
ORCHESTRA: Formalism to Express Static and
Dynamic Model of Mobile Collaborative Activities and

Associated Patterns

Bertrand David, René Chalon, Olivier Delotte, Guillaume Masserey

LIESP Laboratory
Ecole Centrale de Lyon

36, av. Guy de Collongue, 69134 Ecully Cedex, France
Bertrand.David@ec-lyon.fr

Abstract. Orchestra is a new formalism on which we are working in the field of
cooperative systems design. In CoCSys methodology for Cooperative Capillary
Systems design, we transform partial scenarios describing particular
cooperative situations in a more comprehensive Cooperative Behaviour Model
(CBM). In this paper, we describe our contribution to the need for a graphical
formalism which would be able to express in a natural way, understandable by
different actors (users, designers, developers,…) different cooperation
situations in an ambient intelligence environment (mobile, context-aware,
proactive and ubiquitous). ORCHESTRA is complementary to CTT and UML
Use cases, and its objective is to express clearly cooperation situations
(explaining easily synchronous or asynchronous cooperation activities) and the
role (active or passive) played instantaneously by each actor. We take into
account main concepts of “cooperative world” which are Actors, Roles,
Groups, Tasks, Processes, Artefacts (Tools and Objects) and Contexts
(Platforms, Situations and Users). With Orchestra formalism we try to express
by a sort of music staff individual and collective behaviours. In this way we can
model either individual works or organized collective activities. We present this
formalism, its metamodel and associated patterns expressing typical
configurations of cooperation facilitating their reuse.

Keywords: CSCW, Specific Description Language, MDA inspired elaboration
process, transformation process, formalism meta-model, description patterns

1 Introduction

CSCW [2] is a field of interactive computer-based systems which objective is to allow
several participants (actors) to work together via a computer-based system to
complete cooperatively a task which can be of different natures (design, management,
production, learning, etc). Design of this kind of systems is relatively complex
because it is not limited to individual activities, but also and mainly to cooperative

2 Bertrand David, René Chalon, Olivier Delotte, Guillaume Masserey

work of several actors, which can be classified in co-operation, coordination and
conversation activities in respect with the definition initially proposed by Ellis [10]
and adapted by several other authors [8]. This cooperative work can be done in
several cooperative situations characterized initially by Johansen and enhanced by
Ellis [9]. At the moment CSCW systems are becoming more and more mobile,
context-aware and proactive. We called this kind of cooperative systems Capillary
Cooperative Systems (CCS) [6]. We use this term by analogy with the network of
blood vessels. The purpose of the Capillary CS is “to extend the capacities provided
by co-operative working tools in increasingly fine ramifications, hence they can use
fixed workstations and handheld devices". These systems become also pervasive,
proactive and ubiquitous. Our final goal is to allow them to evolve in mixed reality
environment (mixture of real and digital objects and tools) and to put into practice
Ambient Intelligence (AmI) concept.

In the following sections we briefly describe our methodology (section 2), we
present CBM content (section 3), then we discuss the formalism features and present
ORCHESTRA concepts (section 4). After that we discuss pattern approach and give
several patterns (section 5). Finally, an illustrative example (section 6), conclusions
and perspectives are finishing the paper.

2 Our Approach: CoCSys Methodology

We are studying design of CSCW systems and we propose an approach and a process,
called CoCSys (Collaborative Capillary System) engineering process. Main reason for
this more comprehensive process is related to the necessity to allow the evolution of
this kind of system during its use in relation with the users’ skills, expertise, and the
evolution of their perception and the mastery of the system. Our approach is based on
Model-Based approach [17], which is characterized by a different way of
development: “Rather than programming an interface using a toolkit library,
developers would write a specification of the interface in a specialized, high-level
specification language. This specification would be automatically translated into an
executable program, or interpreted at run-time to generate the appropriate interface.”
This approach is used in HCI for several years and become more generally used in
other development application fields. OMG adapted a similar approach as new
paradigm of development which is called MDA Model-driven architecture [14]. Other
acronyms describing similar ways are MDE (Model-Driven Engineering) or MDD
(Model Driven Development). In each case specification at concrete, abstract or meta
level is privileged before studying the way to produce an executable code. The
production is done more or less automatically by transformation or translation of
these models. The objective of our approach is to adapt this trend to CSCW. We are
proposing a framework for design, implementation and evolution of CCS. As
described deeply in [5, 7] this approach is based on 3 main parts: 1/Scenarios
Collection, 2/Cooperative Behaviour Model (CBM), and 3/Collaborative
Architecture; and 3 transformation phases: I/CBM Model Construction, II/CBM
Projection on the Collaborative Architecture and III/Evolution.

