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Optimal Filter Approximations in Conditionally
Gaussian Pairwise Markov Switching Models

N. Abbassi, D. Benboudjema, S. Derrode, and W. Pieczynski

Abstract—We consider a general triplet Markov Gaussian linear
system (X,R,Y), where X is an hidden continuous random
sequence, R is an hidden discrete Markov chain, Y is an ob-
served continuous random sequence. When the triplet (X,R,Y)
is a classical “Conditionally Gaussian Linear State-Space Model”
(CGLSSM), the mean square error optimal filter is not work-
able with a reasonable complexity and different approximate
methods, e.g. based on particle filters, are used. We propose two
contributions. The first one is to extend the CGLSSM to a new,
more general model, called the “Conditionally Gaussian Pairwise
Markov Switching Model” (CGPMSM), in which X is not neces-
sarily Markov given R. The second contribution is to consider a
particular case of CGPMSM in which (R,Y) is Markov and in
which an exact filter, optimal in the sense of mean square error,
can be performed with linear-time complexity. Some experiments
show that the proposed method and the suited particle filter have
comparable efficiency, while the second one is much faster.

Index Terms—Conditionally Gaussian linear state-space model,
conditionally Gaussian pairwise markov switching model, ex-
act optimal filtering, Gaussian switching system, hidden Markov
models.

I. INTRODUCTION

Let us consider three random sequences XN
1 = (X1, . . . ,XN ),

RN
1 = (R1, . . . , RN ) and YN

1 = (Y1, . . . ,YN ), where the se-
quences XN

1 and YN
1 take their values in IRm and IRq , respec-

tively, while RN
1 is discrete finite, each Rn taking its values in Ω =

{0, . . . ,K − 1}. Both XN
1 and RN

1 are hidden, while YN
1 is observed.

The problem we deal with in this paper is the sequential search of
(RN

1 ,XN
1 ) from YN

1 . The optimal filter is given by

E
[
Xn+1|yn+1

1

]
=
∑
rn+1

p
(
rn+1|yn+1

1

)
E
[
Xn+1|rn+1,y

n+1
1

]

and its variance is

Var
[
Xn+1|yn+1

1

]
=
∑
rn+1

p
(
rn+1|yn+1

1

)
Var

[
Xn+1|rn+1,y

n+1
1

]
.

So, we search to express p(rn+1|yn+1
1 ), E[Xn+1|rn+1,y

n+1
1 ]

and E[Xn+1X
t
n+1|rn+1,y

n+1
1 ] from p(rn|yn

1 ), E[Xn|rn,yn
1 ],

E[XnX
t
n|rn,yn

1 ] and yn+1. We assume that the random switch
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sequence RN
1 is a Markov chain. Also, to simplify, we consider that

random variables Yn and Xn conditionally on switches have zero
mean.

Our work is related to the so-called “Conditionally Gaussian Linear
State-Space Models” (CGLSSMs), which have been widely applied in
different situations. Due to their popularity in many different fields
and, in particular, in different “tracking” problems [1], [2], speech
processing problems [3], or biomedical engineering ones [4], these
models are known under different names as “switching linear dynamic
systems” [4], “jump Markov linear systems” [5], “switching linear
state-space models” [6], “conditional linear Gaussian models” [7], or
still “conditionally Gaussian linear state-space models” [8].

These models combine two well-known and efficient models: a
hidden Markov chain (with correlated noise) for the couple (RN

1 ,XN
1 )

and a Gaussian linear system for the distribution of (XN
1 ,YN

1 ) condi-
tional on RN

1 . However, in spite of its intuitive and simple formulation,
exact optimal filtering or smoothing is not workable with a reasonable
computational time. Thus, a great deal of effort has been devoted to
propose different approximate solutions, whether deterministic [9],
[10] or stochastic [11], [12]. Among the latter, methods based on
sequential Monte Carlo algorithms became very popular and can
present quite satisfactory efficiency in numerous situations [5]. They
are shown to be asymptotically optimal; however, a good choice of the
importance measure, which is used to sample particles, can be difficult
in complex situations. In addition, the requested number of particles
quickly increases with the dimension m of the state space IRm. Here
we propose an alternative method, which consists in taking a different
model for which the exact optimal filter can be computed with a
complexity linear with respect to the observation time n by using the
recent models in [13]. The difference between these recent models and
the classical ones is the following. In the classical models the triplet
(XN

