω2.

As explained previously, the above definition also includes
the distribution p(xn,yn,xn+1,yn+1) of CGOMSM for any n
in {1, . . . , N − 1}. Our filtering algorithm, which runs within
the framework of the CGOMSM, is explained in next section.

Definition II.2: We call “CGOMSM Approximation Based
Filter” (CGOMSM-ABF) the following algorithm:

i) generate a realization zM�
1 = (z�

1, . . . ,z
�
M ) from the

prior model (2);
ii) infer the CGOMSM parameters based on the observa-

tion zM�
1 assuming that the chain of switches RN�

1 is
missing;

iii) use these parameters to recover the hidden signal xN
1

from yN
1 .

For the step ii), we propose to use an Expectation–
Maximization-based method, which we detail in Section IV.
However, there are different alternative approaches that may
apply as well.

Remark II.1: In practice, the initial pdf p(x1,y1) may be un-
specified. However, if the system has the rapid mixing property,

the residual effect of the starting distribution on p(xn,yn) would
be negligible for moderate and large values of n [31]–[33].
Thus, in order to generate a realization zM�

1 , it might be
possible to begin with some auxiliary pdf p′(x1,y1). It is also
common in practice to drop the burn-in sample z�

1, . . . ,z
�
n′ .

Remark II.2: The approximation (4) can be obtained with an
arbitrary precision. If we denote by p� the pdf of the approxi-
mation, then p�(xn,yn,xn+1,yn+1) approximates p(xn,yn,
xn+1,yn+1) for any n in {1, . . . , N − 1} with exactly the
same precision. The readers interested by further investigations
of the switching model may consult [34] to see that the mar-
ginal distribution p(xN

1 ,yN
1 ) of a CGOMSM is not necessarily

Markovian (it is always not for the reversible switched linear
models in [34]). However, in our use of CGOMSM its marginal
distribution mimics closely the Markov property.

III. EXACT FAST OPTIMAL FILTERING

IN CGOMSM MODELS

We recall in this section how the fast optimal filter runs in a
stationary CGOMSM. LetTN

1 =(X
N
1 ,R

N
1 ,Y

N
1 ) be a CGOMSM.

The aim is to search p(rn+1|yn+1
1 ), E[Xn+1|rn+1,y

n+1
1 ] and

E[Xn+1X
ᵀ
n+1|rn+1,y

n+1
1 ] from p(rn|yn

1 ), E[Xn|rn,yn
1 ],

E[XnX
ᵀ
n|rn,yn

1 ] and yn+1. Thus, the estimate of Xn+1 is then
given by

E
[
Xn+1

∣∣yn+1
1

]
=

∑
rn+1

p
(
rn+1

∣∣yn+1
1

)
E
[
Xn+1

∣∣rn+1,y
n+1
1

]
(11)

and its variance is

Var
[
Xn+1

∣∣yn+1
1

]
= E

[
Xn+1X

ᵀ
n+1

∣∣yn+1
1

]
− E

[
Xn+1

∣∣yn+1
1

]
E
[
Xᵀ

n+1

∣∣yn+1
1

]
with

E
[
Xn+1X

ᵀ
n+1

∣∣yn+1
1

]
=

∑
rn+1

p
(
rn+1

∣∣yn+1
1

)
× E

[
Xn+1X

ᵀ
n+1

∣∣rn+1,y
n+1
1

]
. (12)

A. Some CGOMSM Properties

The main property of CGOMSM is

p (rn+1,yn+1 |xn, rn,yn ) = p (rn+1,yn+1 |rn,yn ) (13)

which is straightforward from i) in Definition II.1. There are
some consequences which may be drawn from the equation
above and (6). First, (RN

1 ,YN
1 ) with latent RN

1 is a hidden
Markov chain (with correlated noise). Thus,

p (rn+1,yn+1 |rn,yn) = p (rn+1 |rn) p
(
yn+1

∣∣rn+1
n ,yn

)
.

