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Unsupervised Change Detection on SAR Images
using Fuzzy Hidden Markov Chains

Cyril Carincotte, Stéphane Derrode and Salah Bourennane

Abstract— This work deals with unsupervised change detection
in temporal sets of Synthetic Aperture Radar (SAR) images. We
focus on one of the most widely used change detector in the
SAR context, the so-called log-ratio. In order to deal with the
classification issue, we propose to use a new fuzzy version of
Hidden Markov Chains (HMC), and thus to address fuzzy change
detection with a statistical approach. The main characteristic of
the proposed model is to simultaneously use Dirac and Lebesgue
measures at the class chain level. This allows the coexistence
of hard pixels (obtained with the classical HMC segmentation)
and fuzzy pixels (obtained with the fuzzy measure) in the same
image. The quality assessment of the proposed method is achieved
with several bi-date sets of simulated images, and comparisons
with classical HMC are also provided. Experimental results on
real ERS-PRI images confirm the effectiveness of the proposed
approach.

Index Terms— SAR images, change detection, log-ratio detec-
tor, fuzzy hidden Markov chain, ICE estimation, MPM classifi-
cation.

I. INTRODUCTION

MULTI-TEMPORAL change detection aims at discern-
ing areas of change on digital images between two

or more dates. These change features can be of various
type, origin and duration, which allows to distinguish several
families of applications, between (1) land cover monitoring,
which principally consists in detecting the seasonal vegetation
changes; (2) land use monitoring, which is the characterization
of changes mostly due to human activities, like deforestation
or urban development; and (3) damage mapping, which is the
localization of changes caused by natural disasters like earth-
quake, floods or forest fire, and which are usually supposed to
be fast changes. In this work, we are mainly concerned with
the third category, in which changes can be detected with an
image pair enclosing the event (before / after).

Recent reviews [1], [2] reveal a lack of the use of radar data
for thematic application of change detection. Indeed, studies
related to satellite-based SAR imagery change detection are
much fewer and more recent [3]–[7] than optical-based ones.
Nonetheless, SAR sensors hold a strong potential for change
detection studies, especially thanks to their all-weather map-
ping capability, and can also guarantee operational systems
in presence of critical atmospheric circumstances and night
conditions of illumination. This lack can be explained by the
fact that unsupervised change detection on SAR images is
made more difficult, mainly for the following reasons:
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• the image modality with the presence of speckle inherent
to coherent imaging systems/sensors;

• the difference of incidence angle (angle of sight and
ascending/descending orbits) of the acquisitions;

• problems related to the difference of generation of radar
sensors, which can occur when the two images are
separated from several years (spatial resolution, inter-
calibration, ground segment, final product, . . . ).

It is clear however that the intrinsic limits of optical sensors,
in particular their dependence to weather and illumination
conditions, are particularly constraining and not very real-
istic within an operational framework, especially in damage
mapping situation. Hence, there is a need for development of
change detection methodologies adapted to SAR images.

In the general context of change detection, many techniques
have been developed and one can distinguish three kinds of
methods [2]:

• the classification of some feature maps, such as image dif-
ferencing, image ratioing, selective principal component
analysis [8] or mutual information [9], into “Change” and
“NoChange” classes;

• the comparison of the individual classifications, usu-
ally called Post-Classification Comparison (PCC) [10] to
identify changed areas;

• the direct and joint classification of the pair of images [7].
Classes where change occurred are expected to present
statistics significantly different from where change did
not take place [11].

Most of the existing methods for automatic change detection
employ crisp models and consequently neglect the fuzzy aspect
of the scene behavior. Thus, these methods do not take into
account the change detection complexity and may fail to reach
a satisfactory reliability level in complex situations, such as
in the context of SAR images. To cope with such situations,
fuzzy set theory and classical change detection techniques have
recently been combined to perform change detection [10],
[12], [13], e.g. in spectral-spatial features maps [14], in
PCC context [15], as well as in pseudo-joint classification
comparison [16].