1 ,RN
1 ,YN

1 ) and the couple (XN
1 ,RN

1 ) are Markov, while the
couple (RN

1 ,YN
1 ) is not necessarily Markov. In the recent models the

triplet (XN
1 ,RN

1 ,YN
1 ) and the couple (RN

1 ,YN
1 ) are Markov, while

the couple (XN
1 ,RN

1 ) is not necessarily Markov.
More precisely, extending result in [14], we propose the two follow-

ing contributions:

(i) The CGLSSM is a linear Gaussian system conditionally on RN
1

which verifies the following conditions:

RN
1 is a Markov chain; (1)

Xn+1 = C1
n+1(Rn+1)Xn +C2

n+1(Rn+1)Un+1 (2)

Yn+1 = C3
n+1(Rn+1)Xn+1 +C4

n+1(Rn+1)Vn+1 (3)

where Ci
j(Rj), i = 1, . . . , 4, j = 0, . . . , N − 1, are appropri-

ate matrices depending on the switches RN
1 , X0 is given, and

U1, . . . ,UN , V1, . . . ,VN are sequences of independent cen-
tred Gaussian random vectors with unit variance-covariance ma-
trices and such that Un+1 and Vn+1 are independent from Rn

1

for each n = 1, . . . , N − 1. Thus, given RN
1 = rN1 , the couple

(XN
1 ,YN

1 ) is a classical Gaussian linear system in which the
classical optimal Kalman filter can be applied. In such a system
XN

1 is linear Gaussian and Markovian, and the distribution of
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YN
1 given XN

1 is very simple. We propose to extend this model
to a more general one, in which, given RN

1 = rN1 , the couple
(XN

1 ,YN
1 ) is a “Gaussian Pairwise Markov Model” (GPMM).

Such a GPMM model, which can be of interest with respect to
the classical model and in which neither XN

1 nor YN
1 is neces-

sarily Markovian, is more general but still allows the use of exact
Kalman filter [15], [16]. The general model (XN

1 ,RN
1 ,YN

1 )
so obtained will be called “Conditionally Gaussian Pairwise
Markov Switching Model” (CGPMSM);

(ii) The classical CGLSSM is thus a particular case of the
CGPMSM such that, given RN

1 = rN1 , XN
1 is Markov and YN

1

is not necessarily Markov. We consider another recent particular
case of the CGPMSM in which, given RN

1 = rN1 , YN
1 is

Markov and XN
1 is not necessarily Markov, which belongs to

the family of models in [13]. The interest of this model, called
“Conditionally Gaussian Observed Markov Switching Model”
(CGOMSM), is that the exact optimal filtering is workable with
linear complexity in time, even if RN

1 = rN1 is not observed.

The organization of the paper is as follows. The next section
is devoted to the new model we propose, extending the classical
CGLSSM. Section III contains the description of a particular case
called CGOMSM, which allows exact filtering in the presence of
unknown switches. Experiments are presented in Section IV and the
last section contains conclusions and perspectives.

II. THE CGPMSM AND THE GPMM

Let us note that the classical CGLSSM given with (1)–(3) can be
reformulated as

RN
1 is a Markov chain; (4)[
Xn+1

Yn+1

]
=

[
A1

n+1(Rn+1) 0
A3

n+1(Rn+1) 0

][
Xn

Yn

]

+

[
B1

n+1(Rn+1) 0
B3

n+1(Rn+1) B4
n+1(Rn+1)

][
Un+1

Vn+1

]
(5)

with A1
n+1(Rn+1) = C1

n+1(Rn+1), B1
n+1(Rn+1) = C2

n+1(Rn+1),
A3

n+1(Rn+1) = C3
n+1(Rn+1)C

1
n+1(Rn+1), B3

n+1(Rn+1) =
C3

n+1(Rn+1)C
2
n+1(Rn+1) and B4

n+1(Rn+1) = C4
n+1(Rn+1).

Setting Rn+1
n = (Rn, Rn+1), the classical CGLSSM given by (4),

(5) can be extended to the new CGPMSM according to(
XN

1 ,RN
1 ,YN

1

)
is Markovian and

p(rn+1|rn,xn+1,yn+1) = p(rn+1|rn); (6)[
Xn+1

Yn+1

]
=

[
A1

n+1 (R
n+1
n ) A2

n+1 (R
n+1
n )

A3
n+1 (R

n+1
n ) A4

n+1 (R
n+1
n )

][
Xn

Yn

]

+

[
B1

n+1 (R
n+1
n ) B2

n+1 (R
n+1
n )

B3
n+1 (R

n+1
n ) B4

n+1 (R
n+1
n )