(14)

Second, (13) is equivalent to

p
(
xn

∣∣rn+1
n ,yn+1

n

)
= p (xn |rn,yn) (15)

which is fundamental for the conceptionof our fast filter. Finally,
since the distribution p(xn+1|xn, r

n+1
n ,yn+1

n ) is Gaussian,
Xn+1 is Gaussian conditional on the pair (Rn, Rn+1) and on a
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linear combination of Xn, Yn and Yn+1. A similar reasoning
holds for p(yn+1|yn, r

n+1
n ) and summarizing, we have

Yn+1 =D
(
rn+1
n

)
Yn+H

(
rn+1
n

)
+Λ

(
rn+1
n

)
Vn+1 (16a)

Xn+1 =A
(
rn+1
n

)
Xn +B

(
rn+1
n

)
Yn +C

(
rn+1
n

)
Yn+1

+ F
(
rn+1
n

)
+Π

(
rn+1
n

)
Un+1 (16b)

for some parameters D(rn+1
n ), H(rn+1

n ), Λ(rn+1
n ), A(rn+1

n ),
B(rn+1

n ), C(rn+1
n ), F (rn+1

n ), Π(rn+1
n ) and standard Gaussian

vectors U1,V1, . . . ,UN ,VN . These parameters may be de-
rived as follows.

Let us set MX
rn

= E[Xn|rn] and MY
rn

= E[Yn|rn]. It fol-
lows from (10) that [Xn+1,Yn+1]

ᵀ is normally distributed
conditional on [Xn,Yn]

ᵀ and Rn+1
n . From (10), we find that

the conditional mean of [Xn+1,Yn+1]
ᵀ is[

MX
rn+1

MY
rn+1

]
+

[
a1

(
rn+1
n

)
a2

(
rn+1
n

)
a3

(
rn+1
n

)
a4

(
rn+1
n

)] [xn −MX
rn

yn −MY
rn

]

=

[
MX

rn+1
+a1

(
rn+1
n

)(
xn−MX

rn

)
+a2

(
rn+1
n

)(
yn−MY

rn

)
MY

rn+1
+a3

(
rn+1
n

)(
xn−MX

rn

)
+a4(r

n+1
n )

(
yn−MY

rn

)]
(17)

and that the conditional variance matrix of [Xn+1,Yn+1]
ᵀ is

b(rn+1
n )bᵀ(rn+1

n ), written in block-form as

b
(
rn+1
n

)
bᵀ (rn+1

n

)
=

[
γ1

(
rn+1
n

)
γ2

(
rn+1
n

)
γᵀ
2

(
rn+1
n

)
γ4

(
rn+1
n

)] . (18)

Since a3(r
2
1) = 0 for each r21 in Ω2, equation (16a) holds for

D
(
rn+1
n

)
=a4

(
rn+1
n

)
,

H
(
rn+1
n

)
= − a4

(
rn+1
n

)
MY

rn
+MY

rn+1

and for some matrix Λ(rn+1
n ) such that

Λ
(
rn+1
n

)
Λᵀ (rn+1

n

)
= γ4

(
rn+1
n

)
. (19)

Likewise, Xn+1 is also normally distributed conditional on Xn,
Rn+1

n andYn+1
n . The conditional variance ofXn+1 isγ1(r

n+1
n )−

γ2(r
n+1
n )γ−1

4 (rn+1
n )γᵀ

2(r
n+1
n ), and its conditional mean is

MX
rn+1

+a1

(
rn+1
n

) (
xn −MX

rn

)
+ a2

(
rn+1
n

) (
yn −MY

rn

)
+γ2

(
rn+1
n

)
γ−1
4

(
rn+1
n

){
yn+1−

(
MY

rn+1
+a3

(
rn+1
n

)(
xn−MX

rn

)
+a4

(
rn+1
n

)(
yn−MY

rn

))}
.

Term-by-term identification of (16b) with the equation above
gives

C
(
rn+1
n

)
=γ2

(
rn+1
n

)
γ−1
4

(
rn+1
n

)
A

(
rn+1
n

)
=a1

(
rn+1
n

)
−C

(
rn+1
n

)
a3

(
rn+1
n

)
B

(
rn+1
n

)
=a2

(
rn+1
n

)
−C

(
rn+1
n

)
a4

(
rn+1
n

)
F

(
rn+1
n

)
=MX

rn+1
−A

(
rn+1
n

)
MX

rn
−B

(
rn+1
n

)
MY

rn

−C
(
rn+1
n

)
MY

rn+1

and Π(rn+1
n ) is a matrix such that

Π
(
rn+1
n

)
Πᵀ (rn+1

n

)
= γ1

(
rn+1
n

)
−C

(
rn+1
n

)
γᵀ
2

(
rn+1
n

)
.