Indeed, the three kinds of methods previously detailed
consider the change detection problem as an image clas-
sification issue, of either the feature map, or the pair of
original/classification images. To address classification, Hid-
den Markov Random Fields (HMRF) and HMC models have
already proved their efficiency and robustness [17], especially
in SAR imagery [18]. Furthermore, HMRF and HMC have
also been used in change detection context respectively in [19],
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[20] and [7].
In this paper, we address the case of log-ratio feature map

classification, based on a new fuzzy HMC model. The log-
ratio operator is well-suited to SAR imagery according to
the multiplicative nature of speckle. We assume that images
have been geometrically corrected and co-registered, and we
consequently consider the change detection problem as an
unsupervised classification problem of the log-ratio image,
with “Change” and “NoChange” classes.

The main contribution of this work is to combine both
statistical and fuzzy approaches, in a new fuzzy HMC (f-
HMC) model [21], to address the unsupervised change de-
tection task in the SAR context. The paper is organized as
follows: first of all, the problem is formulated in Sec. II and
the f-HMC model structure is then described in Sec. III. The
unknown parameters estimation, achieved with an extension
of the Iterative Conditional Estimation (ICE) method [22] is
presented in Sec. IV. We also discuss the implementation
issues required for the application. Experimental results on
simulated data sets are detailed in Sec. V, where quantitative
comparisons with classical HMC model are also provided.
Sec. VI presents change detection maps obtained on a bi-
date set of SAR images showing floods. Conclusions and
perspectives are drawn in Sec. VII.

II. PROBLEM FORMULATION

The conventional ratio edge detector [23] is a pixel-by-pixel
ratio of mean reflectivity values of the two date images. This
detector is well-known and widely used in SAR imagery due
to its ability to greatly reduce the speckle influence on the
change map. In order to uncompress the range of variation of
the image ratio, and to ensure the model adequacy for change
detection purpose, we prefer to use the log-ratio detector [24],
[25], which is defined as the logarithm of the ratio of average
intensities computed on a window of size w, as follows:

Ilog−ratio(i, j) = log




∑

(k,l)∈Vij

I2(k, l)

∑

(k,l)∈Vij

I1(k, l)


 ,

where Vij defines the neighboring pixels of the pixel (i, j), in
a window of size w.

Usually, the change detection task is considered as a 2-class
decision process, i.e. the identification of pixels representing
“NoChange” (NC) and those representing “Change” (C) from
the first image date to the next. Nevertheless, by distinguishing
different typologies of changes, the change detection issue can
also be considered as a 3-class segmentation problem.

Hence, the histogram of the log-ratio image depicts a range
of pixel values from negative to positive numbers, where those
clustered around zero represent “NoChange” (NC) and those
at either tail represent reflectance changes from one image date
to the next. These changes can be divided into two categories;
“Negative Changes” (C−) and “Positive Changes” (C+) (see
Fig. 1). The histogram of the log-ratio image can thus be
considered as a mixture of three different distributions, and
our aim is then to identify these three distributions in order to
perform the change detection.

Remark: It worths noting that this model is also available
in the classical case in which only one typology of changes is
assumed between the two acquisitions. In this case, the 2-class
f-HMC model proposed in [21] can directly be applied to the
log-ratio image.

In this context, the change detection problem becomes an
unsupervised classification problem of the log-ratio image,
with three classes C−, NC and C+. We propose to use a
fuzzy version of hidden Markov chain in order to deal with
the unsupervised classification issue. Our approach consists
in preserving the property and robustness of the classical
HMC and enriches it with fuzzy measure characteristics. The
distinction between statistical and fuzzy approaches is based
on how the information is captured by each concept. In
randomness, the information is estimated by an uncertainty
measure, while in fuzziness, the information is characterized
by an imprecision measure. In fact, fuzzy and probabilistic
approaches are complementary rather than competitive. The
principle of our model is to exploit the complementarity of
fuzzy and probabilistic approaches, combining their pros in a
f-HMC model.

In the change detection context, the introduction of the
fuzzy measure A: “the pixel belongs to the class NC”, and
its associated fuzzy membership functions presented in Fig. 1,
will allow us to characterize the imprecision of the log-ratio
image.