][
Un+1

Vn+1

]
(7)

with given X1,Y1 and Gaussian distributions p(x1,y1|r1), with
Ai

j(R
j+1
j ),Bi

j(R
j+1
j ) appropriate matrices depending on the

switches and with WN
1 = (W1, . . . ,WN ), with Wn = [Un Vn]

t

a sequence of independent centred Gaussian random vectors with unit
variances and such that Wn+1 is independent from (Xn

1 ,R
n
1 ,Y

n
1 ) for

each n = 1, . . . , N − 1.
Remark: There exists situations in which the observed chain and the

hidden chain play symmetrical roles, and no one is a “natural” noisy
version of the other. For example, let XN

1 be unemployment and let
YN

1 be inflation. It could be of interest to estimate XN
1 from YN

1 , and
it also could be of interest to estimate YN

1 from XN
1 . Thus the general

CGPMSM, which is symmetrical with respect to XN
1 and YN

1 , would
be better suited than the classical CGLSSM in such situation.

Given RN
1 = rN1 the couple (XN

1 ,YN
1 ) is then a “Gaussian Pair-

wise Markov Model” (GPMM) in which optimal Kalman filter can
still be applied, as studied in a general context in in [15], [16]. Let
us briefly recall how it runs in a GPMM considered here. Forgetting
the dependence of (XN

1 ,YN
1 ) on the switches, the filtering prob-

lem is to compute p(xn+1|yn+1
1 ) from p(xn|yn

1 ) and yn+1. Let
p(xn|yn

1 ) = N (μn,Σn), p(xn+1|yn+1
1 ) = N (μn+1,Σn+1), and

Wn+1 =
[
Un+1
Vn+1

]
. For fixed yn

1 , (7) means that the variables Xn,
Xn+1, and Yn+1 verify[

Xn+1

Yn+1

]
=

[
A1

n+1

A3
n+1

]
Xn +

[
A2

n+1

A4
n+1

]
yn +Bn+1Wn+1,

and thus p(xn+1,yn+1|yn
1 ) is Gaussian with mean mn+1 and vari-

ance Sn+1 given by[
mx

n+1

my
n+1

]
=

[
A1

n+1

A3
n+1

]
μn +

[
A2

n+1

A4
n+1

]
yn (8)

[
Sxx

n+1 Sxy
n+1

Syx
n+1 Syy

n+1

]
=

[
A1

n+1

A3
n+1

]
Σn

[
A1

n+1

A3
n+1

]t

+Bn+1B
t
n+1. (9)

Then p(xn+1|yn+1
1 ) = p(xn+1|yn+1,y

n
1 ) is Gaussian with mean

and variance given by

μn+1 =Sxy
n+1

(
Syy

n+1

)−1 (
yn+1 −my

n+1

)
+mx

n+1; (10)

Σn+1 =Sxx
n+1 − Sxy

n+1

(
Syy

n+1

)−1
Syx

n+1. (11)

Thus (8)–(11) define the Kalman filter in GPMM, and it can be applied
in CGPMSM (6), (7) if the switches RN

1 = rN1 are known. Once they
are not known, p(rn+1|yn+1

1 ) cannot be computed sequentially and
has to be approximated using, e.g., a particle filter.

III. THE CGOMSM AND RELATED EXACT FILTER

In this section we introduce a new model, which is a particular case
of the CGPMSM given by (6), (7) and in which the exact optimal filter
can be computed with linear complexity in time. Called “Conditionally
Gaussian Observed Markov Switching Model” (CGOMSM), this new
model is a CGPMSM such that A3

n+1(R
n+1
n ) = 0. More precisely,

we define a CGOMSM as a triplet Markov chain (XN
1 ,RN

1 ,YN
1 )

verifying(
XN

1 ,RN
1 ,YN

1

)
is Markovian and

p(rn+1|rn,xn,yn) = p(rn+1|rn); (12)[
Xn+1

Yn+1

]
=

[
A1

n+1 (R
n+1
n ) A2

n+1 (R
n+1
n )

0 A4
n+1 (R

n+1
n )

][
Xn

Yn

]

+

[
B1

n+1 (R
n+1
n ) B2

n+1 (R
n+1
n )

B3
n+1 (R

n+1
n ) B4

n+1 (R
n+1
n )

]
︸ ︷︷ ︸

Bn+1(Rn+1
n )

[
Un+1

Vn+1

]
. (13)

Let

Qn+1

(
rn+1
n

)
=

[
Q1

n+1 + 1 (rn+1
n ) Q2

n+1 + 1 (rn+1
n )