(20)

B. Filtering in the CGOMSM

Let us recall how fast filter runs in a stationary CGOMSM.
We sequentially compute p(rn+1|yn+1

1 ), E[Xn+1|rn+1,y
n+1
1 ]

and E[Xn+1X
ᵀ
n+1|rn+1,y

n+1
1 ] using p(rn|yn

1 ), E[Xn|rn,yn
1 ],

E[XnX
ᵀ
n|rn,yn

1 ]and parametersD(rn+1
n ),H(rn+1

n ),Λ(rn+1
n ),

A(rn+1
n ), B(rn+1

n ), C(rn+1
n ), F (rn+1

n ), Π(rn+1
n ) as follows.

Since (RN
1 ,YN

1 ) is a pairwise Markov model

p
(
rn+1

∣∣yn+1
1

)
=

∑
rn

p (rn+1,yn+1 |rn,yn ) p (rn |yn
1 )∑

rn,r�n+1

p
(
r�n+1,yn+1 |rn,yn

)
p (rn |yn

1 )

(21)

p
(
rn
∣∣rn+1,y

n+1
1

)
=

p (rn+1,yn+1 |rn,yn ) p (rn |yn
1 )∑

r�n

p (rn+1,yn+1 |r�n,yn ) p (r�n |yn
1 )

.

(22)

Then,

E
[
Xn+1

∣∣rn+1,y
n+1
1

]
=

∑
rn

p
(
rn

∣∣rn+1,y
n+1
1

)
(
A

(
rn+1
n

)
E [Xn |rn,yn

1 ] +L
(
rn+1
n ,yn+1

n

))
(23)

with L(rn+1
n ,yn+1

n )=B(rn+1
n )yn+C(rn+1

n )yn+1+F (rn+1
n ).

We obtain the equation above by taking the conditional ex-
pectation of (16b) and this result is mainly due to (15) and,
consequently, to the fact that

E
[
Xn

∣∣rn+1
n ,yn+1

1

]
= E [Xn |rn,yn

1 ] . (24)

A similar approach applies to the computation of
E[Xn+1X

ᵀ
n+1|rn+1,y

n+1
1 ]. It may be shown that

E
[
Xn+1X

ᵀ
n+1

∣∣rn+1
n ,yn+1

1

]
= A

(
rn+1
n

)
E [XnX

ᵀ
n |rn,yn

1 ]A
ᵀ (rn+1

n

)
+A

(
rn+1
n

)
E [Xn |rn,yn

1 ]L
ᵀ (rn+1

n ,yn+1
n

)
+L

(
rn+1
n ,yn+1

n

)
E [Xᵀ

n |rn,yn
1 ]A

ᵀ (rn+1
n

)
+L

(
rn+1
n ,yn+1

n

)
Lᵀ(rn+1

n ,yn+1
n

)
+Π

(
rn+1
n

)
Πᵀ(rn+1

n

)
.

(25)

Then

E
[
Xn+1X

ᵀ
n+1

∣∣rn+1,y
n+1
1

]
=

∑
rn

p
(
rn

∣∣rn+1,y
n+1
1

)
E
[
Xn+1X

ᵀ
n+1

∣∣rn+1
n ,yn+1

1

]
.

(26)

Finally, our fast optimal filter is:

Algorithm III.1

i) Use p(rn|yn
1 ) and yn+1 to obtain p(rn+1|yn+1

1 ) and
p(rn|rn+1,y

n+1
1 ) by (21), (22);

ii) Use E[Xn|rn,yn
1 ], p(rn|rn+1,y

n+1
1 ) and yn+1 to ob-

tain E[Xn+1|rn+1,y
n+1
1 ] by (23);

iii) Use E[XnX
ᵀ
n|rn,yn

1 ], E[Xn|rn,yn
1 ] and yn+1 to com-

pute E[Xn+1X
ᵀ
n+1|rn+1

n ,yn+1
1 ] by (25). Then use

E[Xn+1X
ᵀ
n+1|rn+1

n ,yn+1
1 ] and p(rn|rn+1,y

n+1
1 ) to

obtain E[Xn+1X
ᵀ
n+1|rn+1,y

n+1
1 ] by (26).
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IV. APPROXIMATING A NONLINEAR NON-GAUSSIAN