Fig. 1. Fuzzy membership functions ANC− and ANC+ respectively
defining the two fuzzy classes NC− and NC+, drawn over a log-ratio
image histogram.

As shown in Fig. 1, the triangular fuzzy membership func-
tion A can be decomposed in two linear fuzzy membership
functions, ANC− and ANC+ defining respectively the two
fuzzy classes NC− and NC+. In fact, NC− and NC+
correspond respectively to the imprecision measure between
C− and NC, and NC and C+. NC− and NC+ can also
respectively be seen as classes corresponding to the mixture
of C− and NC, and the mixture of NC and C+.

Thus, the principle of the proposed method will be to
carry out the fuzzy segmentation of the log-ratio image, by
identifying:
• pixels exclusively belonging to classes C−, NC or C+,

which will be qualified as “hard” classes in what follows,
• pixels simultaneously belonging to several hard classes,

i.e. belonging to the fuzzy classes NC− (mixture of C−
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and NC) and NC+ (mixture of NC and C+).

III. NEW FUZZY HIDDEN MARKOV CHAINS

The success of HMC models is due to the fact that when the
unobservable process X can be modeled by a finite Markov
chain and when the noise is not too complex, then X can
be recovered from the observed process Y using different
Bayesian classification techniques like Maximum A Posteriori
(MAP), or Maximal Posterior Mode (MPM).

Nevertheless, it is sometimes interesting not to take into
account the uncertainty measure of the noisy observation
anymore (characteristic of probabilistic approach in classical
HMC), but to replace it with an imprecision measure of
this observation (characteristic of fuzzy approach) [26]–[28].
However, by adding a fuzzy measure in a statistical model,
we obtain an original model, different from both classical and
fuzzy models previously cited. Indeed, this introduction has
already been achieved in the 2-class case in unsupervised
image segmentation for different estimation contexts: blind
and contextual [29], HMRF [30]–[32] and very recently in
HMC [21].

The way used to introduce the fuzzy measure in these
models in the 2-class case was to consider that the Markovian
process does not take its values in a discrete 2-uplet anymore,
but in a continuous interval. In the change detection context
described above, we have to extend this to three classes, i.e.
C−, NC and C+. Indeed, the general K-class case implies
the definition of a measure ν on [0, 1]K , which is far from
being trivial due to memory overflow during computation. In
the following, we present an extension of the 2-class f-HMC
model proposed in [21] to the 3-class case, and its application
to change detection. Since the intensities of the two fuzzy
classes (NC− and NC+) do not overlap and each fuzzy
class is mixed of only two hard classes, the 2-class f-HMC
described in [21] can be directly applied to each fuzzy class
NC− and NC+.

A. Fuzzy HMC modelization

In the unsupervised image segmentation based on HMC
theory, the 2D image needs to be converted in a 1D sequence,
thanks to the use of a Hilbert-Peano scan on the image [33]
(see Fig 2).

The Hilbert-Peano scan belongs to the family of Space
Filling Curves (SFCs), which include the Z-order, the zig-zag
and the standard raster scans. SFCs have been used in a wide
variety of image processing applications such as compression,
half-toning, pattern recognition and texture analysis (see [34],
[35] and references cited therein). All these scans can be used
to convert a 2D set of pixels into a 1D sequence. Nevertheless,
the Hilbert-Peano scan furnishes a good exploitation of the 2D
locality. This property, together with the pseudo randomness
of direction changes in the scan, implies that the Hilbert-
Peano scan would work well (statistically) for a large family
of images, especially for real images.

So, let consider two sequences of random variables X =
{X1, . . . , XN} and Y = {Y1, . . . , YN} corresponding respec-
tively to the desired change detection map and the log-ratio

Fig. 2. Construction of a Hilbert-Peano scan for a 8×8 image (initialisation,
intermediate stage and result) (N = number of pixels in the image).

image that has to be segmented, according to the Hilbert-Peano
scan.