Q3
n+1 + 1 (rn+1

n ) Q4
n+1 + 1 (rn+1

n )

]

=Bn+1

(
rn+1
n

)
Bt

n+1

(
rn+1
n

)
. (14)

Let us derive how the exact fast (with complexity linear in
time) optimal filter can be computed in any CGOMSM. The
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computation of initial p(r1|y1), E[v|r1,y1], E[X1X
t
1|r1,y1], and

Var[X1|v] from p(r1) and p(x1,y1|r1) is trivial. For n =
1, . . . , N − 1, we can express p(rn+1|yn+1

1 ), E[Xn+1|rn+1,y
n+1
1 ]

and E[Xn+1X
t
n+1|rn+1,y

n+1
1 ] from p(rn|yn

1 ), E[Xn|rn,yn
1 ] and

E[XnX
t
n|rn,yn

1 ], p(rn+1,yn+1|rn,yn) and yn+1, using simple re-
lations given in introduction.

An important point, which makes the difference between CGOMSM
and classical models, is that, according to (12), (13), (RN

1 ,YN
1 ) is

a Markov chain. In fact, as we are going to see, this allows the
exact computation of p(rn+1|yn+1

1 ), which is not possible in classical
models and which needs to be approximated with a particle filter for
example.

According to (12), (13), p(rn+1|rn,yn) = p(rn+1rn), and thus we
have

p(rn+1,yn+1|rn,yn) = p(rn+1|rn)p
(
yn+1|rn+1

n ,yn

)
(15)

where

p
(
yn+1|rn+1

n ,yn

)
=N

(
A4

n+1+1
(
rn+1
n

)
yn,Q

4
n+1+1

(
rn+1
n

))
.

(16)

Besides, since (RN
1 ,YN

1 ) is Markov, we have

p
(
rn, rn+1|yn+1

1

)
=

p(rn+1,yn+1|rn,yn)p(rn|yn
1 )∑

rn,rn+1

p(rn+1,yn+1|rn,yn)p (rn|yn
1 )

and thus

p
(
rn|rn+1,y

n+1
1

)
=

p(rn+1,yn+1|rn,yn)p (rn|yn
1 )∑

rn

p(rn+1,yn+1|rn,yn)p (rn|yn
1 )

. (17)

According to (13), conditionally on RN
1 = rN1 , the vector

(Xn+1,Yn+1) depends on (Xn,Yn) linearly and is Gaussian
(please note that (Xn,Yn) is not Gaussian as its distribution is
a Gaussian mixture). This implies that the Gaussian Xn+1 also
depends on (Xn,Yn,Yn+1) linearly and thus can be written as
Xn+1=Fn+1(R

n+1
n )Xn+In+1(R

n+1
n )Yn+Jn+1(R

n+1
n )Yn+1+

Gn+1(R
n+1
n )Wn+1, with E[Wn+1|rn+1,y

n+1
1 ] = E[Wn+1] = 0

and Fn+1, In+1, Jn+1, Gn+1 expressed from parameters in (13) by
(22)–(25) specified below. To simplify notations let us set

Hn+1

(
Rn+1

n ,Yn+1
n

)
= In+1

(
Rn+1

n

)
Yn + Jn+1

(
Rn+1

n

)
Yn+1

(18)

so that we finally have

Xn+1 = Fn+1

(
Rn+1

n

)
Xn +Gn+1

(
Rn+1

n

)
Wn+1

+Hn+1

(
Rn+1

n ,Yn+1
n

)
. (19)

So the filter is given by

E
[
Xn+1|rn+1,y

n+1
1

]
=
∑
rn

(
p
(
rn|rn+1,y

n+1
1

)
[
Fn+1

(
rn+1
n

)
E
[
Xn|rn+1

n ,yn+1
1

]
+Hn+1

(
rn+1
n ,yn+1

n

)])
.

