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Signal and Image Segmentation Using Pairwise
Markov Chains

Stéphane Derrode and Wojciech Pieczynski

Abstract—The aim of this paper is to apply the recent pairwise
Markov chain model, which generalizes the hidden Markov chain
one, to the unsupervised restoration of hidden data. The main nov-
elty is an original parameter estimation method that is valid in
a general setting, where the form of the possibly correlated noise
is not known. Several experimental results are presented in both
Gaussian and generalized mixture contexts. They show the advan-
tages of the pairwise Markov chain model with respect to the clas-
sical hidden Markov chain one for supervised and unsupervised
restorations.

Index Terms—Bayesian restoration, hidden data, hidden
Markov chain, image segmentation, iterative conditional estima-
tion, maximal posterior mode (MPM), maximum a posteriori,
pairwise Markov chain, Pearson’ system, unsupervised classifica-
tion.

I. INTRODUCTION

THE aim of this paper is to present some applications of a
recent model called pairwise Markov chains (PMCs) [1],

which generalizes the classical hidden Markov chain (HMC)
model. The range of applications of the latter is rather vast, cov-
ering signal and image processing, economical prediction, and
health sciences, among others. Specific applications of HMCs
in image processing include image segmentation [2], [3], hand-
written word recognition [4], document image analysis, tumor
classification, vehicle detection [5], acoustic signal recognition
[6], or even gesture recognition [7]. Multisensor or multireso-
lution images can likewise be segmented using HMCs [3], [8].
Other applications include speech recognition [9], [10], com-
munications [11], and genome structure recognition [12].

The success of HMC models is due to the fact that when
the unobservable signal process can be modeled by a fi-
nite Markov chain and when the noise is not too complex, then

can be recovered from the observed process using different
Bayesian classification techniques like maximum a posteriori
(MAP) or maximal posterior mode (MPM) [13], [14]. Most re-
markably, these classification methods remain valid even in very
large data set cases.
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The efficiency of HMMs (chains or fields) in image segmen-
tation hinges principally on their spatial regularity constraint.
This is justified by the fact that for many natural scenes, neigh-
boring pixels are more likely to belong to the same class than
pixels that are farther away from each other. However, a pixel
belonging to a given class may have a rather different visual
aspect when it is located near a boundary or inside a large set
of pixels of the same class. According to the classical hypoth-
esis in hidden Markov fields (HMFs) [15]–[19], this fact cannot
be taken into consideration. This is the very reason for the re-
cent pairwise Markov field (PMF) model [20], in which the pair

is assumed to be a Markov field. For analogous rea-
sons, the PMC model, in which is a Markov chain, has
then been proposed [1], [21], and it has been shown that PMC
is strictly more general than HMC in that is not necessarily
a Markov chain [1]. Another advantage over HMMs is that the
noise correlation can be easily taken into account.

Like HMC, the PMC model allows one to perform Bayesian
MAP and MPM restorations [1], and the aim of this paper is to
study the advantages of PMC with respect to HMC in the context
of unsupervised restoration. Beforehand, the unknown model
parameters have to be estimated. When HMC is concerned, the
Expectation–Maximization (EM) procedure [13], [22] is among
the best known methods and generally works very well, espe-
cially when the noise is Gaussian. In this work, we will use
the general iterative conditional estimation (ICE) method [23],
which can be seen as an alternative to EM in situations where the
latter is difficult to apply. In particular, ICE has been success-
fully used in several unsupervised image segmentation contexts.
For instance, sonar [24] and medical [25] images, spatio-tem-
poral video images [2], radar [26], and multiresolution [27],
[28] images were segmented using different ICE-based unsu-
pervised Bayesian methods. Otherwise, EM and ICE have been
compared in the case of Gaussian noise in the HMC models [2],
and it turns out that EM and ICE are equivalent, but EM remains
faster. In other situations, ICE could possibly appear more flex-
ible [19] since the likelihood is not necessarily used, and es-
timators other than the maximum likelihood estimator can be
employed. Some relations between EM and ICE in the context
of the exponential family of distributions are described in [29].

We focus here on unsupervised restoration based on the ap-
plication of ICE to PMC models, in both Gaussian and “gener-
alized” mixture estimation contexts. Our aim is to answer the
following questions.