For the sake of comprehension,−1, 0 and 1 will respectively
denote the hard classes C−, NC and C+. In a 3-class HMC
approach, each Xn takes its value in the finite set of classes
ψ = {−1, 0, 1} and each Yn takes its value in the set of real
numbers R. In the f-HMC context, the range of Xn is now
the interval Ψ = [−1, 1]. In the following, εn will denote
a realization of random variables Xn and we will adopt the
notation:

• εn = −1 if the pixel is from class C−,
• εn ∈] − 1, 0[ if the pixel is a fuzzy one belonging to

NC−,
• εn = 0 if the pixel is from class NC.
• εn ∈]0, 1[ if the pixel is a fuzzy one belonging to NC+,
• εn = 1 if the pixel is from class C+.

B. Probabilities in fuzzy HMC context

In the 3-class case, the HMC approach requires the de-
finition of a priori and state transition probabilities on ψ.
Similarly, we now have to define these probabilities on Ψ.

As stated previously, each Xn contains two types of com-
ponents: three hard ones (−1, 0, 1) and two fuzzy ones (] −
1, 0[, ]0, 1[). Let δ−1, δ0 and δ1 be Dirac weights on −1, 0
and 1, and υ−1 and υ1 the Lebesgue measures on ]−1, 0[ and
]0, 1[. By taking ν = δ−1 + δ0 + δ1 + υ−1 + υ1 as a measure
on Ψ, the distribution of Xn can be defined by a density h on
Ψ with respect to ν.

If we assume that X is homogeneous and the distribu-
tion of each Xn is uniform on the fuzzy class, h(εn) =
P (Xn = εn) = πεn can be written:

h(εn = −1) = π−1,

h(εn = 0) = π0,

h(εn = 1) = π1,

h(εn) = πNC−, ∀εn ∈]− 1, 0[,
h(εn) = πNC+, ∀εn ∈]0, 1[,

with π−1 + π0 + π1 + πNC− + πNC+ = 1.
We can now detail the new expression for the transition



4

probabilities of the Markov chain:

P (Xn = εn | Xn−1 = εn−1) =
P (Xn = −1 | Xn−1 = εn−1) δ−1(εn)

+P (Xn = εn | Xn−1 = εn−1) 1]−1,0[(εn)
+P (Xn = 0 | Xn−1 = εn−1) δ0(εn)

+P (Xn = εn | Xn−1 = εn−1) 1]0,1[(εn)
+P (Xn = 1 | Xn−1 = εn−1) δ1(εn).

This leads to the matrix of state transition probabilities T ={
tεn−1,εn

}
defined by:

tεn−1,εn
= P (Xn = εn | Xn−1 = εn−1) ,

∀ εn−1, εn ∈ Ω and ∀ n ∈ {2, . . . , N}, with the entries having
the properties:

tεn−1,εn
≥ 0 and

∑
εn−1∈Ω tεn−1,εn

= 1.

C. Fuzzy HMC implementation

Similarly to HMC, f-HMC based image segmentation meth-
ods consider the two following assumptions:
• the random variables Y1, . . . , YN are independent condi-

tionally on X;
• the distribution of each Yn conditionally on X is equal

to its distribution conditionally on Xn.
Furthermore and similarly to HMC, we get:

P (X = x) = πε1

N∏
n=2

tεn−1,εn .

Assuming that distributions of (Xn, Yn, Xn+1, Yn+1) are in-
dependent of n, each state εn of the state space (i.e. hard
classes −1, 0, 1, as well as fuzzy classes ]-1,0[ and ]0,1[) is
associated to a distribution characterizing the pixel intensities
of the corresponding class:

fεn(yn) = P (Yn = yn | Xn = εn) . (1)

Given an observed sequence y = {y1, . . . , yN} (in our case
the log-ratio image via the Hilbert-Peano scan), the joint state-
observation probability is given by:

P (X = x,Y = y) = πε1 fε1(y1)
N∏

n=2

tεn−1,εnfεn(yn).

In unsupervised classification, the distribution
P (X = x, Y = y) is unknown and must first be estimated in
order to apply a Bayesian classification technique. Therefore
the following sets of parameters need to be estimated:

1) The set Γ characterizing the Markov chain parameters,
i.e. the initial probability vector π = (πε)∀ε∈Ω and the
transition probability matrix T .

