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Exact Fast Computation of Optimal Filter in
Gaussian Switching Linear Systems

Stéphane Derrode and Wojciech Pieczynski

Abstract—We consider triplet Markov Gaussian linear systems
(X,R,Y), where X is hidden continuous random sequence,
R is hidden discrete Markov chain, Y is observed continuous
random sequence, and (X,Y) is Gaussian conditionally on R. In
the classical “Conditionally Gaussian Linear State-Space Model”
(CGLSSM), optimal filter is not workable with a reasonable
complexity. The aim of the paper is to propose a new model,
quite close to the CGLSSM, belonging to the general and re-
cently proposed family of models, called “Conditionally Markov
Switching Hidden Linear Models” (CMSHLMs), in which the
computation of optimal filter with complexity linear in the
number of observations is feasible. The new model and related
filtering are immediately applicable in all situations where the
classical CGLSSM is used via approximated filtering.

Index Terms—Conditionally Gaussian linear state-space model,
switching systems, optimal statistical filter, Kalman filter.

I. INTRODUCTION

LET us consider three random sequences
XN

1 = (X1, . . . ,XN ), RN
1 = (R1, . . . , RN ) and

YN
1 = (Y1, . . . ,YN ), where the sequences XN

1 and YN
1 take

their values in Rm and Rq respectively, while RN
1 is discrete

finite, each Rn taking its values in Ω = {1, . . . ,K}. Both
XN

1 and RN
1 are hidden, while YN

1 is observed. The process
RN

1 can be seen as modeling the random “switches” of the
distributions linked with (XN

1 ,Y
N
1 ) , which can be of utmost

importance in non stationary situations. The “optimal filter”
problem we deal with in this paper consists in the sequential
search of (RN

1 ,X
N
1 ) from YN

1 . More precisely, with
usual notations for conditional probabilities and conditional
expectations and variances, we search p

(
rn+1

∣∣yn+1
1

)
,

E
[
Xn+1

∣∣rn+1,y
n+1
1

]
and E

[
Xn+1X

T
n+1

∣∣rn+1,y
n+1
1

]
from p (rn |yn

1 ), E [Xn |rn,yn
1 ], E

[
XnXT

n |rn,yn
1

]
and

yn+1. The optimal filter is then given by E
[
Xn+1

∣∣yn+1
1

]
=∑

rn+1
p
(
rn+1

∣∣yn+1
1

)
E
[
Xn+1

∣∣rn+1,y
n+1
1

]
and its variance by Var

[
Xn+1

∣∣yn+1
1

]
=

E
[
Xn+1X

T
n+1

∣∣yn+1
1

]
− E

[
Xn+1

∣∣yn+1
1

]
E
[
XT

n+1

∣∣yn+1
1

]
with E

[
Xn+1X

T
n+1

∣∣yn+1
1

]
=∑

rn+1
p
(
rn+1

∣∣yn+1
1

)
E
[
Xn+1X

T
n+1

∣∣rn+1,y
n+1
1

]
. Such a

problem is of importance in numerous situations and hundreds
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of papers deal with different solutions for several decades. In
this paper we deal with the simple “Conditionally Gaussian
Linear State-Space Models” (CGLSSMs) [1], [2], though the
presented results are likely to be extended to other more
sophisticated models in references mentioned above [3]–[5].
There exists numerous applications, among which tracking
problems are of importance [6].

In CGLSSMs the distribution of TN
1 = (XN

1 ,R
N
1 ,Y

N
1 )

is obtained by setting together two classical and widely used
models that are “Hidden Markov Chains” (HMCs) and “Linear
Gaussian State-Space Models” (LGSSMs). Roughly speaking,
(XN

1 ,R
N
1 ) has the structure of an HMC and, conditionally on

RN
1 , (XN

1 ,Y
N
1 ) is a LGSSM. Then, when RN

1 is known, the
problem is solved by the classical Kalman filter and, when
RN

1 is not known, the problem has no known solution with a
reasonable complexity and approximate methods are used. The
aim of the paper is to introduce an alternative model, which
is not more complicated than CGLSSM, which is close to it,
and which does allow fast and exact optimal filtering.