SYSTEM WITH THE CGOMSM

We recall that according to our CGOMSM-ABF principle, we
contemplate estimation of the CGOMSM parameters through a
signal (xM�

1 ,yM�
1 ) which we sample by using (1), (2) or any

other time-invariant system cf. Remark IV.1.
To this end, we use a common algorithm known as

“Expectation–Maximization” [35] (EM). Let us then parame-
trize the CGOMSM by Θ = {μi,Γi,pij ,Aij ,Bij ,Cij ,Dij ,
F ij ,Hij ,Πij ,Λij |(i, j) ∈ Ω2}, where:

• for each i in Ω, μi and Γi define the pdf p(x1,y1|r1);
• for each i, j in Ω, pij = P (r1 = i, r2 = j) and Aij , Bij ,
Cij , Dij , F ij , Hij , Πij , Λij are described in (16).

To make the text easier to read, we will denote the artificial
signal by (xM

1 ,yM
1 ) instead of (xM�

1 ,yM�
1 ). Thus, yM

1 stands
for the pre-sampled data and should not be confused with yN

1 ,
which is the noisy input signal.

The crux point is that Xn+1 and Yn+1 are Gaussian con-
ditional on the pair (Rn, Rn+1) and on a linear combination
of Xn, Yn so an appropriate linear regression per each pair
(Rn, Rn+1) enables to determines the coefficients of the com-
bination and to solve the M-step of the EM algorithm. We detail
below the EM algorithm suited to our context (cf. Section II).

Algorithm IV.1. EM Estimation

a) Make an initial guess Θ0={μ0
i ,Γ

0
i ,p

0
ij ,A

0
ij ,B

0
ij ,C

0
ij ,

D0
ij ,F

0
ij ,H

0
ij ,Π

0
ij ,Λ

0
ij |(i, j) ∈ Ω2} as follows:

1) Apply the K-means clustering method to xM
1 . We

will denote by κn(i) the function which assigns 1
if xn is within the ith cluster, and 0 otherwise. We
also note δn(i, j) = κn(i)κn+1(j);

2) For each i in Ω, μ0
i and Γ0

i are given by

μ0
i =

M∑
n=1

znκn(i)

M∑
n=1

κn(i)

(27a)

Γ0
i =

M∑
n=1

(
zn − μ0

i

) (
zn − μ0

i

)ᵀ
κn(i)

M∑
n=1

κn(i)

(27b)

where zᵀn = [xᵀ
n,y

ᵀ
n], and for each (i, j) in Ω2, p0

ij

is given by

p0
ij =

1

M − 1

M−1∑
n=1

δn(i, j). (28)

3) Compute intermediate matrices E0
ij , S0

ij , χ0
ij , Φ0

ij ,
G0

ij , P 0
ij , ξ0ij , and T 0

ij as follows:

E0
ij =

1

p0
ij

M−1∑
n=1

[
zn

yn+1

]
δn(i, j) (29a)

S0
ij =

1

p0
ij

M−1∑
n=1

[
znz

ᵀ
n zny

ᵀ
n+1

yn+1z
ᵀ
n yn+1y

ᵀ
n+1

]
δn(i, j)

(29b)

χ0
ij =

1

p0
ij

M−1∑
n=1

[
xn+1z

ᵀ
n xn+1y

ᵀ
n+1

]
δn(i, j)

(29c)

Φ0
ij =

1

p0
ij

M−1∑
n=1

xn+1δn(i, j) (29d)

G0
ij =

1

p0
ij

M−1∑
n=1

ynδn(i, j) (29e)

P 0
ij =

1

p0
ij

M−1∑
n=1

yny
ᵀ
nδn(i, j) (29f)

ξ0ij =
1

p0
ij

M−1∑
n=1

yn+1y
ᵀ
nδn(i, j) (29g)

T 0
ij =

1

p0
ij

M−1∑
n=1

yn+1δn(i, j). (29h)