• When the data follow a PMC model, does the use of an
HMC significantly degrade the restoration results, and
how does ICE work in this context?
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• When the data neither follows a PMC nor an HMC model,
which should be used, and how does ICE behave?

• Like HMC, PMC can be used in image segmentation by
converting the two–dimensional (2-D) set of pixels into
a one–dimensional (1-D) sequence via a Hilbert–Peano
scan. Does the use of PMC instead of HMC present any
interest in such a context?

The third point is relevant since HMC and Hilbert–Peano scan-
based methods [2], [3] have shown to be of interest in the image
segmentationcontextandcanevencompete,insomeparticularsit-
uations,withtheHMF-basedmethodsintermsofclassificationac-
curacy,whilebeingmuchfaster[30].Furthermore,sincetheHMF
model provides a finer and more intuitive modeling of spatial re-
lationships,whereas theestimationof the regularityparameters is
much more robust in HMC, the two approaches can be combined
in a way that conserves their respective advantages. Such a hybrid
method uses HMCfirst andHMF only for the final estimationand
classification [26]. Let us finally mention that this approach can
also be used with other Markov models, e.g., Markov mesh [31]
and Markov tree [32], [33].

The paper is organized as follows. The PMC model is briefly
reviewed in Section II. Section III is devoted to the supervised
restoration of simulated Gaussian PMCs from both MPM-based
HMC and MPM-based PMC classifications. Section IV is con-
cerned with the parameter estimation problem. In particular, we
specify how the original ICE method works in the Gaussian mix-
ture estimation case and how it can be extended to the general-
ized mixture estimation case. Section V contains applications of
the PMC-based Bayesian MPM restoration algorithm in order
to segment simulated images with non-Gaussian and correlated
noise in supervised and unsupervised manners. We also show
and discuss the segmentation results obtained from a real radar
image. Experiments are conducted using both HMC and PMC
models and for both Gaussian- and Pearson-based generalized
mixture estimation cases. Finally, conclusions and further work
are drawn in the Section VI.

II. PAIRWISE MARKOV CHAINS

Let us consider two sequences of random variables
, and . Each ,

takes its values in a finite set of classes, and
each takes its values in the set of real numbers . Consid-
ering , the process is called
a “pairwise process” associated with and . Realizations of
such processes will be denoted by lowercase letters. To simplify
notations, we will write for , and we will de-
note different distributions by the same letter , except for dis-
tributions on and , where will be used.

The process is then called a “pairwise Markov chain”
(PMC) associated with and if its distribution can be
expressed as . In
this paper, we only consider the “stationary PMCs” in which

does not depend on . The distribution of a PMC
is then given by

(1)

where is a probability on , and
are distribution densities on . Hence,

is a probability distribution on . The distribution of the
Markov chain will equivalently be determined by the initial
probabilities given by

(2)
and the transition matrix given by

(3)

We may then state [1] the following.

i) conditionally on and conditionally on
are Markov chains.

ii) implies that is a Markov chain, and
reciprocally, the Markovianity of implies

.
Property ii) states a necessary and sufficient condition that a

PMC be an HMC and shows that a PMC is strictly more general
than an HMC. In particular, the classical HMC widely used is
obtained by putting in (1), which
gives

(4)

In the following, we will call an HMC the classical HMC,
verifying (4).

III. RESTORATION OF SIMULATED GAUSSIAN PMCS

The aim of this section is to test and compare the HMC-
and PMC-based MPM restoration algorithms in the context
of Gaussian PMCs. A PMC is called Gaussian if all densities

are Gaussian. As specified above, the distribution
of is given by the distribution or, equivalently, by
the probabilities and the parameters , , ,

, and of the bi-dimensional densities .
In this section, all these parameters are supposed to be known,
and we deal with, first, the simulation of a Gaussian PMC ,
i.e., the simulation of and the simulation of , and second,
the restoration of from only, according to the HMC- and
PMC-based MPM restoration methods.

A. Simulation of a PMC

The simulations of and are done sequentially and alter-
natively according to the following:

• the simulation of and using drawings from the fol-
lowing probabilities:

(5)

(6)

Remark: is a Gaussian density with mean and
standard deviation , and the simulation of is obtained by
a drawing from a Gaussian mixture.
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• the simulation of and , for , using
drawings from the following probabilities:

(7)

(8)

Remark: It can be shown that is a

Gaussian density with mean

and standard deviation , and the simulation
of is obtained using a Gaussian drawing.