ORCHESTRA: Formalism to Express Static and Dynamic Model of Mobile Collaborative
Activities and Associated Patterns 3

3 Scenarios and Cooperative Behaviour Model

We consider that a scenario allows to final users and designers to meet them and
discuss together about functionalities of the system to be developed. A scenario
describes repetitive activity that should activate an adaptation mechanism which will
be recorded and reused. For us the scenarios are short stories describing precise
working situations which occur for different actors. This analytical perception of
working situations seems be possible to catch and express observers or actors needs.
We are asking to give as precise description as possible, i.e. to indicate, if possible, all
actors evolving, artefacts used, activities executed and contexts characterising them
(devices used, geographical location, temporal situation …). We collect these
scenarios for different collaborative situations. In this way we can consider that this
formulation of scenarios is possible, meaningful and useful. If scenarios are short
limited stories, expressed mainly by different actors, behaviour model objective is to
discover overall organization of the cooperative system in which main elements are
actors, artefacts, tasks, processes and contexts. The designers are in charge to study
different scenarios and to construct gradually the Cooperative Behaviour Model
(CBM). In the model we find comprehensive collections of actors, artefacts, activities
and contexts and also all relations which allow materializing all necessary elements
for each activity. Different processes are also explained carrying out dependencies
between tasks and their temporal and organizational constraints. This comprehensive
model is able to manage the cooperative system behaviour and will be used during the
implementation process i.e. projection of this model on a particular hardware,
network and software architectures. Main elements of the CBM model are:
• An actor, as instantiation of one or several roles, a role is a basic element of

human behavior in the system, which can be qualified as Acting (A), Observing
(O) or Editing (E) i.e. observing and acting.

• An activity, describing an identified work which a role can do, this activity can be
also A, O or E, i.e. acting, observing or editing activity.

• A process expressed as a network composed of process states (PS) and process
transitions, which can also be qualified by A, O or E.

• An artefact can be either a tool or an object. The tool is an instrument used in the
task; the object is either input, support or output of the task, qualified by A, O or E.

• A context is a collection of three aspects giving platform, situation (often logical,
physical or geographical location) and user preferences characterising the context.
We take into account several platform examples and elements: laptop, PDA,
cellular phone, and also active environmental object (active RFID tag), passive
environmental object (passive tag), …

In the CBM model all these elements are expressed and interconnected. We can take
as example a user’s role, which is identified by a name, a type, its participation in
different actors, the activities which can be done, the process states and transitions in
which their can occur, the artefacts (tools and objects) manipulated and the contexts
(platform, situations and user preferences) which applies the role. These interrelations
are also needed for other elements of the model. They are explicitly or implicitly
described and can change during the system life expressing its adaptation and

4 Bertrand David, René Chalon, Olivier Delotte, Guillaume Masserey

evolution. List of activities is one of the main components of CBM. This list is
obtained from the task tree which can be expressed by CTT [15], an interesting task
formalism, and its environment (CTTE) proposed by Paterno. Its extension for
cooperative activities [13] aims to express cooperative situations. In CTT,
collaboration is expressed by individual task trees and by a collaborative task tree.
That is interesting to express tasks, but is insufficient for the more comprehensive
view of collaboration, that we need. We consider that tree view of tasks is interesting
during the task design phase. However, during the activities organization (definition
of effective collaborations), mainly effective activities (leaves of the task tree) are
important and their individual or collaborative scope is essential, in relation with
effective actors, objects, tools, process states and transitions and contexts. To express
in a more comprehensive way we propose a new formalism called Orchestra [5].

4 ORCHESTRA

The objective of Orchestra is to propose a more comprehensive formalism which is
able to express together all main aspects of the CBM. ORCHESTRA adapts musical
score notation [18] to our problem of CBM description. For us, the 5 lines of a staff
are expressing 5 main aspects of the CBM (Fig. 1), which are: user’s role, activity
concerned, process state or transition, artefacts involved in the activity and the
context. These aspects are expressed on each of their respective line by situating one
or several “notes” containing their names. Each note can receive a stem which
indicates the participation of the element (acting, observing or editing). We
distinguish main actor (double arrow) and secondary actor (simple arrow) as well as
active role and passive role:

 Active role
Passive role

A bar line indicates the separation between independent cooperation episodes. To
express repetition of an episode we propose four options: an explicit number of
repetitions (n), an undetermined number of iterations (+/*), a contextual end (logical
condition), a time dependent end of iteration (relative or absolute time limit).
Each cooperation episode expresses a state or a transition in the cooperation process
description network. For each cooperation episode, sequential ordering from left to
right is implicit temporal option, another order, must be expressed explicitly either by
a jump from current period to another one which is named, or by a “procedure call”
jump to a named episode then the back to the previous one.