More precisely, a CGLSSM TN
1 = (XN

1 ,R
N
1 ,Y

N
1 ) is given

by the distribution p (x1, r1,y1) of (X1, R1,Y1) and the
recursions p (tn+1 |tn ) verifying

RN
1 Markov with p (rn+1 |xn

1 , r
n
1 ,y

n
1 ) = p (rn+1 |rn ) ; (1)

Xn+1 = An+1(Rn+1) Xn + Cn+1(Rn+1) Un+1; (2)
Yn+1 = Bn+1(Rn+1) Xn+1 + Dn+1(Rn+1) Vn+1, (3)

with An+1(Rn+1), Bn+1(Rn+1), Cn+1(Rn+1),
Dn+1(Rn+1) appropriate matrices depending on switches,
and Un+1, Vn+1 white Gaussian noises independent each
from the other and such that for each n = 1, . . . , N − 1,
(Un+1,Vn+1) is independent from TN

1 . In such a model
the marginal distributions p (xn, rn,yn) are, in the general
case, mixtures of Gaussian distributions with a number of
components exponentially increasing with n.

We propose two contributions:
1) we modify the CGLSSM above by replacing

Cn+1(Rn+1) with Cn+1(Rn+1
n ) in such a way

that in the modified model, the marginal distributions
p (xn, rn,yn) give the conditional distributions
p (xn,yn |rn ) Gaussian. Thus the general form of
margins p (xn, rn,yn) does not depend on n –however
the parameters can vary with n–, which seems to us to
better suit real situations;

2) we associate with the modified model, called “Model
1”, a new model, called “Model 2”, which belongs
to the “Conditionally Markov Switching Hidden Lin-
ear Models” (CMSHLMs) family introduced in [7] –
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and thus in which fast exact filtering is possible– and
which is “close” to the Model 1. In particular, for each
n = 1, . . . , N − 1, p (xn+1 |xn ) and p (yn |xn ) are
identical in both models. Then we specify how the fast
optimal filter runs.

Let us insist on the fact that we do not consider Model 2 as an
approximation of a given Model 1, but rather as an alternative
model, close to Model 1, but allowing fast optimal filtering.

II. MODIFIED CGLSSM AND ASSOCIATED CMSHLM

Let us denote Zn = (Xn,Yn)T and Wn = (Un,Vn)T ,
and let us consider the CGLSSM defined by (1)-(3)
above. Conditionally on RN

1 = rN1 , the covariance matrix
ΓXn(rn1 ) of the Gaussian distribution of Xn depends on
rn1 = (r1, . . . , rn). Indeed, we have classically the recursion
ΓXn+1

(rn+1
1 ) = An+1(rn+1)ΓXn

(rn1 )AT
n+1(rn+1)

+ Cn+1(rn+1)CT
n+1(rn+1) and thus the marginal distribu-

tions p (xn,yn |rn ) are mixtures of Kn−1 Gaussian distri-
butions. Let us search for a model having desired Gaus-
sian marginal distributions p (xn,yn |rn ), and thus such that
its covariance matrix ΓZn(rn) only depends on rn. Such
models can be defined recursively: for a given desired se-
quence ΓZ1

(r1), . . . ,ΓZN
(rN ), let us consider the following

CGLSSM, called Model 1: RN
1 verifies (1) and

Xn+1 = An+1(Rn+1)Xn + Cn+1(Rn+1
n )Un+1; (4)

Cn+1(Rn+1
n )CT

n+1(Rn+1
n ) = ΓXn+1(Rn+1)−

An+1(Rn+1)ΓXn
(Rn)AT

n+1(Rn+1);
(5)

Yn+1 = Bn+1(Rn+1)Xn+1 + Dn+1(Rn+1)Vn+1. (6)

We can also say that Model 1 is a classic CGLSSM in which
Cn+1 depends on both Rn and Rn+1 in such a way that
p (xn,yn |rn1 ) = p (xn,yn |rn ).

Reporting Xn+1 given by (4) into (6), (4)-(6) can be written

Zn+1 = A1
n+1(Rn+1)Zn + B1

n+1(Rn+1
n )Wn+1, (7)

with A1
n+1(Rn+1) and B1

n+1(Rn+1
n ) defined by

A1
n+1(Rn+1) =

[
An+1(Rn+1) 0

Bn+1(Rn+1)An+1(Rn+1) 0

]
(8)

B1
n+1(Rn+1

n ) =[
Cn+1(Rn+1

n ) 0

Bn+1(Rn+1)Cn+1(Rn+1
n ) Dn+1(Rn+1)

]
(9)