B. Bayesian MPM Restoration of a PMC

The Bayesian MPM restoration of the hidden sequence can
be calculated according to

(9)

with . As shown in [1], the MPM restora-
tion can be achieved thanks to the “forward probabilities”

and the “backward probabili-
ties” , for and

, since

(10)

These probabilities are generalizations of the classical
“forward” and “backward” probabilities considered in HMC.
They can be computed recursively using a method analogous
to the well-known Baum’s algorithm [13]. However, the
original algorithm is subject to serious numerical problems
since and at exponential rates,
causing underflow on computers. The same behavior was
encountered with PMC, and we adapted the variant of the
Baum’s algorithm proposed in [34] to the PMC model. Indeed,
one can easily show that

(11)

where and are the “normalized” forward and backward
probabilities defined by

(12)

(13)

These probabilities no longer suffer from underflow and can be
computed using the following recursion:

(14)

and

(15)

Remark: Let us now sketch a Viterbi-like algorithm for the
MAP restoration in a PMC model. The Bayesian MAP restora-
tion of the hidden sequence can be calculated according to

(16)
The Viterbi algorithm [9], [14] is based on the quantity

which can be computed recursively using a formulation similar
to the one used to compute the “forward” probabilities . To
avoid underflow, we used the following solution. The complete
procedure can be stated as follows (see [9] for details):

1) Recursion:

(17)

(18)

2) Path backscattering:

(19)

C. Restoration Results

Let us consider the case of two classes: . The
restoration experiments are conducted according to

1) the simulation of the PMC , with 5000
samples (Section III-A);

2) the restoration of with HMC- and PMC-based
Bayesian MPM and MAP segmentation methods, which
give, respectively, and (Section III-B);

3) the computation of the misclassification rates and the gain
obtained.

The four Gaussian distributions are defined by
the parameters given in Table I. We test the influence of the noise
correlation on the misclassification rate using the four sets of
correlation coefficients reported in Table II. We also investigate
two different homogeneities of the class process:

• Series 1: ,
;

• Series 2: .



2480 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 9, SEPTEMBER 2004

TABLE I
PARAMETERS OF THE FOUR GAUSSIAN DENSITIES USED IN PMC AND HMC SIMULATION AND RESTORATION. THE CORRELATION

COEFFICIENTS ARE GIVEN IN TABLE II

TABLE II
CORRELATION COEFFICIENTS USED IN THE FOUR SIMULATIONS

The misclassification rates reported in Table III are means
obtained from 250 independent experiments. Clearly, the results
obtained with the MAP criterion are comparable with the ones
obtained from the MPM criterion.

For the first series, the class process is characterized by a few
transitions between classes 1 and 2, and the gain between HMC-
and PMC-based classifications is more important when the co-
efficients and are bigger (experiments 3 and 4). It can
also be seen from experiments 1 and 2 that the gain improves
when the correlation coefficients associated with the transitions
between classes 1 and 2 increase. For the second series, the class
process presents a lot of transitions, and the gain increases as the
correlation coefficients and become stronger (experi-
ments 2 and 4).

We have made numerous other simulations, and the PMC-
based MPM and MAP restorations consistently work better than
the HMC-based ones, as expected from general Bayesian theory.
Let us now examine how parameters can be estimated from in-
complete data.

IV. PMC PARAMETER ESTIMATION USING ICE

In the case of unsupervised classification, all the PMC pa-
rameters are unknown and must be estimated from the observed
data . Therefore, the problem is to estimate the prob-
abilities and the densities from a sample

. We use here the ICE procedure, which is
based on the conditional expectation of some estimator defined
from the complete data . More precisely, one can es-
timate all the parameters with ICE once an
estimator is available or a sampling of according
to is possible. ICE is an iterative method that produces a
sequence ( ) as follows:

• initialize ;

• put for

all components for which this

expectation is computable, or put
, where

are sampled according to ,
for all components for which the
expectation above is not computable.

Returning to our problem, we are going to see that the expec-
tation above is computable in the case of components given by
the probabilities , but it is not computable in the case
of the densities .