4) For each i, j in Ω, A0
ij , B0

ij , C0
ij , D0

ij , F 0
ij , H0

ij ,
Π0

ij , and Λ0
ij are given by

[
F 0

ij A0
ij B0

ij C0
ij

]
=

[
Φ0

ij χ0
ij

] [M − 1
(
E0

ij

)ᵀ
E0

ij S0
ij

]−1

(30a)[
H0

ij D0
ij

]
=

[
T 0

ij ξ0ij
] [M − 1

(
G0

ij

)ᵀ
G0

ij P 0
ij

]−1

(30b)

(M − 1)Λ0
ij

(
Λ0

ij

)ᵀ
=

1

p0
ij

M−1∑
n=1

yn+1y
ᵀ
n+1δn(i, j)−H0

ij

(
T 0

ij

)ᵀ
−D0

ij

(
ξ0ij

)ᵀ
(30c)

(M − 1)Π0
ij

(
Π0

ij

)ᵀ
=

1

p0
ij

M−1∑
n=1

xn+1x
ᵀ
n+1δn(i, j)− F 0

ij

(
Φ0

ij

)ᵀ
−
[
A0

ij B0
ij C0

ij

] (
χ0

ij

)ᵀ
. (30d)

b) Find the new set of parameters Θq+1 as follows:

1) For each i in Ω, compute the posterior prob-
abilities φq

n(i) = p(rn = i|xM
1 ,yM

1 ,Θq), and for
each i, j in Ω compute ψq

n(i, j) = p(rn = i, rn+1 =
j|xM

1 ,yM
1 ,Θq) (computational details are provided

below);
2) For each i in Ω, compute μq+1

i and Γq+1
i by substi-

tution φq
n(i) for κn(i) in (27);

3) For each i, j in Ω, pq+1
ij is given by

pq+1
ij =

1

M − 1

M−1∑
n=1

ψq
n(i, j). (31)
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Then compute intermediate matrices Eq+1
ij , Sq+1

ij ,

χq+1
ij , Φq+1

ij , Gq+1
ij , P q+1

ij , ξq+1
ij , and T q+1

ij by

substituting ψq
n(i, j), p

q+1
ij with δn(i, j), p0

ij in (29).

Finally, compute Aq+1
ij , Bq+1

ij , Cq+1
ij , Dq+1

ij , F q+1
ij ,

Hq+1
ij , Πq+1

ij , and Λq+1
ij by substituting Eq+1

ij ,

Sq+1
ij , χq+1

ij , Φq+1
ij , Gq+1

ij , P q+1
ij , ξq+1

ij , T q+1
ij with

E0
ij , S0

ij , χ0
ij , Φ0

ij , G0
ij , P 0

ij , ξ0ij , T 0
ij in (30).

Details on the derivation of Algorithm IV.1 will be made
available upon request to the corresponding author.

Let us recall the formulas for φq
n(i) and ψq

n(i, j). Let us set
tn=(xn, rn,yn),αn(rn)=p(rn, z

n
1 ) and βn(rn)=p(zNn+1|tn).

Then, the forward–backward algorithm computes recursively
αn(rn) and βn(rn) as follows:

• α1(r1)=p(t1),αn+1(rn+1)=
∑

rn∈Ω αn(rn)p(tn+1|tn)
for 1 ≤ n ≤ M − 1;

• βM (rM )=1, βn(rn)=
∑

rn+1∈Ω βn+1(rn+1)p(tn+1|tn)
for 1 ≤ n ≤ M − 1,

where

p(t1) = p(r1)p (z1 |r1 )
p (tn+1 |tn ) = p (rn+1 |rn ) p

(
xn+1,yn+1

∣∣xn,yn, r
n+1
n

)
p (r1 = i |Θq ) =

∑
j∈Ω

pq
ij

p (z1 |r1 = i,Θq ) = N (z1;μ
q
i ,Γ

q
i )

p (rn+1 = j |rn = i,Θq ) =
pq
ij

p(r1 = i,Θq)
p
(
yn+1

∣∣yn, r
n+1
n = (i, j),Θq

)
= N

(
yn+1;D

q
ijyn +Hq

ij ,Λ
q
ij

(
Λq

ij

)ᵀ)
p
(
xn+1

∣∣xn,y
n+1
n , rn+1

n = (i, j),Θq
)

=N
(
xn+1;A

q
ijxn+Bq

ijyn+Cq
ijyn+1+F q

ij ,Π
q
ij

(
Πq

ij

)T )
.