We define the Model 2 associated with the Model 1 given
by (1), (7)-(9) as the model verifying

Zn+1 = A2
n+1(Rn+1

n )Zn + B2
n+1(Rn+1

n )Wn+1, (10)

with A2
n+1(Rn+1

n ) given by

A2
n+1(Rn+1

n ) =

[
An+1(Rn+1) 0

0 En+1(Rn+1
n )

]
(11)

with

En+1(Rn+1
n ) = Bn+1(Rn+1)An+1(Rn+1)

ΓXnYn
(Rn)(ΓYn

(Rn))−1
(12)

and B2
n+1(Rn+1

n ) such that the covariance matrix
ΓZn+1(Rn+1) is the same as in Model 1, which gives

ΓZn+1
(Rn+1) =A2

n+1(Rn+1
n )ΓZn

(Rn)(A2
n+1(Rn+1

n ))T

+ B2
n+1(Rn+1

n )(B2
n+1(Rn+1

n ))T .
(13)

Thus B2
n+1(Rn+1

n )(B2
n+1(Rn+1

n ))T is recursively given from
A2

n+1(Rn+1
n ) and ΓZn(Rn), ΓZn+1(Rn+1), the covariance

matrices common to Model 1 and Model 2.
Finally, for each n = 1, . . . , N − 1, the marginal Gaussian

distributions p (xn,yn |rn ) are the same in Model 1 and
Model 2. To see the difference between them, let us compute

ΓZn+1Zn(Rn+1
n ) =

[
ΓXn+1Xn

(Rn+1
n ) ΓXn+1Yn

(Rn+1
n )

ΓYn+1Xn(Rn+1
n ) ΓYn+1Yn(Rn+1

n )

]
We have for Model 1 and Model 2 respectively

Γ1
Zn+1Zn

(Rn+1
n ) = A1

n+1(Rn+1)ΓZn
(Rn) =

[
α1 β1

χ1 δ1

]
Γ2
Zn+1Zn

(Rn+1
n ) = A2

n+1(Rn+1
n )ΓZn(Rn) =

[
α2 β2

χ2 δ2

]
We find that α1 = α2, β1 = β2, δ1 = δ2, but
χ1 = Bn+1(Rn+1)An+1(Rn+1)ΓXn

(Rn) wheras χ2 =
Bn+1(Rn+1)An+1(Rn+1)ΓXnYn

(Rn)ΓYn
(Rn)−1ΓYnXn

(Rn).
Thus we can state the following result, which specifies the
“closeness” of both models.

Proposition 1. Let us consider the Model 1 given by eq. (1),
(7)-(9), and the associated Model 2 given by eq. (1), (10)-(13).
We can state:

1) For each n = 1, . . . , N − 1, the Gaussian conditional
distributions p (xn,yn |rn ), p

(
xn+1,yn+1 |rn+1

)
,

p
(
xn+1
n

∣∣rn+1
n

)
, p

(
yn+1
n

∣∣rn+1
n

)
, and

p (xn+1,yn |rn+1 ) are the same in models 1 and 2, and
the only difference comes from p

(
xn,yn+1

∣∣rn+1
n

)
. In

particular, p (xn+1 |xn, rn ) and p (yn |xn, rn ), which
are used in building Model 1, are the same;

2) Distribution p
(
xN
1

∣∣rN1 ) is Markov in both models with
identical distribution, while p

(
yN
1

∣∣rN1 ) is Markov in
Model 2, but not in Model 1.

Proof. Point 1) comes from the very construction of the Model
2 above. To show that p

(
xN
1

∣∣rN1 ) is Markov with identical
distributions in Model 1 and Model 2, we remark that eq. (4)
is valid for both of them. The fact that p

(
yN
1

∣∣rN1 ) is not
Markov in Model 1 is a classic property. To show that it is
Markov in Model 2, let us first remark that the second line in
matrix A2

n+1(Rn+1
n ) is of the form

[
0 En+1(Rn+1

n )
]

and
let us set

[
fn+1(Rn+1

n ) gn+1(Rn+1
n )

]
the second line of the

matrix B2
n+1(Rn+1

n ). We have, according to (10), Yn+1 =
En+1(Rn+1

n )Yn + fn+1(Rn+1
n )Un+1 + gn+1(Rn+1

n )Vn+1

where (Un+1,Vn+1) is independent from (Xn
1 ,R

n
1 ,Y

n
1 ).