Remark: The EM algorithm produces a sequence of param-
eters according to the following principle: Starting from ,

, which is quite

different from given with ICE.
Therefore, ICE and EM are different, and none of them can be
seen as a particular case of the other. However, let us remark on
two points.

1) When used by ICE is the ML estimator
, and when the

maximization in EM and the expectation in ICE permute
(which is quite exceptional), EM and ICE are identical.

2) When neither the maximization in EM nor the expectation
in ICE can be computed, they are approximated by some
stochastic methods, and the methods chosen can be close
or even the same. For example, the sampling we use is
the same that the sampling used in Stochastic EM [35],
which is a stochastic approximation of EM.

A. Estimation of the Joint Probabilities

The estimation of the joint probabilities below remains valid
for the Gaussian case as well as for the generalized one. Re-
garding , we can take the following standard estimation:

Card
(20)

where denotes the set of indices for which
. Applying ICE, the conditional ex-

pectation of at iteration is computable and gives

(21)



DERRODE AND PIECZYNSKI: SIGNAL AND IMAGE SEGMENTATION USING PAIRWISE MARKOV CHAINS 2481

TABLE III
HMC- AND PMC-BASED BAYESIAN MPM AND MAP MISCLASSIFICATION RATES FOR THE PARAMETERS SPECIFIED IN TABLES I AND II, AND FOR THE TWO

HOMOGENEITIES. THE GAIN COLUMNS GIVE THE BENEFIT OF USING THE PMC MODEL INSTEAD OF THE HMC ONE. THE VALUES BETWEEN PARENTHESES ARE

THE VARIANCES OF THE GAIN COMPUTED ON THE 200 INDEPENDENT EXPERIMENTS

where is the “joint prob-
ability” of two subsequent classes that can be calculated, at it-
eration , from

(22)

For latter use, let us notice that, similar to the HMC case,
it is possible to simulate according to its distribution condi-
tional on . Indeed, the a posteriori distribution of , i.e.,

is that of a nonstationary Markov chain with tran-
sition matrix

(23)

using (11) and (22), for and .
Since the search of the families differs according
to “Gaussian” or “generalized” cases, we present below an ap-
plication of ICE to Gaussian PMC and another one to a more
general setting.

B. Gaussian PMC

First of all, we have to estimate Gaussian densities from
the complete data . Denoting by the mean vector and
by the variance-covariance matrix of , we may
use the following classical estimators:

Card
(24)

Card

(25)

The conditional expectations of and are not com-
putable. From the ICE principle, a solution consists of

• performing realizations of (each ,
is here a sequence) according to its distribu-

tion conditional on (using (23)) and based on the
parameter at iteration ;

• computing an estimate of the parameters from and each
;

• setting the parameters at iteration as the mean of the
estimates.

In practice, just one realization of is sampled. Thus,
the next and are estimated using (24) and (25), with
instead of for the computation of .

C. Generalized PMC

When the nature of the densities on is not
known, but each of them belongs to a known set of possible
shapes, the problem of finding them is called “generalized mix-
ture estimation.” Different methods have been proposed to solve
such a problem, in the HMF context [36] as well as in the HMC
context [3]. Globally, one may say that when generalizing ICE
means dealing with such situations, the obtained “generalized”
ICE performs well. However, the methods in [3] and [36] are
concerned with the models in which the random variables
are independent conditionally on . Hence, one has to search

in a known set instead of in a known set
. Therefore, the method presented here is more general.

Therefore, for each , the density be-

longs to . Furthermore, we assume

that each family , is parameterized by a set
of parameters . Once we know that the sample
(each is in ) is provided according to a density in ,

can be estimated by an estimator . We can
also consider a nonparametric estimate of a density on ,
which can be the bidimensional histogram, or any other esti-
mator-like kernel estimators or orthogonal probability density
function estimation [37]. Finally, we consider a “decision rule”

that allows one to choose, for a given density , one density
among a given set of densities . For example, for a
given distance , a decision rule can consist of choosing ,
which minimizes the distance to : if

.

At iteration , the generalized ICE we propose gives the next
distribution by doing the following.
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• Calculate given by (21).
• Simulate according to its distri-
bution conditional to and based on
the parameters and , using
(23).
• Calculate sets of parameters

by applying the estimators

to the sample .
These sets of parameters define
densities .

• Calculate from , and

choose in the set

as being .