By different types of parenthesis, we indicate explicit relations between
participating notes. These parentheses are used to express different situations:

(…) alternatives,
{…} mandatory participation,
[….] optional participation.

Different key signatures are expressing collaboration properties like synchronous or
asynchronous collaborations, collaboration modes and styles of coordination
(computational � or social ., implicit z or explicit ---):

ORCHESTRA: Formalism to Express Static and Dynamic Model of Mobile Collaborative
Activities and Associated Patterns 5

@ - Asynchronous with infinite answer delay
@@ - Asynchronous with limited answer delay corresponding to “on call”
participation
& - Synchronous “in-meeting” cooperation
&& - Synchronous “in-depth” cooperation

In synchronous collaboration two different participations must be distinguished:
• instantaneous, short term collaboration, called also implicit and expressed by z

i.e. vote activity,
• long term participation, long term collaboration, called also explicit and expressed

by gg i.e. sketching activity.

.. ..

N/* E1 E2 E3

Acting
Observing
Editing

Role
Activity
Process
Artifact
Context

R-Name R-Name

PS/PT-Name

AT/AO-Name

L-Name

R-Name

A-Name

P-Name U-Name

Role
Activity
Process
Artifact
Context

E3

Fig. 1. ORCHESTRA main concepts

In the first case (vote activity) an implicit collaboration is appropriate (short exclusive
access to the shared space), in the second case (sketching) explicit participation must
be asked and allowed (long-term access to the shared space) either by social
coordination (.), i.e. one of human actors is in charge of this coordination or a
computational (�) one i.e. the computer fulfil it. We express graphically
instantaneous collaboration by a dot over concerned chords and for long term
collaboration we use a horizontal line gg and a symbol expressing social or
computational coordination (., �) i.e. coordination made by one of the actors or by
interaction (asking for, receiving and returning exclusive access right to shared
space).

Another important notion in CSCW is awareness. Its objective is to allow to
different actors to know (or not) what has been done by an actor. It is important to
decide statically (by the designer) or dynamically by the actor himself the scope of
information propagation to other actors. For static way we propose to express
awareness in ORCHESTRA formalism. Special marks are proposed:

• � for no awareness,
• � for partial awareness (for specific actors),
• v for overall awareness (for all actors).

6 Bertrand David, René Chalon, Olivier Delotte, Guillaume Masserey

To explain more deeply ORCHESTRA formalism, we give in [5] its metamodel
which contents ORCHESTRA and CBM metamodels.

5 Patterns

As initially expressed by Christopher Alexander [1]: “A pattern is a careful
description of a perennial solution to a recurring problem within a building context,
describing one of the configurations which brings life to a building.”

In software engineering a Design Pattern describes a family of solutions for a given
Software-Design problem. The Pattern is not the solution itself, but a solution
framework. The final goal of Design Patterns is the reusability of Software Design
knowledge. Patterns can be used for different reasons, as: to improve team
communication, to document and facilitate the state-of-the-art and to reflect main
concepts. Patterns can also help to understand, to clarify and document design
decisions. They can help to avoid design drift and also can improve code structure and
code quality. For these reasons, patterns can be useful everywhere (in process,
product and activity), as reusable problem-context-solution descriptions.
Methodological, functional, process, analysis, scenario, testing and evaluation
patterns are proposed and useful, as well as design, HCI, UI patterns.

In our case, we propose patterns for ORCHESTRA which objective is to express in
a reusable manner main cooperation situations. Our approach of patterns is in relation
with Alexander [1], Gamma [11], Borchers [3] and Seffah [12], we adopt a more
comprehensive and generic definition: A pattern is a collection of elements and their
relationships. They can be repetitively reached or used in analysis, design,
development and use (of cooperative systems): Pattern = Problem + Context +
(potential) Solution(s).

It seems important to highlight the convergence of interest between different
patterns users. In HCI design and groupware design, patterns are useful for the
designer (professional) as expression of best practices, standardization and usability;
they are also useful for the final user for standardization (same thing is done in the
same manner in different situations), learnability and usability.

In figure 2 we are giving an open-ended list of ORCHESTRA patterns. They are
either finalized chords with appropriate annotations, or and more usually incomplete
configurations which could be completed during the instantiation process. Chords are
mainly generic, i.e. role, activity, process, artefact (tool or object) and context can be
chosen from corresponding concrete application field instances.