This implies that p
(
yN
1

∣∣rN1 ) is Markov.

Let us show that Model 2 is a “Conditionally Markov
Switching Hidden Linear Model” (CMSHLM) introduced
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in [7]. The latter verifies:

TN
1 = (XN

1 ,R
N
1 ,Y

N
1 ) is Markov with

p
(
rn+1,yn+1 |xn, rn,yn

)
= p

(
rn+1,yn+1 |rn,yn

)
((RN

1 ,Y
N
1 ) is then Markov);

(14)

Xn+1 = Fn+1(Rn+1
n ,Yn+1

n )Xn+

Gn+1(Rn+1
n ,Yn+1

n )Wn+1 + Hn+1(Rn+1
n ,Yn+1

n ).
(15)

with Fn+1(Rn+1
n ,Yn+1

n ), Gn+1(Rn+1
n ,Yn+1

n )
appropriate matrices, Wn+1 appropriate white noise, and
Hn+1(Rn+1

n ,Yn+1
n ) appropriate vectors. p

(
rn+1

∣∣yn+1
1

)
,

E
[
Xn+1

∣∣rn+1,y
n+1
1

]
and E

[
Xn+1X

T
n+1

∣∣rn+1,y
n+1
1

]
can then be computed from p

(
rn+1,yn+1 |rn,yn

)
,

Fn+1(rn+1
n ,yn+1

n ), Hn+1(rn+1
n ,yn+1

n ), p (rn |yn
1 ) and

E [Xn |rn,yn
1 ] with complexity independent from n as

follows:

p
(
rn+1

∣∣yn+1
1

)
=

∑
rn

p
(
rn+1,yn+1 |rn,yn

)
p (rn |yn

1 )∑
rn,r∗n+1

p
(
r∗n+1,yn+1 |rn,yn

)
p (rn |yn

1 )
,

(16)

p
(
rn
∣∣rn+1,y

n+1
1

)
=

p
(
rn+1,yn+1 |rn,yn

)
p (rn |yn

1 )∑
r∗n

p
(
rn+1,yn+1 |r∗n,yn

)
p (r∗n |yn

1 )

(17)
E
[
Xn+1

∣∣rn+1,y
n+1
1

]
=
∑
rn

p
(
rn
∣∣rn+1,y

n+1
1

)
(
Fn+1(rn+1

n ,yn+1
n )E [Xn |rn,yn

1 ] + Hn+1(rn+1
n ,yn+1

n )
)
,

(18)

E
[
Xn+1X

T
n+1

∣∣rn+1,y
n+1
1

]
=
∑
rn

p
(
rn
∣∣rn+1,y

n+1
1

)
(
Fn+1(rn+1

n ,yn+1
n )E

[
XnXT

n |rn,yn
1

]
FT

n+1(rn+1
n ,yn+1

n )+

Fn+1(rn+1
n ,yn+1

n )E [Xn |rn,yn
1 ] HT

n+1(rn+1
n ,yn+1

n )+

Hn+1(rn+1
n ,yn+1

n )ET [Xn |rn,yn
1 ] FT

n+1(rn+1
n ,yn+1

n )+

Gn+1(rn+1
n ,yn+1

n )GT
n+1(rn+1

n ,yn+1
n )+

Hn+1(rn+1
n ,yn+1

n )HT
n+1(rn+1

n ,yn+1
n )

)
,

(19)

Proposition 2. Model 2 defined with (1) and (10)-(13) is a
CMSHLM (14)-(15).

Proof. Let

Qn+1(rn+1
n ) = B2

n+1(rn+1
n )(B2

n+1(rn+1
n ))T

=

[
Q1

n+1(rn+1
n ) Q2

n+1(rn+1
n )

Q3
n+1(rn+1

n ) Q4
n+1(rn+1

n )

]
Let us first verify (14). TN

1 is Markov and
we can write p

(
rn+1,yn+1 |xn,yn, rn

)
=

p (rn+1 |xn,yn, rn ) p
(
yn+1

∣∣xn,yn, r
n+1
n

)
. According

to (1) we have p (rn+1 |xn,yn, rn ) = p (rn+1 |rn ) and,
according to (10)-(11), we have p

(
yn+1

∣∣xn,yn, r
n+1
n

)
=

p
(
yn+1

∣∣yn, r
n+1
n

)
. The two equalities give

p
(
rn+1,yn+1 |xn, rn,yn

)
= p

(
rn+1,yn+1 |rn,yn

)
.