Let us notice that when each set is reduced to one
element , the generalized mixture becomes a
classical mixture. In fact, no decision rule is needed since

is directly given by the parameter estimated from
the estimator . Furthermore, when all are Gaussian
families, we find a Gaussian ICE, as specified in the previous
section. For non-Gaussian cases, bidimensional densities
can be sometimes difficult to handle, and we now propose a
general method to deal with 2-D distributions. Note that in the
following, only families with parametric estimators will be
considered, even if the method is not restricted to them.

D. Estimation of the 2-D Densities

In some situations, there may be and such that
is difficult to obtain explicitly. For example, we have an idea
about the marginal densities and , and we
have their correlation. Of course, this does not give the density

, which is needed in generalized ICE iterations. We
can then use the following technique, inspired from the method
successfully applied to bisensor image segmentation in [8].

Denoting by and the standard deviations of
and , let us put , , and
Cov . Considering

(26)

with and
, we have

i) Var ;
ii) Cov ;

iii) Cov .
The choice for verifying i) and ii) is not unique.

However, we also need the third condition to obtain a stationary
PMC. Indeed, the distribution of should not depend
on , just like , so that we must be able to write

. A sufficient condition is given by
and iii) allows the conservation of this symmetry.

We then assume that and are independent, which gives
. At each iteration of the generalized

ICE and for each , we thus seek and . Since they
are densities on , this is much simpler than to seek a density on

Fig. 1. Pearson’s diagram in terms of skewness and kurtosis. Note that the �
axis is reversed.

Fig. 2. Three steps in the construction of the Hilbert–Peano scan.

. The density of the distribution of is then linked
to and by the relation

, and we can finally write

(27)
where is the determinant of the 2 2 matrix in (26).
Hence, the parameters that have to be estimated are , ,

and the parameters needed to describe the families of and
. In the next section, we will consider the case where the fam-

ilies of and belong to the Pearson’ system of distributions.

V. APPLICATION TO IMAGE SEGMENTATION

In this section, we present some results regarding the appli-
cation of the PMC model to the segmentation of images in both
Gaussian and generalized mixture contexts. In the first set of
experiments, we deal with noisy simulated images corrupted
with some correlated noise, and we compare the restoration re-
sults obtained from both HMC- and PMC-based Bayesian MPM
restoration algorithms. In the second set of experiments, we il-
lustrate the segmentation results obtained on a synthetic aper-
ture radar (SAR) image. These experiments give an idea of the
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Fig. 3. Two synthetic images (column 1) and the noisy simulated images (columns 2 and 3) with correlated noise (a = 0:7). Images size: 128� 128. We stretch
the dynamic of the noisy images to ensure a better visualization. The shape and the parameters of noise are reported in Table IV.

behavior of the ICE method for real image segmentation. Be-
forehand, let us first introduce the Pearson system of distribu-
tions that will be used in the subsequent sections in order to illus-
trate how ICE performs in a Pearson-based generalized mixture
context.

A. Pearson System of Distributions

Since the problem of finding bidimensional distributions has
been reduced to the search for 1-D densities, a number of can-
didate families can be used, such as Gamma and Beta. In order
to enlarge the set of available shapes, one solution is to consider
the Pearson system of distributions. Comprehensive introduc-
tion and detailed statements on the Pearson system are given
in [38]. This system consists of mainly eight families of dis-
tributions of various types with monomodal and possibly non-
symmetrical shapes (Gamma, Exponential, and Beta distribu-
tions of the first and second kinds, among others). The Pearson
system has shown to be really interesting in the context of SAR
image segmentation [36], [39]. Let , , and denote the
centered moments of order 2, 3, and 4. All the families can be
expressed in terms of the skewness ( ) and kurtosis
( ) and can be located in the so-called Pearson’s di-
agram; see Fig. 1. In image segmentation, the interest in these
families comes essentially from the large variety of possible
shapes. Some of them have a bounded extent and are well suited
to model the noise appearing in several image modalities, such
as radar, sonar, X-ray, etc.