Using (13), we can show that (Rn+1,Yn+1) and Xn are indepen-
dent conditionally on (Rn,Yn). Thus we have E[Xn|rn+1

n ,yn+1
1 ] =

E[Xn|rn,yn
1 ], and finally get

E
[
Xn+1|rn+1,y

n+1
1

]
=
∑
rn

(
p
(
rn|rn+1,y

n+1
1

)
[
Fn+1

(
rn+1
n

)
E [Xn|rn,yn

1 ]+Hn+1

(
rn+1
n ,yn+1

n

)])
. (20)

E[Xn+1X
t
n+1|rn+1,y

n+1
1 ] is computed in a similar way

E
[
Xn+1X

t
n+1|rn+1,y

n+1
1

]
=
∑
rn

(
p
(
rn|rn+1,y

n+1
1

)
[
Fn+1

(
rn+1
n

)
E
[
XnX

t
n|rn,yn

1

]
Ft

n+1

(
rn+1
n

)
+

Fn+1

(
rn+1
n

)
E [Xn|rn,yn

1 ]H
t
n+1

(
rn+1
n ,yn+1

n

)
+Hn+1

(
rn+1
n ,yn+1

n

)
E
[
Xt

n|rn,yn
1

]
Ft

n+1

(
rn+1
n

)
.

+Gn+1

(
rn+1
n

)
Gt

n+1

(
rn+1
n

)])
. (21)

Finally, let us specify Fn+1, In+1, Jn+1, and Gn+1. Ac-
cording to (13), p(xn+1,yn+1|xn, r

n+1
n ,yn) is Gaussian with

mean
[A1

n+1(r
n+1
n )xn+A2

n+1(r
n+1
n )yn

A4
n+1

(rn+1
n )yn

]
and variance-covariance matrix

Qn+1(r
n+1
n ) in (14).

Then p(xn+1|rn+1
n ,xn,yn,yn+1) is Gaussian with mean

A1
n+1(r

n+1
n )xn+A2

n+1(r
n+1
n )yn+Q2

n+1(r
n+1
n ) (Q4

n+1(r
n+1
n ))−1

(yn+1 −A4
n+1(r

n+1
n )yn) and variance-covariance matrix Q1

n+1

(rn+1
n )−Q2

n+1(r
n+1
n )(Q4

n+1(r
n+1
n ))−1Q3

n+1(r
n+1
n ). We see that

Fn+1

(
rn+1
n

)
= A1

n+1

(
rn+1
n

)
(22)

Jn+1

(
rn+1
n

)
= Q2

n+1

(
rn+1
n

) (
Q4

n+1

(
rn+1
n

))−1
(23)

In+1

(
rn+1
n

)
=A2

n+1

(
rn+1
n

)
− Jn+1

(
rn+1
n

)
A4

n+1

(
rn+1
n

)
(24)

Gn+1

(
rn+1
n

)
Gt

n+1

(
rn+1
n

)
= Q1

n+1

(
rn+1
n

)
− Jn+1

(
rn+1
n

)
Q3

n+1

(
rn+1
n

)
. (25)

So (18) writes

Hn+1

(
rn+1
n ,yn+1

n

)
= A2

n+1

(
rn+1
n

)
yn + Jn+1

(
rn+1
n

)
(
yn+1 −A4

n+1

(
rn+1
n

)
yn

)
. (26)

Finally, let us consider the CGOMSM model (12), (13). The pro-
posed filter runs as follows. For n = 1, . . . , N − 1:

• Compute Qn+1(r
n+1
n ) matrix from (14);

• Compute p(rn+1,yn+1|rn,yn)=p(rn+1|rn)p(yn+1|rn+1
n ,yn)

from p(rn+1|rn) and the Gaussian distribution p(yn+1|rn+1
n ,

yn) given by (16);
• Compute p(rn|rn+1,y

n+1
1 ) from (17);

• Compute Fn+1(r
n+1
n ) from (22), Jn+1(r

n+1
n ) from (23),

Gn+1(r
n+1
n )Gt

n+1(r
n+1
n ) from (25) and Hn+1(R

n+1
n ,Yn+1

n )
from (26);

• Compute E[Xn+1|rn+1,y
n+1
1 ] from (20) and E[Xn+1X

t
n+1

|rn+1,y
n+1
1 ] from (21).

As no computation above depends on n, we see that the filter running
time is linear in the number of observations.

IV. EXPERIMENTS

We present two series of experiments, where, in both of them,
XN

1 and YN
1 are real valued. In the first series, we try to understand

how far—when the optimal filtering is concerned—the corresponding
CGOMSM, obtained from CGPMSM by modifying some parameters,
is from the true CGPMSM. To study this point, data are sampled with
a CGPMSM and then filtered using the same CGPMSM on the one
hand, and a CGOMSM on the other hand. In the second series of
experiments, we examine the behaviour of the CGOMSM based filter
with respect to the classical CGLSSM based one.