Let us then verify (15). According to (10) the distribution
p
(
xn+1,yn+1

∣∣xn,yn, r
n+1
n

)
is Gaussian with mean

A2
n+1(rn+1

n )

[
xn

yn

]
=

[
An+1(rn+1)xn

En+1(rn+1
n )yn

]
and variance Qn+1(rn+1

n ) (En+1(rn+1
n ) is given

in eq. (12)). Using the classical Gaussian con-
ditioning rule we can say that the distribution
p
(
xn+1

∣∣xn,y
n+1
n , rn+1

n

)
is then Gaussian with mean

and variance respectively given by An+1(rn+1)xn +
Q2

n+1(rn+1
n )(Q4

n+1(rn+1
n ))−1(yn+1 − En+1(rn+1

n )yn) and
Q1

n+1(rn+1
n )−Q2

n+1(rn+1
n )(Q4

n+1(rn+1
n ))−1Q3

n+1(rn+1
n ).

Then we can state, according to classic properties of Gaus-
sian laws, that (15) is verified with

Fn+1(Rn+1
n ,Yn+1

n ) = An+1(Rn+1),

Hn+1(Rn+1
n ,Yn+1

n ) = Q2
n+1(Rn+1

n )

(Q4
n+1(Rn+1

n ))−1(Yn+1 −En+1(Rn+1
n )Yn),

Gn+1(Rn+1
n ,Yn+1

n )(Gn+1(Rn+1
n ,Yn+1

n ))T =

Q1
n+1(Rn+1

n )−Q2
n+1(Rn+1

n )

(Q4
n+1(Rn+1

n ))−1Q3
n+1(Rn+1

n ).

(20)

Finally, the optimal filter in the switching system (4)-(6) is:
for given ΓZn

(rn), p (rn |yn
1 ), E [Xn |rn,yn

1 ], and yn+1

1) consider ΓXn+1
(rn+1) and Cn+1(Rn+1

n ) verifying (5),
which provides ΓZn(rn+1) with (6) and A2

n+1(Rn+1
n )

with (11) and (12);
2) compute Qn+1(rn+1

n ) = B2
n+1(rn+1

n )(B2
n+1(rn+1

n ))T

with (13);
3) compute Fn+1(rn+1

n ,yn+1
n ),

Gn+1(rn+1
n ,yn+1

n )(Gn+1(rn+1
n ,yn+1

n ))T and
Hn+1(rn+1

n ,yn+1
n ) with (20);

4) compute p
(
rn+1,yn+1 |rn,yn

)
=

p (rn+1 |rn ) p
(
yn+1

∣∣rn+1
n ,yn

)
, knowing that

p
(
yn+1

∣∣rn+1
n ,yn

)
is Gaussian with mean

En+1(rn+1
n )yn and covariance matrix Q4

n+1(rn+1
n );

5) compute p
(
rn+1

∣∣yn+1
1

)
, E

[
Xn+1

∣∣rn+1,y
n+1
1

]
and

E
[
Xn+1X

T
n+1

∣∣rn+1,y
n+1
1

]
with (16)-(20).

III. EXPERIMENTS

Let us consider m = q = 1 (both XN
1 and YN

1 are
real valued processes), and the stationary case where the
distributions of (Zn,Zn+1) are independent from 1, . . . , N−1
in both models. Thus An+1 = A, Bn+1 = B, Cn+1 = C
and Dn+1 = D. Each Rn takes its values in Ω = {1, 2} and
we set, for both models, and for i = 1, 2: ai = A(rn = i),
bi = B(rn = i) and σ2

i = ΓXn
(rn = i) = ΓYn

(rn = i).
Then for (Rn = i, Rn+1 = j) we have for Model 1

A1(j) =

[
aj 0
ajbj 0

]
,

and

B1(i, j) (B1(i, j))T =

[
σ2
j − a2jσ2

i bj(σ
2
j − a2jσ2

i )
bj(σ

2
j − a2jσ2

i ) σ2
j − b2ja2jσ2

i

]
.
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TABLE I
MSE ERROR OF F1, F2 AND F3 FILTERS WITH b1 = 0.3.

p11 + p22 σ2
1 σ2

2 F1 F2 F3

First series of data

0.98

0.5 2 0.8014 0.8014 0.8019 (11.9%)
1.0 2 0.9270 0.9270 0.9282 (23.0%)