We thus seek both the family of distributions and the param-
eters that best describe its samples. All the families of param-
eters can be expressed in terms of the four first centered mo-
ments so that the parameters needed to be estimated are the cor-
relation coefficient and the first four moments for and
for . From a realization of , sampled by using transi-
tions given by (23), one can estimate the empirical moments

TABLE IV
WHITE NOISE PARAMETERS USED FOR THE SEGMENTATION EXPERIMENTS

and compute . Given the Pearson’s diagram, it becomes
possible to select the corresponding family member and recover
the parameters, which precisely identify the distribution, from
the estimated moments. The densities are then reconstructed
using (27). The generalized ICE algorithm, when applied to the
Pearson system, will be termed the “Pearson-ICE” algorithm.

In this context, one difficulty arises from the computation of

(28)

which happens in the expressions of and that is
needed to sample . The integral cannot be solved analytically,
and numerical integration must be performed.

B. Segmentation of Noisy Simulated Images

The aim of this subsection is twofold. First, we want to test
the robustness of PMC segmentation methods with respect to
HMC-based ones. In other words, we wonder what happens
when the data are neither PMC nor HMC suited? When con-
sidering a noisy simulated image with correlated noise (in some
way), and when transforming the bi-dimensional set of pixels
into a monodimensional set via a Hilbert–Peano scan (Fig. 2,
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TABLE V
MISCLASSIFICATION RATES FOR THE DIFFERENT MPM SEGMENTATIONS. “REAL PARAMETERS” MEANS THE PARAMETERS OBTAINED FROM

COMPLETE DATA. THE GAIN COLUMN REPRESENTS THE BENEFIT OF USING THE PMC MODEL INSTEAD OF THE HMC ONE. THE

SEGMENTED IMAGES OBTAINED WITH a = 0:7 ARE REPORTED IN FIG. 4

[40]), we obtain a hidden stochastic process with a very complex
structure. In particular, two neighboring pixels in the bidimen-
sional set of pixels can be displaced far from each other in the
monodimensional set obtained with the Hilbert–Peano scan. For
example, the pixels at the fourth and fifth columns of the first
row in the “step 3” drawn in Fig. 2 are ranked, respectively, at
the sixth and 59th positions in the chain. Therefore, the process
is obviously neither HMC nor PMC, and the question is how the
HMC- and PMC-based unsupervised MPM methods will work.
Second, the same experiments might be of interest in the image
segmentation context. In fact, segmentation methods based on
ICE, Hilbert–Peano scan, and HMC, which were introduced in
[2] in the context of uncorrelated noise, are very fast. Further-
more, they can give good results [3] and can even be compa-
rable, in some situations, to the results obtained with HMF [30].
In other situations, when HMF methods are clearly better, the
HMC methods based on the Hilbert–Peano scan can still be of
interest for the initialization of the HMF methods [26]. Finally,
when the noise is correlated, the question we deal with here is
whether PMC have to be used instead of HMC or not.

The two synthetic images “Rings” and “Alphabet” in column
1 of Fig. 3 are corrupted with correlated noises. More specifi-
cally, the observed field is of the form

where is a white noise, , , , and are
four neighbors of pixel , and (white) or
(black). The obtained image is then transformed in a sequence

, via the Hilbert–Peano scan. Putting and
, we have a realization of the stochastic process

, and a realization of the stochastic process
. The process has a rather complex

structure, and its distribution is neither an HMC distribution nor
a PMC one; however, the noisy images are segmented in an un-
supervised manner by HMC- and PMC-based MPM restoration
methods, with all parameters estimated with ICE, as specified
in Section IV.

We have performed numerous simulations, and it turns out
that PMC-based MPM restoration works consistently better

than the HMC-based one. To give some numerical examples,
we consider two kinds of noise: Gaussian and non-Gaussian.
Parameters of the white noises are reported in Table IV. For
each original image, we considered two experiments corre-
sponding to and . For , the obtained
images are reported in columns 2 and 3 in Fig. 3.

We then performed three segmentations:

i) MPM based on PMC and the parameters estimated from
the complete data, i.e., the original and noisy images;

ii) MPM based on HMC and the parameters estimated with
ICE (Gaussian ICE for the images with Gaussian noises
and Pearson-ICE for the images with non Gaussian
noises);

iii) MPM based on PMC and the parameters estimated with
ICE.