Therefore, consider XN
1 and YN

1 as scalar-valued processes (m =
q = 1). In all experiments, we consider homogeneous systems, which
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Fig. 1. Dependence graph of p(x1,y1,x2,y2) in the general CGPMSM (left—5 parameters) and in the classical CGLSSM (right—2 parameters).

means that matrices Ai
n+1, Bi

n+1, for i = 1, . . . , 4, in (7) do not
depend on n. Let us briefly examine the differences between a
general CGPMSM and the “corresponding” CGOMSM, obtained
from the considered CGPMSM in some way. The distributions of
both of them are thus defined by the distribution of (T 1,T 2) =
(X1, R1,Y1,X2, R2,Y2), and this distribution can be written as
p(t1, t2) = p(r1, r2)p(x1,y1,x2,y2|r1, r2). As the distribution of
the Markov chain RN

1 will be the same in the CGPMSM and in the cor-
responding CGOMSM, we have to compare p(x1,y1,x2,y2|r1, r2).
Finally, let us temporarily forget the conditioning by (R1, R2) and
compare the Gaussian distributions p(x1,y1,x2,y2).

Let fZ2
1 = (Z1,Z2) = (X1,Y1,X2,Y2). To simplify, let assume

that all means are zero and all variances are 1. The Gaussian distribu-
tion of Z2

1 is then given by the covariance matrix

Γz21 =

⎡
⎢⎣
1 b a d
b 1 e c
a e 1 b
d c b 1

⎤
⎥⎦ =

[
Γ Σt

Σ Γ

]
. (27)

Thus the distribution of Z2
1 is defined by five co-variances a, b, c, d,

and e, with the condition that ΓZ2
1 is definite positive. The dependence

graph is presented in Fig. 1.
The corresponding (5) is here of the simple form[
Xn+1

Yn+1

]
=

[
A1 A2

A3 A4

][
Xn

Yn

]
+

[
B1 B2

B3 B4

][
Un+1

Vn+1

]
(28)

with [
A1 A2

A3 A4

]
= ΣΓ−1 =

1

1− b2

[
a− eb e− ab
d− cb c− db

]
(29)[

B1 B2

B3 B4

][
B1 B2

B3 B4

]t

= Γ−ΣΓ−1Σt. (30)

Thus we can say that the CGPMSM model is a CGOMSM model
when A3 = 0, which is equivalent to d− cb = 0. To obtain the latter,
we can modify either b, c, or d.

Consider now the complete homogeneous CGPMSM whose dis-
tribution is defined by p(r1, r2) and ΓZ2

1(r21), with a, b, c, d, and e
replaced by a(r21), b(r

2
1), c(r

2
1), d(r

2
1), and e(r21). Given (R1, R2) =

(r1, r2), the co-variances a(r21), b(r
2
1), c(r

2
1) and e(r21) can be the

same in both CGPMSM and CGOMSM distributions, and the only dif-
ference can be at the d(r21) value level: it is of any value in CGPMSM
while it is equal to c(r21)b(r

2
1) in CGOMSM. In other words, the distri-

butions of (R1, R2), (X1,Y1,X2), and (Y1,X2,Y2) are strictly the
same in the CGPMSM considered and in its “approximate” CGOMSM
version.

In all experiments below, we will consider two switches Ω = {0, 1},
and the following simplified parameter set:

(i) p(r1, r2) = p(r1)p(r2|r1) with p(r1 = 0) = p(r1 = 1) = 0.5,
and p(r2 = 0|r1 = 0) = p(r2 = 1|r1 = 1) = q;

(ii) b(r21) = b(r2), a(r21) = a(r2), c(r21) = c(r2), d(r21) = d(r2)
and e(r21) = e(r2).

Finally, each CGPMM used in experiments will be defined by eleven
parameters: q, b(0), a(0), c(0), d(0), e(0), b(1), a(1), c(1), d(1), and
e(1). We will consider the following slightly simplified model:[

A1 (rn+1
n ) A2 (rn+1

n )
A3 (rn+1

n ) A4 (rn+1
n )

]
=

[
α(rn+1) β(rn+1)
γ(rn+1) δ(rn+1)

]
. (31)

In the two series of experiments below, the number of samples was
set to N=2000 and results are means of 200 independent experiments.