2) The set ∆ regrouping the parameters of the probability
density functions in Eq. (1). In the Gaussian case, ∆ is
composed of means and variances.

Note: In the following, we only consider Gaussian distri-
butions, but this is not a restriction of the model. Indeed, the
model can be used for generalized, i.e. non-Gaussian, mixture
estimation, with parametric as well as non parametric densities
estimation techniques.

IV. PARAMETERS ESTIMATION WITH ICE

For the estimation of the parameters in Θ = {Γ,∆}, we
propose to use an adaptation of the general ICE algorithm [22],
[29] which can be seen as an alternative to the well-known
Estimation-Maximization (EM) algorithm. This section is not
intended to give a complete description of the ICE algorithm
in the HMC context, interested readers may consult [18], [36].

A. ICE principle

In fact, ICE does not refer to the likelihood, a notion which
is difficult to handle in the context of our study, but it is based
on the conditional expectation of some estimators from the
complete data (x,y). It is an iterative method which produces
a sequence of estimations θq of parameter θ as follows:

1) initialization θ0, obtained with an initial segmentation
algorithm (k-means algorithm).

2) computation of θq+1 = Eq[ θ̂(X, Y )
∣∣∣ Y = y], where

θ̂(X, Y ) is an estimator of θ.
3) stop the algorithm when θQ−1 ≈ θQ.

This procedure leads to two different situations detailed in next
sub-sections.

B. Estimation of parameters in Γ

Similarly to the classical case, parameters in Γ can be
calculated analytically by using the Baum-Welch algorithm:

• for the hard classes, the classical normalized Baum-Welch
probabilities can be used directly.

• for the fuzzy classes, the forward and backward proba-
bilities have to be defined for each fuzzy class.

For the fuzzy class NC−, the forward and backward
probabilities are defined by:

αn+1(ξ) ∝
∫ 0

−1

αn(ζ) tζ,ξ fξ(yn+1) dζ,

βn(ξ) ∝
∫ 0

−1

βn+1(ζ) tξ,ζ fζ(yn+1) dζ.

(2)

For the fuzzy class NC+, the forward and backward proba-
bilities are defined by:

αn+1(ξ) ∝
∫ 1

0

αn(ζ) tζ,ξ fξ(yn+1) dζ,

βn(ξ) ∝
∫ 1

0

βn+1(ζ) tξ,ζ fζ(yn+1) dζ.

(3)

The integrals above can not be solved analytically. A
numerical integration must be performed and intervals ]−1, 0[
and ]0, 1[ are partitioned into a given number of sub-intervals.

We though obtain F “discrete fuzzy” classes by interval,
whose fuzzy membership degree corresponds to the medium
value of the considered sub-interval. The bigger F is, the
closer it is from Eq. (2) and Eq. (3), but to the cost of an
increase in the computation time.
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C. Estimation of parameters in ∆

Denoting by N (m,σ2) the normal distribution with mean
m and variance σ2, the pdf of the hard classes can then be
expressed by:

εn = −1 : N (m−1, σ
2
−1),

εn = 0 : N (m0, σ
2
0),

εn = 1 : N (m1, σ
2
1).

For the parameters ∆= {m−1,m0,m1, σ−1, σ0, σ1}, which
are in fact the hard classes parameters, θq+1 is not tractable.
They can however be estimated by computing the em-
pirical mean of several estimates according to θq+1 =
1
L

∑L
l=1 θ̂(xl, y), where xl is an a posteriori realization of

X conditionally on Y . It can be shown that X | Y is
a non homogeneous Markov chain whose parameters can
be computed with the forward and backward probabilities
in Eq. (2) and Eq. (3).

The definition of the fuzzy measure A: “the pixel belongs to
class NC”, and its fuzzy membership function µA, allows to
estimate the fuzzy parameters of the set ∆ in this new context.

Let define the proposed fuzzy membership function µA:

µA(m) =





1− m0−m
m0−m−1

∀m ∈ [m−1,m0],

1− m0−m
m0−m1

∀m ∈ [m0,m1],
0 elsewhere.