From the error rates in Table V, we observe the following. The
results in column 1 can be seen as a kind of reference since the
complete data are used to estimate the parameters. Comparing
column 1 with column 3, one can notice that both Gaussian-ICE
and Pearson-ICE present a favorable behavior since most of
the time the misclassification rates are similar. The only excep-
tion is the last experiment, where we get 7.67% and 13.35%.
Therefore, the first conclusion of interest in real applications is
that ICE presents a quite correct behavior in the context con-
sidered. The second conclusion is concerned with the compar-
ison of columns 2 and 3. Knowing that the data fits neither
an HMC nor a PMC model, the HMC-based MPM, which is
simpler with well-known robustness, might have given better
results than PMC-based MPM. According to the results, and
the ones from other experiments we have performed, this does
not occur. Each time, PMC-based MPM restorations give better
results than HMC-based ones, even in the presence of rather
strong noise (Fig. 4). Hence, the use of MPM based on PMC, the
Hilbert–Peano scan, and ICE provides fast unsupervised seg-
mentation methods that can strongly improve the HMC-based
ones.

Let us also notice that the estimated parameters may be used
for other objectives beyond MPM segmentation. Table VI re-
ports one example of parameters estimated from the complete
data and the parameters found with ICE. In addition, the estima-



DERRODE AND PIECZYNSKI: SIGNAL AND IMAGE SEGMENTATION USING PAIRWISE MARKOV CHAINS 2485

Fig. 4. Segmentation results corresponding to the second experiment (a = 0:7) in Table V. The gain � is reported here for convenience.

tors based on the moments , , , and we use inside ICE
could be replaced by some other estimators [41], which could
possibly improve the whole procedure.

Remark: The Hilbert–Peano scan belongs to the family of
space filling curves (SFCs), which include the Lebesgue (or
Z-order), the zig-zag, and the standard raster scans. SFCs have
been used in a wide variety of image processing applications
such as compression, halftoning, pattern recognition, and tex-
ture analysis (see [42] and [43] and references cited therein).
The Hilbert–Peano scan furnishes a good exploitation of the 2-D
locality. This property, together with the pseudo randomness of
direction changes in the scan, implies that the Hilbert–Peano
scan would work well (statistically) for a large family of im-
ages, especially for real images. Recently, a context-based SFC
approach [42] has been proposed in order to adapt the scan to

the content in the image, using some criterion. This technique
would work well for an image or a given set of images.

C. Segmentation of a SAR Image

Let us carry on with the comparison between HMC and PMC
models in the context of generalized mixture and radar image
segmentation. Part of this experiment has been presented in [44].
Fig. 5 shows an extract of an ERS image of rice growing in
Semarang (Java island) with mainly early rice, late rice, and
other cultivations [45]. It was decided to classify the image into
four classes with 100 ICE iterations and one sampling of per
iteration. We only test the Pearson-ICE case for both HMC and
PMC models. The MPM classification results are reported in
Fig. 6, together with the normalized histogram of each class. It
is clear that the PMC-based segmentation is much more regular
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TABLE VI
ESTIMATION OF THE PARAMETERS FOR THE “ALPHABET” IMAGE, GAUSSIAN NOISE, AND a = 0:7. N REPRESENTS THE NUMBER OF PAIRS (! ; ! ) IN THE

SEGMENTED CHAIN. HMC-BASED GAUSSIAN ICE PARAMETER ESTIMATION GIVES � = 119:3, � = 124:3, � = 2:78, � = 3:23, AND

p(! ; ! ) = 0:69, p(! ; ! ) = 0:03, p(! ; ! ) = 0:03, p(! ; ! ) = 0:24

Fig. 5. ERS1 SAR image of a rice plantation in Java Island (Indonesia) and histogram. Image size: 512� 512. Date: 1994, 10 February.

than the HMC one, and rice plots seem to be better extracted.
Note also that the configurations of class histograms are quite
different for the two models. In the HMC case, a class has been
specialized on a few number of pixels whose intensity is located
on the tail of the image histogram.

Table VII reports the correlation coefficients of the 2-D dis-
tributions , . Most of them are far from being
zero, which justifies the segmentation improvement when using
a PMC model instead of an HMC one. Fig. 7 shows the 2-D den-
sity obtained from the two densities representing and .
The first one is a Type IV law with moments , ,

, ( , and ). The second
one is a Type II law with moments , , ,

( , and ). The correlation coefficient
is given by .