A. First Series of Experiments

The aim of this series is to simulate realizations of TN
1 =

(XN
1 ,RN

1 ,YN
1 ) according to the general CGPMSM, and to estimate

(RN
1 ,XN

1 ) from YN
1 with different particular methods, seen as ap-

proximate methods of the optimal one. We considered five methods:

(i) the “Reference Method”, denoted by RM-KS (KS stands for
“Known Switches”), where RN

1 = rN1 is considered as known
and where the estimated XN

1 = x̂N
1 is obtained by the optimal

Kalman filter given by (8)–(11);
(ii) the particle filter suited to CGPMSM, by extension of [5],

denoted by RM-US (US stands for “Unknown Switches”);
(iii) the new alternative method we propose, denoted by M1-US, by

considering that γ(0) = γ(1) = 0, and by applying the exact
filter described in Section III;

(iv) the Kalman filter based on CGOMSM and known switches,
denoted by M1-KS;

(v) the Kalman filter based on the classic CGLSSM (see below) and
known switches, denoted by M3-KS.

To further simplify, we consider here that b(0) = b(1) = b. To
obtain the classical CGLSSM-based filter in (v), we consider, in (29)
and (30), that e(rn)− ba(rn) = 0, c(rn)− bd(rn) = 0, and c(rn) =
a(rn)b

2, which are its classical properties (see Fig. 1).
In all models studied here, we set q = 0.9, b = 0.3, a(0) = 0.1,

a(1) = 0.5, c(0) = 0.4, c(1) = 0.9, e(0) = 0.75, and e(1) = 0.33.
Then we chose 9 different couples (di(0), di(1)), defining 9 different
CGPMSM, in such a way that the corresponding γ = γ(0) = γ(1)
(see (31)) vary from 0 to 0.4 with a step of 0.05. Therefore we increase
γ on purpose: the larger γ the greater the difference between the model
CGPMSM used to simulate data and the model used to restore them
with M1-US (i.e., the model CGOMSM obtained by setting γ = 0).
We also filter data with M3-KS, where the CGLSSM used is obtained
in the following way. First we set q = 0.9, b = 0.3, a(0) = 0.1, and
a(1) = 0.5. Then, as known in the classical CGLSSM (see Fig. 1), we
also set e(0) = d(0) = a(0)b, c(0) = a(0)b2, e(1) = d(1) = a(1)b,
and c(1) = a(1)b2.

Thus, in each case, tN1 = (x1N, rN1 ,y1N) have been simulated
according to the real parameters and x1N is estimated using RM-
KS, RM-US, M1-KS, M1-US, and M3-KS. The difference between
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Fig. 2. MSE for the five methods studied in the first set of experiments.

x1N and the estimated x̂N
1 is calculated with the Mean Squared

Error (MSE) (1/N)
∑N

n=1
(xn − x̂n)

2. The number of particle for the
particle filter method depends on the model and on the parameters of
the model. Experiments not reported here lead to a number NP = 200
of particles. We make use of Sequential Importance Resampling (SIR)
when N̂eff = (1/

∑NP

j=1
(wj)

2) < (1/3), where wj is the weight of
particle j.

Results are presented in Fig. 2. Computation time for the particle
filter method (RM-US) is approximately 1.47 seconds, whereas it is
0.014 second for the exact CGOMSM method (M1-US). Generally
speaking, the computation time is about half time the number of
particles longer for RM-US than for M1-US. From these results, we
can put forth the following conclusions:

1) The main conclusion is that when γ increases, i.e. when the
CGOMSM used by method M1-KS and the reference CGPMSM
used to sample data break away, the results obtained using M1-
KS remain very close to those obtained using RM-KS based on
known switches (curves are nearly superposed). This means that
M1-KS algorithm is very robust with respect to γ;

2) The particle filter applied to the true CGPMSM model gives
quite satisfactory results. They are nearly equivalent to those
obtained with M1-US method but with a computation time about
100 times shorter;

3) Comparing M1-KS with M1-US shows that the new method
seems quite robust with respect to the knowledge/ignorance of
the switches (even if the switches are rather poorly estimated);

4) The results obtained with M3-KS based on the classical
CGLSSM and known switches are quite poor, which means that,
at least in the context considered, CGLSSM is a rather poor
approximation of the general CGPMSM;

5) Both RM-US and M1-US (in which (RN
1 ,YN

1 ) is Markovian)
allow to estimate rN1 : we find about 20% of error ratios in both
estimators, and the results vary little with γ.

6) Variation of γ has very little influence on the results.

In experiments not reported, we evaluated if the parameters of the
switching chain p(r2 = 0|r1 = 0) = p(r2 = 1|r1 = 1) = q modify
the conclusions obtained above. We showed that, as q increases, the
MSE growths for all methods except for CGLSSM. When q is small
(i.e. switches are frequent), the RM algorithms are more performing
than the M1 ones.