0.80

0.5 2 0.8147 0.8147 0.8162 (30.1%)
1.0 2 0.9296 0.9296 0.9318 (39.2%)

Second series of data

0.98

0.5 2 0.8024 0.8023 0.8028 (11.9%)
1.0 2 0.9236 0.9236 0.9249 (23.0%)

0.80

0.5 2 0.8147 0.8146 0.8162 (29.8%)
1.0 2 0.9282 0.9281 0.9300 (39.2%)

According to eq. (11) and (13) the associated Model 2 is
given by

A2(i, j) =

[
aj 0
0 ajbjbi

]
,

and

B2(i, j) (B2(i, j))T =

[
σ2
j − a2jσ2

i bj(σ
2
j − a2jσ2

i b
2
i )

bj(σ
2
j − a2jσ2

i b
2
i ) σ2

j − b2ja2jσ2
i b

2
i

]
,

which gives Fn+1(rn+1
n ,yn+1

n ), Hn+1(rn+1
n ,yn+1

n ) and
Gn+1(rn+1

n ,yn+1
n ) by (20). Finally, the two models are de-

fined by the parameters σ2
1 , σ2

2 , a1, a2, b1, b2 and by the
distribution pij = p (R1 = i, R2 = j).

We present two series of experiments. In the first series,
data are sampled according to Model 1, and in the second
one, data are sampled according to Model 2. Both series
were filtered according to three methods: (F1) is the Model 1
based optimal filter with known switches, (F2) is the Model 2
based optimal filter with known switches (conditionally on
RN

1 , Model 2 also is a classical system but more general
situations, where it would be a Pairwise Markov Model and
in which the classical Kalman filter is workable [8], [9], could
be considered), and (F3) is the Model 2 based optimal filter
with unknown switches. The sample size is N = 1000 and
we consider a1 = 0.3, a2 = 0.6, b2 = 0.2 and σ2

2 = 2.
We consider two cases: b1 = 0.3 (Table I) and b1 = 0.8
(Table II). Then we consider two possible values 0.98 and
0.80 for p11 + p22 = p (R1 = R2) and two possible values
0.5 and 1.0 for σ2

1 . For filter F3, we also report the error
rate while estimating the switches by maximizing p (rn |yn

1 )
(notice that these estimates of switches are not used in F3).
The results, which are means of 300 independent experiments
are expressed in term of the Mean Square Error (MSE).

The presented results, and different other results not re-
ported here, show that it is difficult to obtain a significant
difference between F1 and F2, which is our main conclusion.

IV. CONCLUSION

We proposed a new model, very close to the classic “Con-
ditionally Gaussian Linear State-Space Model” (CGLSSM),
but allowing, in spite of switches, a fast optimal statistical
filter. This property is due to the fact that the model proposed
belongs to the family of models recently introduced in [7].

TABLE II
MSE ERROR OF F1, F2 AND F3 FILTERS WITH b1 = 0.8.

p11 + p22 σ2
1 σ2

2 F1 F2 F3

First series of data

0.98

0.5 2 0.7024 0.7026 0.7159 (11.4%)
1.0 2 0.7777 0.7778 0.8091 (21.7%)

0.80

0.5 2 0.7109 0.7113 0.7427 (29.6%)
1.0 2 0.7813 0.7816 0.8320 (38.4%)

Second series of data

0.98

0.5 2 0.7010 0.7009 0.7140 (11.2%)
1.0 2 0.7745 0.7744 0.8045 (21.2%)

0.80

0.5 2 0.7090 0.7086 0.7398 (29.5%)
1.0 2 0.7777 0.7774 0.8288 (38.6%)

The distribution of the switching sequence, that of the hidden
continuous sequence, and that of each observation at time n,
conditional on the switch and the state at n, are strictly the
same in both models. So the new model can be immediately
used in all situations the classical CGLSSM is. Simulation
experiments numerically show that the new model is fairly
identical to CGLSSM.

The main conclusion is that the two models are so close that
it is difficult to see any difference at results level, at least in
the case of real-valued sequences considered. In addition, the
results obtained with the new model with known switches are
very close to those obtained when the switches are unknown.

As perspective for further works let us mention that we
consider the filtering problem in this paper, but the recent
models can also be used to deal with prediction [10] and
smoothing [11]. Another perspective would be the parameter
estimation problem [12], [13].
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