Thus,

ψq
n

(
rn+1
n

)
=

αn(rn)p (tn+1 |tn )βn+1(rn+1)∑
r�n,r

�
n+1

αn (r�n) p
(
t�n+1 |t�n

)
βn+1

(
r�n+1

)
(32)

with t�n = (xn, r
�
n,yn).

Finally, the CGOMSM-ABF implementation, which we use
in experiments, runs as follows:

Algorithm IV.2

a) Generate an artificial sample (xM�
1 ,yM�

1 ) according to
the model considered;

b) Since (xM�
1 ,yM�

1 ) may be seen as a realization of some
CGOMSM (XM�

1 ,RM�
1 ,YM�

1 ) with missing RM�
1 , es-

timate Θ with Algorithm IV.1;
c) Filtering: when a new measurement yn+1 is re-

ceived, compute p(rn+1|yn+1
1 ), E[Xn+1|rn+1,y

n+1
1 ]

and E[Xn+1X
ᵀ
n+1|rn+1,y

n+1
1 ] using Algorithm III.1,

then E[Xn+1|yn+1
1 ] and E[Xn+1X

ᵀ
n+1|yn+1

1 ] are given
by (11) and (12).

Remark IV.1: A given switching model can have different
meanings. Here we use one to approximate a nonlinear non-
Gaussian system. Another possible situation is that the system
is linear Gaussian, and there are random switches. Although
quite different, these contexts can be dealt with using the same
model, as the CGOMSM used in this paper. Of course, there
also exists non-Gaussian switching systems [36], [37].

V. EXPERIMENTS ON STOCHASTIC VOLATILITY MODELS

A stochastic volatility model describes the variance of a
stochastic process. Examples of stochastic volatility models
include the Heston model, the GARCH model and many more
[15], [38], [39]. In this Section, we provide two series of Monte-
Carlo experiments and an example of estimating the volatility
of a series of stock returns. In the first series, we focus on a
standard stochastic volatility (SV) model [24]–[27], that is
usually presented as follows:

X1 =μ+ U1 (33a)

Xn+1 =μ+ φ(Xn − μ) + σUn+1 (33b)

Yn =β exp

(
Xn

2

)
Vn (33c)

where U1, V1, . . . , UN , VN are independent standard Gaussian
vectors and μ, φ, β, σ are fixed. Since this model is of the
form (1), it is an HMM. The second series of experiments is
devoted to a recent extension, known as the asymmetric SV
(ASV) model [28]–[30], which may be presented as follows:

X1 =μ+ U1 (34a)

Xn+1 =μ+ φ(Xn − μ) + σ

(
ρYn

β exp
(
Xn

2

) + λUn+1

)

(34b)

Yn =β exp

(
Xn

2

)
Vn. (34c)

Since both SV and ASV are generative models, they fit well to
our CGOMSM-ABF approach.

If x̂(yn1 ) is a filtered signal obtained from yN
1 , and xN

1 is the
“ground-truth,” then the mean squared error (MSE) of the filter
can be estimated by

MSE =
N∑

n=1

(xn − x̂n (y
n
1 ))

2 (35)

which is a useful performance criterion for comparing filtering
effectiveness. All the results presented below are means of
100 equivalent independent experiments, each of them being
computed using N = 1000 simulated data points.

A. SV Model

Here we compare the performance of our method with re-
spect to the particle filtering (PF) and the Gaussian sum filtering
(GSF), using data simulated by different stationary SV models.
We set μ = 0.5, β = 0.5, and consider four different cases for φ
and σ such that φ2 + σ2 = 1 (that is to ensure that the common
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TABLE I
MEAN MSE RESULTS FOR DIFFERENT SV MODELS DEFINED BY φ AND σ (μ = 0.5, β = 0.5)

Fig. 1. Up: simulated log-volatility trajectory with a SV model (red, plain),
simulated log-returns (black, dotted). Down: log-volatility estimates com-
puted using K = 2 classes (blue, dotted), and K = 5 classes (green,
dashed).

variance of the variables Xn is unitary). The results are reported
in Table I.