TABLE I
PARAMETERS OF THE FIVE SYMMETRICAL CGPMM CASES

STUDIED IN THE SECOND SERIES OF EXPERIMENTS

B. Second Series

The aim of this series of experiments is to study which one among
CGOMSM and CGLSSM models is “closer” to the general CGPMSM
model, when optimal filtering is concerned. In these experiments, we
set b(0) �= b(1). To ensure that the results are not possibly due to a
dissymmetry of the CGPMSM, we used a CGPMSM in which XN

1

and YN
1 play symmetric roles. Therefore, we considered a(rn) =

c(rn) and d(rn) = e(rn). There is no classical CGLSSM of interest
verifying this condition; indeed, in CGLSSM we would have c(rn) =
a(rn)

2b(rn), and thus either b(rn) = 1 or b(rn) = −1, which are
cases with no interest. Thus we used the “Extended CGLSSM”
(ECGLSSM), obtained from (7) by setting A2

n+1(R
n+1
n ) = 0 (thus

β(rn) = 0 in (31), but δ(rn) are not necessarily zero). Thus the
CGPMSM (7) extends the ECGLSSM, which itself extends the classi-
cal CGLSSM (2), (3). ECGLSSM and CGOMSM can be seen as two
symmetrical approximations of the CGPMSM with the same number
of free parameters.

Finally, data are sampled with respect to a symmetrical CGPMSM
and restored with methods based on the true CGPMSM (reference
method RM-KS), with methods based on the CGOMSM obtained by
setting γ(rn) = 0 (methods M1-KS and M1-US), and with methods
based on the ECGLSSM obtained by setting β(rn) = 0 (method
M2-KS). The symmetrical CGLSSM chosen to sample data is given
by (31) with α(rn) = δ(rn), β(rn) = γ(rn), a(rn) = c(rn), and
d(rn) = e(rn). Applying (2), (3) for two switches rn = 0,1 leads to[

a(rn)
d(rn)

]
=

[
1 b(rn)

b(rn) 1

][
α(rn)
β(rn)

]
. (32)

We set q = 0.4 and thus each CGOMSM studied is defined by ten
parameters b(0), a(0), d(0), α(0), β(0), b(1), a(1), d(1), α(1), and
β(1) verifying (32), which leads to five free parameters. We consider
five cases whose parameters are given in Table I, whose results are
specified in Table II.

According to the results, we propose the following conclusions:

1) The main conclusion is that, in both “known switches” and “un-
known switches” cases, algorithm M1 always gives better results
than M2 one, and the difference can be significant (Case 1). This
means that, when the optimal filtering is considered, CGOMSM
better approaches the general CGPMSM than ECGLSSM does;

2) Comparing the difference of the results obtained with M1-US
with respect to those obtained with M1-KS, with the analogous
difference when replacing M1 by RM, we see that the new
method is a bit more robust than the particle filter based ones;

3) Regarding the estimation of the switches, which can be an
objective in itself, the method M1-US appears more efficient
than M2-US. As in the first series, the computation-time is about
100 times shorter for M1-US or for M2-US than for RM-US.
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TABLE II
SQUARED ERROR AND ERROR RATIOS OBTAINED WITH THREE MODELS

AND SIX METHODS (RM-KS, RM-US, M1-KS, M1-US, M2-KS AND

M2-US). PARAMETERS USED ARE REPORTED IN THE TEXT

This is a crucial advantage of the new method with respect to
the particle filter based ones.

4) The error ratio in switches estimation could seem being large,
but this is normal because of the low signal-to-noise ratio. In
fact, as the means are all set to zero, the influence of switches on
the distribution of YN

1 is reduced to variances and covariance.

V. CONCLUSION

Extending some preliminary results from [14], we proposed an exact
filter called “Conditionally Gaussian Observed Markov Switching
Model” (CGOMSM). The CGOMSM family of models is very flexi-
ble, so that it was possible to build a model as a close approximation to
the CGPMSM (also see theoretical justifications in [17] of its closeness
with the classical CGLSSM). We showed that, at least in the context
of this study, our filter showed comparable efficiency with respect to a
suited particle filter, while being much faster. Indeed, its computation
times is nearly comparable to that of Kalman filter applied in absence
of switches. In addition, problems like weights degeneracy can appear
in the particle filter based methods, which is not the case in the
proposed CGOMSM-based method.

Let us mention some perspectives for further works. First, it will be
interesting to pursue comparison with an extension of the Interacting
Multiple Model [12] to the pairwise context considered here. Also,
parameter estimation and related unsupervised filtering provide a
natural perspective for further works.
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