(4)

Accordingly, the parameters of the pdf for the fuzzy classes
can then be estimated by:

εn ∈]− 1, 0[: N (
(1− εn)m−1 + εnm0, (1− εn)2σ2

−1 + ε2
nσ2

0

)
,

εn ∈]0, 1[: N (
(1− εn)m0 + εnm1, (1− εn)2σ2

0 + ε2
nσ2

1

)
.

(5)

Note: In a non-Gaussian context, moments of higher
order can be estimated by the extension of Eq. (5) to the
considered order, and generalized mixture estimation can thus
be achieved.

The estimation of all the parameters in Θ allows to imple-
ment this new f-HMC model in an unsupervised way. The next
section presents the application of this model to unsupervised
fuzzy change detection on SAR images.

V. CHANGE DETECTION ON NOISY SIMULATED IMAGES

In practice, extensive data surveys at the time of data
acquisitions are rarely achieved. Regarding the real data set
used in Sec. VI, ground truth was not available. Indeed, the
nature of changes that have to be detected (floods) can make
the ground truth establishment very difficult to perform: floods
evolve rapidly, soil humidity is quite difficult to quantify,
. . . So, we perform experiments to assess the change detection
accuracy on synthetic data sets, composed of noisy simulated
images corrupted by speckle.

A. Simulated data set

The simulation procedure was inspired by radar image
formation phenomena: SAR imagery produces data by coher-
ent summation of elementary scattered electromagnetic fields
A ejφ. If we consider heterogeneous ground areas, each pixel
can be simulated by coherent summation of hundreds of
reflectivity amplitude An and phases φn. An comes from
independent realizations of a Gamma distribution defined by a
mean reflectivity value µ and an heterogeneous coefficient λ,
whereas φn comes from independent uniform realizations in
[0, 2π]. Taking the square of the modulus of each pixel yields
a one-look intensity image.

A two-class Gibbs field (256 × 256) serves as reference
image (Fig. 3-(a)). The corresponding three-look noisy image
t1 (see Fig. 4-(a)) is then generated according to the procedure
described above with (µ1 = 100, λ1 = 15) and (µ2 =
180, λ2 = 25), by averaging three independent realizations
of speckle.

(a) (b) (c)

Fig. 3. (a) Reference image, (b) Ground truth image of simulated changes,
and (c) Blurred reflectivity image.

To obtain the t2 image, simulated changes areas (Fig. 3-
(b)) are inserted in the reference image. The corresponding
three-look noisy image t2 is then generated according to the
procedure described above with AC = 140 and λC = 20 (see
Fig. 4-(b)).

(a) Image t1 (b) Image t2 (c) Log-ratio
image (w = 15)

Fig. 4. Simulated data set used in experiments and corresponding histograms.
(a) Noisy simulated image t1 corresponding to Fig. 3-(a), (b) Noisy simulated
image t2 obtained by inserting simulated changes in (a), corresponding to
Fig. 3-(c), and (c) corresponding log-ratio image (w = 15).
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B. Experimental protocol

HMC and f-HMC models have been comparatively assessed
on the log-ratio image presented in Fig. 4-(c) (w = 15). In
order to make a valuable comparison, the HMC model used
is a 3-class algorithm, corresponding to C−, NC and C+.

Actually, in all cases, parameters initialization was achieved
thanks to the classification obtained with a k-means classifier
(estimation from complete data). The ICE algorithm was
stopped at iteration Q when ‖θQ−1−θQ‖

‖θQ−1‖ reaches a given
threshold value. The image classification was performed with
respect to the fuzzy MPM criterion [31] for the f-HMC model,
and with respect to the classical MPM criterion for the HMC
model.

The choice of the partitioning of the intervals ]− 1, 0[ and
]0, 1[ implies different possible numbers of “discrete” fuzzy
classes F , and so different values of the fuzzy measure ε. For
example, in the NC+ case, F = 2 yields ε ∈ {0.25, 0.75},
F = 3 yields ε ∈ {0.166, 0.5, 0.833}, . . . To make comparison
between maps obtained with HMC and f-HMC, a defuzzifica-
tion has to be performed on the f-HMC ones. Since the values
of fuzzy measure ε correspond to the membership degrees of
each hard class (“Change” and “NoChange”), a solution is to
perform a hard threshold at ε = 0.5. Note that this threshold
value has experimentally yielded the best error rates in the
following experiments. Finally, we limit the study to F = 2
fuzzy classes.