Here are the details of each filtering method used in the
experiments

• For our method, we try out different values of K (cf.
Remark V.1) and we infer the CGOMSM from some in-
dependently generated sample (xM�

1 ,yM�
1 ) of size M =

20 000, performing 100 EM iterations. See Fig. 1 for an
example of trajectories.

• The PF implementation uses 1500 particles. We found
out empirically that PF behaves asymptotically for this
particle number.

• In order to use the GSF, let us linearise the SV model by
taking the log of both sides of (33c), to get

X1 =μ+ U1 (36a)
Xn+1 =μ+ φ(Xn − μ) + σUn+1 (36b)

Y ′
n =Xn + V ′

n (36c)

whereY ′
n=log(Y 2

n )−2 log β and V ′
1, . . . , V

′
n are indepen-

dent, non-Gaussian variables, such that exp(V ′
1/2), . . . ,

exp(V ′
n/2) are standard Gaussians. Then, the common pdf

of V ′
n is p(v)=exp(v/2)N (exp(v/2); 0, 1), which we ap-

proximate by a Gaussian mixture of r components using
the EM algorithm: p(v′n) ≈

∑r
m=1 γnN (v′n; v̂

′
m, Rm).

We found that when r ≥ 5, the approximation is accurate
enough to achieve a negligible residual effect. Since the
number ξn of mixands in the filtering pdf p(xn|yn1 ) =∑ξn

j=1αnjN(xn; x̂nj ,Pnj) exponentially grows with time, a
reduction technique is implemented to keep computational
demands of the algorithm within reasonable bounds [40].

For our experiments, we decided to reduce the number
of terms as follows: when ξn becomes greater than r, we
keep the r mixands in

∑ξn
j=1 αnjN (xn; x̂nj , Pnj) which

have the greatest weight coefficients αnj , and we discard
the remaining. Therefore, we impose the constraint that
ξn=r. We found out empirically that GSF behaves asymp-
totically for r ≥ 3, but does not attain the optimal MSE.

We note that since the model (36) is linear, there is no
reason for considering the extensions of the GSF for non-
linear systems, such as Gaussian sum unscented Kalman
filter [20] or Gaussian sum unscented Kalman filter with
adaptive scaling parameters [21].

Contrary to our filtering method, which makes use of a
single global approximation, the GSUKF relies on multiple
approximations:

• an approximation of the noise terms with a Gaussian
mixture;

• some reduction technique to keep the number of mixands
of the filtering pdf within reasonable bounds.

Additionally, when the model is nonlinear, the GSUKF uses
the unscented transform (UT) for computing the approximate
means and covariances. And the UT relies, in turn, on its scaling
parameters. Our experiments show that computing a single
global approximation may be advantageous and helps to avoid
the residual cumulative effects. However, unlike our method,
the GSUKF may be used for non-stationary systems.

B. Asymmetric SV Model

Regarding the ASV model, we compare the performance
between our method and PF only, since the GSF and GSUKF
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TABLE II
MEAN MSE RESULTS FOR DIFFERENT ASV MODELS DEFINED BY

ρ AND λ (μ = 0.5, β = 0.5, AND σ2 = 0.75), FOR φ = 0.5

TABLE III
MEAN MSE RESULTS FOR DIFFERENT ASV MODELS DEFINED BY

ρ AND λ (μ = 0.5, β = 0.5, AND σ2 = 0.75), FOR φ = 0.8

ignore the impact of the volatility asymmetry coefficient ρ and
therefore are not suitable for this model (recalling that the ASV
is not an HMM). The experimental configuration is identical to
the previous one. For the sake of consistency with the asymmet-
ric volatility phenomenon [41], ρ should be assumed negative.

We set μ = 0.5, β = 0.5, σ2 = 0.75, and consider five differ-
ent cases for ρ and λ such that ρ2 + λ2 = 1 (to ensure that the
common variance of the variables Xn is unitary). The results
are reported in Table II for φ = 0.5 and in Table III for φ = 0.8.
Fig. 2 shows an ASV trajectory, and its restoration with the
CGOMSM-ABF algorithm for K = 2 and K = 5 classes.