The last point concerns the computation time between the
two algorithms. The program based on HMC spent about 35
min on a PC with Pentium IV 1.3-GHz processor running
Linux, whereas the program based on PMC needs 2 h and
40 min. The complexity of the PMC-ICE algorithm is more

important since not only densities have to be estimated
(HMC case), but 1-D densities (PMC case) also
have to be estimated. Another time-consuming point of the
algorithm comes from the numerical integration needed to
get , as described in (28).

VI. CONCLUSIONS AND PERSPECTIVES

We have described different supervised and unsupervised
hidden data restoration methods using the recent “Pairwise
Markov Chain” model. The main contribution was to pro-
pose an original parameter estimation method that is valid
in possibly correlated and non-Gaussian noise cases. In fact,
the PMC model is more general, and more comple, than the
classical HMC model and allows one to take into account more
complex noise structures. We have first shown that when data
follow a PMC, the corresponding Bayesian restorations work
better than the HMC based ones. Furthermore, the parameter
estimation method proposed is quite effective since the real
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Fig. 6. Segmentation results and class histograms for both (top) ICE and HMC classification and (bottom) ICE and PMC classification. The class values (1; . . . ; 4)
have been changed to the mean values of the classes to facilitate a visual comparison with the original image.

TABLE VII
CORRELATION COEFFICIENTS OBTAINED FOR THE 16 COUPLES OF DENSITIES

(g ; g ) INVOLVED IN THE EXPERIMENT

parameter-based restorations are close to estimated param-
eter-based ones. The second set of experiments was concerned
with the unsupervised image segmentation application via
a Hilbert–Peano scan of images. The interest of this study
was then double. First, the probabilistic structure of such a
stochastic process obtained from a noisy class image with
correlated noise is very complex and does not correspond to
a PMC nor to an HMC structure. Therefore, it was of interest

to study whether the PMC-based segmentation worked better
than the HMC based one or not. We have made numerous
experiments, some of which are reported in the paper, and it
occurs that the PMC-based segmentation always gives better
results than the HMC-based one, and the difference can even
be quite striking. Therefore, in this first interpretation, using
noisy images and the Hilbert–Peano scan was simply a way
to produce complex data. Second, this approach is of interest
in the image segmentation problem. In fact, it was shown
that in some particular situations, the efficiency of such an
HMC-based approach can compete with the efficiency of
classical HMF-based approaches [30], the latter being much
more time consuming. In other situations, when HMF-based
approaches work better, one can still use the HMC-based
approaches to initialize the HMF ones [26]. Finally, a particular
case of the new parameter estimation method, appealing on
the Pearson system of distributions, has been specified, and
unsupervised segmentation of a real radar image has been
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Fig. 7. Bi-dimensional density (left) obtained from the two densities (right) using (28).

Fig. 8. Spatio-temporal Hilbert–Peano scan. Dotted arrows represent the HP
scan at t and t + �t, whereas solid arrows represent the spatio-temporal HP
scan.

performed for both HMC and PMC contexts. PMC-based
segmentation gives more regular regions, which is due to the
fact that the spatial correlated speckle noise can be directly
taken into account in the PMC model and not in the HMC one.

As a general conclusion, we may then affirm that the new
parameter estimation method proposed is well adapted to the
PMC model on the one hand and that the PMC-based unsuper-
vised restorations improve the classical HMC-based ones on the
other hand.

As perspectives for further work, we may mention the use of
PMC in spatio-temporal segmentation problems, in a way sim-
ilar to the method described in [2] in the case of HMC with
Gaussian noise. It consists of considering a Hilbert–Peano scan
defined on two successive images, as presented in Fig. 8. Of
course, the same generalization could be used to segment three-
dimensional data, e.g., medical images, by using the multidi-
mensional Hilbert scanning algorithm provided in [46]. We may
also mention the extension of PMC to multisensor image pro-
cessing. In that model, both spatial and intersensor correlation
should be taken into account at the same time. Another direc-

tion concerns the family of models called “hidden Markov trees”
(HMTs), which can also be applied in image segmentation, par-
ticularly when multiresolution images are concerned [32], [33],
[47]. This model, which gives fast and interesting results in
image segmentation, has been recently generalized to a pairwise
Markov tree model [48]. An unsupervised algorithm for param-
eter estimation has been proposed in [49], and first segmentation
results show a benefit with respect to the HMT model for mul-
tiresolution signal processing.
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