C. Change detection results

Change detection results in terms of hits rate, false alarms
rate, and overall rate are presented in Fig. 5. These results have
been obtained with HMC, and new f-HMC model (F = 2)
for various values of the window detector size w. In both
models, Gaussian densities have been assumed to model the
pixel intensities in the log-ratio image.

Fig. 5. Change detection results provided by HMC and f-HMC models under
Gaussian distributions assumption.

One can see that best results in terms of global error rate
are provided by the f-HMC model whatever the window size

w. This point clearly highlights the interest of the proposed
approach in the SAR context. We can observe that even
if the HMC model reaches best hits rate compared to f-
HMC, f-HMC significantly reduces the false alarms rate.
These comments are confirmed by Fig. 6, which shows the
Receiver Operating Characteristic (ROC) curves according
to the window detector size w. These curves also confirm
that the best window detector size w seems to be around
w = 15. Finally, the false alarms rate also seems to be less
sensitive to the window size for f-HMC model, which allows
to significantly reduce the overall error rate.

Fig. 6. ROC curves obtained with HMC and f-HMC models under Gaussian
distributions assumption according to the window detector size w.

Fig. 7 shows the best change detection maps obtained
with HMC (w = 13) and f-HMC (w = 15) models, and
corresponding overall error rates, which is approximatively
twice bigger with HMC model. The visual interpretation of the
change detection maps, as well as corresponding error rates,
show the interest and the precision of the proposed method,
even with significant noise.

(a) HMC -
w = 13
17.84%

(b) f-HMC F = 2
- w = 15
10.68%

Fig. 7. Best change detection maps obtained with HMC and f-HMC models.

Fig. 8 presents the distributions obtained through the mix-
ture estimation with f-HMC model (w = 15).
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Fig. 8. Pdf arising in mixture estimation obtained with f-HMC model (F = 2
- w = 15).

The conclusions from this study have been confirmed by
other experiments:
• Similar results have been observed for synthetic images of

various reflectivity value areas, e.g. A1 = 100, A2 = 140
and AC = 120, which confirms the robustness of the
f-HMC model to reflectivity variation of changed areas.

• In all experiments, the results indicate that the log-ratio
detector fits the f-HMC model better than the classical
ratio one. This can be explained by the fact that the
ratio detector provides a compact (small range) and non-
symmetrical histogram, in which positive and negative
changes are hard to identify, whereas log-ratio detector
yields quite symmetrical histogram, which naturally fits
the proposed approach.

VI. CHANGE DETECTION ON ERS-PRI DATA SET

Fig. 9 presents bi-date images used to assess the proposed
approach in real context. The data are 3-look ERS-2 PRI
images with pixel sizes of 12.5m in both azimuth and range di-
rections, and are also geo-referenced and co-registered. These
images have been acquired on September 9, 2000, and October
21, 2000, around the town of Gloucester (England). The
scene corresponds to agricultural regions before and during
a flood. Flooded areas, which appear dark due to the specular
reflectivity of water, are visible along the river in the middle
upper part of Fig. 9-(b).

In addition to the classical SAR images difficulties, several
water surfaces of the scene were exposed to the wind, whereas
others were sheltered from it. Frictional stress at the interface
between the water and the wind causes the water to move in
the direction of the wind, which produces changes of different
signs in the log-ratio image. Our approach thus seems well-
suited to this context.

Fig. 10 presents the log-ratio image (w = 15). Indeed, one
can distinguish the main areas corresponding to the flood, as
well as some unexpected areas where strong changes seem to
have occurred.

(a) Sept. 09, 2000. (b) Oct. 21, 2000.

Fig. 9. Two co-registered ERS-2 PRI images of agricultural regions near
Gloucester, England (512×512) and their corresponding histograms, c© ESA,
distribution Eurimage.