According to our results, the approach we propose is efficient
for both SV and ASV models, and attains the same asymptotic
performances as the PF. Regarding the processing time, we
find that:

• after having it adjusted to the SV model, our filter is nearly
five times faster than the PF;

• the model approximation algorithm may take time de-
pending on the system complexity.

Remark V.1: At the moment, we have no computational
technique to select the minimum number of classes allowing
to obtain asymptotic performances. We note only the tradeoff
between the computational cost and the variance of the resulting
estimates. Indeed, with a greater number of classes the former
increases, while the latter decreases. In practice, five classes
would be enough for most situations.

C. Recovering Volatility From Stock Market Data

Let us remind that if Pn−1 denotes the stock price at the
beginning of the previous trading day and if Pn denotes the
stock price at the beginning of the current trading day, then:

• Rn = (Pn − Pn−1)/Pn−1 is the current daily return on
the stock investment;

• un = log(1 +Rn) = log(Pn/Pn−1) is the continuously
compounded daily return. It is also often called the log-
return.

Fig. 2. Up: simulated log-volatility trajectory with an ASV model (red,
plain), simulated log-returns (black, dotted). Down: log-volatility esti-
mates computed using K = 2 classes (blue, dotted), and K = 5 classes
(green, dashed).

To see why un is called the continuously compounded return,
take the exponential of both sides to get exp(un) = Pn/Pn−1.
Rearranging, we get Pn = Pn−1 exp(un) so that un is the
continuously compounded growth rate in prices between the
beginning of the previous and the current trading days. This
has to be contrasted with Rn, which is the simple growth rate
in prices Pn−1 and Pn without any compounding.

Following [42]–[45] to examine the performance of our
method on the stock market data, we compute the log-returns
un over daily SPX index data from Jun. 23, 1980 to Aug. 30,
2002 (N = 5604), then we calculate yn = u�

n − μr, where μr

is given in [45] and u�
n denotes pre-processed log-return with

an ARMA(2,1) model [44]–[46]. Next, we use our algorithm to
compute the filtered volatility estimates within the ASV model,
whose parameters are given in [45] and reported in Table IV.
Our result is shown in Fig. 3.

We find that the volatility estimates produced by our algo-
rithm are consistent with the log-return process: as we can see in
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TABLE IV
PARAMETERS OF THE ASV MODEL FOR THE STOCK MARKET DATA

Fig. 3. Trajectories of the SPX index log-returns (down) and log-volatility
estimates (up). The x-axis represents the dates for both trajectories, the
y-axis labeling on the left concerns the log-volatility values, and the y-
axis labeling on the right is related to the log-return values.

TABLE V
MEAN SQUARE DISTANCES BETWEEN OUR VOLATILITY ESTIMATES

AND THOSE FROM THE PF, WITH DIFFERENT NUMBER OF CLASSES

Fig. 3, the intervals where the fluctuation of log-returns are low
(e.g., between 1991 and 1995) match the intervals where the
log-volatility is low, and vice versa. Moreover, we calculated
the mean squared distance between our volatility estimates and
those of the particle filter, and we find that this distance is neg-
ligible compared to the variance of the log-volatility process.
Furthermore, when the number K of classes in our algorithm
increases, this distance decreases as shown in Table V.

VI. CONCLUSION

We proposed a method to estimate the latent variables in non-
linear and non-Gaussian systems, called CGOMSM-ABF for
“conditionally Gaussian observed Markov switching model—
approximation based filter.” It makes use of a single global ap-
proximation of the system. Our method is very general and has
several advantages over existing techniques. Its performance
has been examined on synthetic samples of the standard and
asymmetric stochastic volatility, as well as on real data (SPX
index returns). Indeed, we found that our method attains the
asymptotic performances of the particle filter, what could not
be obtained with the Gaussian sum filter [17], [18].

The filtering procedure, which is the object of the paper, is
applicable in general stationary (or asymptotically stationary)
Markov dynamic systems, provided that one can sample its
realizations. It is as fast as the standard Kalman filter, however,
one has to adjust the filter to a particular model by using, for
instance, the EM-based algorithm that we have supplied.

Our future prospects include filtering for various stochastic
volatility models, including those with high dimension of the

state space, i.e., multifactor volatility models. Another impor-
tant topic would be the unsupervised estimation of parameters
of the initial PMM model in (2) [47], [48].
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