Fig. 10. Log-ratio image (w = 15) obtained from Fig. 9 and corresponding
histogram.

To highlight the interest of the proposed approach, Fig. 11
presents the result obtained with f-HMC model under Gaussian
densities assumption for F = 3 (w = 15). As detailed
previously, the segmentation result produced by f-HMC model
is not a binary one (“Change” / “NoChange” - black/white),
but a fuzzy one (grey levels). Pixels intensities are proportional
to the attributed fuzzy membership degrees. Bright intensities
thus represent high proportion of “NoChange”, and dark ones
represent high proportion of “Change”. The fuzzy HMC model
is thus visually interesting on its own, since it allows an
expert to interpret the change detection map with its proper
knowledge.

As an indication, the f-HMC defuzzification result, pre-
sented in Fig. 12-(b), is obtained by performing a threshold
at ε = 0.5 on the fuzzy classification result (F = 3). The
corresponding HMC result (3-class) is presented in Fig. 12-(a).
For both models, Gaussian densities were assumed. Indeed,
one can easily distinguish in Fig. 12-(b) the main areas
corresponding to the flood. Furthermore, HMC model seems
to produce lots of false alarms in comparison to f-HMC one,
which confirms results in Sec. V.
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Fig. 11. Change detection maps obtained with f-HMC model with Gaussian
distributions for F = 3 (w = 15).

(a) HMC - w = 15. (b) f-HMC F = 2 -
w = 15.

Fig. 12. Change detection maps obtained with HMC and f-HMC models
with Gaussian distributions.

VII. CONCLUSION

In this work, we described a new fuzzy HMC model, with
application to unsupervised fuzzy change detection on SAR
images. The main contribution of this work is to combine both
statistical and fuzzy approaches to address the unsupervised
change detection task in the SAR context.

Experiments on bi-date sets of simulated images confirm
the effectiveness of the proposed approach. Quantitative results
show that the changed and unchanged distributions in log-ratio
images can be modeled by Gaussian densities. Experiments
conducted on real ERS-PRI bi-date images also confirm the
interest of the model. Even if the f-HMC model seems not to
be completely satisfying within an operational framework, the
change map obtained with f-HMC appears to be in adequation
with the feature image.

From this work, we plan to perform change detection in
multi-temporal context by applying change vector analysis to
the considered data set as follows: (1) compute a log-ratio
vector by ratioing the different acquisitions pair by pair; (2)
apply the vectorial f-HMC model [37] to the resulting multi-
component data set in order to obtain the desired change
detection map. Indeed, this approach will be clearly well-
suited to the detection of long-term changes such as vegetation
growth, desertification, . . .

Last, the model is not restricted to the triangular-shaped
membership function presented here, and any other member-
ship functions (like trapezoidal- or Gaussian-shaped ones) can
be used. The use of different membership functions allow
to modify the characterization of the fuzzy classes, which
constitutes an interesting perspective.
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[35] J. Hungershöfer and J. Wierum, “On the quality of partitions based on
space-filling curves,” in Int. Conf. on Computational Science, Amster-
dam, The Netherlands, April 21-24 2002, pp. 36–45.

[36] N. Giordana and W. Pieczynski, “Estimation of generalized multisensor
hidden Markov chains and unsupervised image segmentation,” IEEE
Trans. Pattern Anal. Machine Intell., vol. 19, no. 5, pp. 465–475, 1997.

[37] C. Carincotte, S. Derrode, and S. Bourennane, “Multivariate fuzzy
hidden Markov chains model applied to unsupervised multiscale SAR
image segmentation,” in IEEE Int. Conf. Fuzzy Syst., Reno, Nevada,
May 22-25 2005.

Cyril Carincotte received the image processing
master from Aix-Marseille III University in June
2002, and the electronics and informatics engineer-
ing master from ISEN Lille in September 2002.
Since October 2002, he works as PhD student in the
multidimensional signal processing group (GSM),
Fresnel Institute (CNRS UMR-6133), Marseille,
France. His research interests include fuzzy hidden
Markov models, applied to image segmentation and
change detection issue.
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