ORCHESTRA pattern is a schema with one or several chords constituting
cooperation episode(s) organized temporally and associated to a particular
configuration of complementary annotations expressing nature of cooperation
(Synchronous or Asynchronous), level of cooperation (asynchronous with infinite
delay, on call, in meeting or in-depth cooperation), coordination style (social or
computational), nature of coordination (implicit or explicit) and awareness (overall,
partial or no awareness). To exemplify this approach we are able to present six
important cooperation patterns which are the following:

ORCHESTRA: Formalism to Express Static and Dynamic Model of Mobile Collaborative
Activities and Associated Patterns 7

• Intervention appointment: Synchronous or asynchronous, on-call or in-meeting
cooperation with computational implicit coordination and no awareness.

• Consultation – vote: Synchronous, in-meeting cooperation with computational
and implicit coordination and either overall awareness or no awareness.

• Presentation: Synchronous and in-meeting cooperation with social and explicit
coordination with overall awareness.

• In-depth work: Synchronous, in-depth cooperation with computational explicit
coordination and partial awareness.

• Questions / Answers: Synchronous, in-meeting activity with social or
computational explicit coordination.

• Validation: Asynchronous, on-call cooperation with implicit coordination and no
awareness.

Pattern S/As Coop Coord Exp/Imp Aware Coop.
configurations

Intervention
appointment S/As &/@@ . �

Consultation
Vote S & � v / �

Presentation S & . gg v

In-depth
work S && � gg �

Questions /

Answers S & . / � gg v / �

Validation A @@ �

Fig. 2. Characterisations of several ORCHESTRA patterns

We give on the figure 3a ORCHESTRA description of report writing activity
which is an instantiation of validation pattern and on figure 3b a description of test
activity which is an instantiation of vote pattern. Names in inside of notes are formal;
they will receive final names during instantiation of patterns.

Role
Activity
Process
Artifact
Context

Student

Report writing

Report sheet

PC

Report writing

PDA

a - Individual activity “Report writing”

@@

 �

8 Bertrand David, René Chalon, Olivier Delotte, Guillaume Masserey

Platform

Role
Activity
Process
Artifact
Context

Test-State

Test sheet

Student

Test answering

PC

PDA

&

Role
Activity
Process
Artifact
Context

Teacher

Test - State

Test sheet

PC

Test submission

&

b - Collaborative test activity preparation, execution
and treatment

evaluation

PC

Result sheet

Test evaluation

v . �

 �

Teacher

Fig. 3. Two ORCHESTRA patterns instantiations

6 Case study: Heating equipment maintenance activities

To explain ORCHESTRA formalism use we are expressing with it heating equipment
maintenance activities (Fig. 4) with six actors: client, secretary, technician,
supervisor, expert and clerk. Main scenarios of maintenance process are the
following:
• A client (secondary actor), observing a problem with his heating equipment,

phones to the repair company to ask intervention. The secretary (secondary actor)
asks him his profile (address, equipment…) and finds him in the database. He
organizes an appointment with a technician. State: Appointment, Actors: Client,
Secretary, Properties: &

• In the morning, before leaving the company, the technician (main actor) loads on
his PDA necessary information for his round with appropriate information (clients
and their addresses, nature of intervention …). State: Init, Actor: technician,
Properties: @

• At client house, the technician works on maintenance process, he can study history
file of the supplies and blueprints, to elaborate a diagnosis using appropriate tools,
and repair, or ask for spare parts. State: Work, Actors: Client, Technician,
Properties: &

• In a situation of impossibility to establish a diagnosis alone, he can contact his
manager (secondary actor) to ask him some helps and to exchange some
information. He can also contact, in a synchronous manner the heating
manufacturer expert (secondary actor) to study the situation with him. State:
Coop, Actors: Technician, Manager, Expert, Properties: &&

• At the end of his round, the technician, back to the company, updates history file of
visited equipments and gives his intervention statement. State: End, Actor:
Technician, Properties: @

ORCHESTRA: Formalism to Express Static and Dynamic Model of Mobile Collaborative
Activities and Associated Patterns 9

• Next day the clerk (secondary actor) produces the financial balance and statement
of accounts and either sends the bill to the client or integrates it in the client record.
State: FB (Financial Balance), Actor: clerk, Properties: @

PDA

Helping

Manager

Clerk

update

FB

PC

Expert

Coop

Technician

Int St.

PDA

Update

Techcian

Load

information

PDA

Client Client R
A
P
A
C

@

R
A
P
A
C

R
A
P
A
C

R
A
P
A
C

Tech

Man

App. Init

Work

End

FB

Client

Secretary

& & @ @ &&

RV

RV

RV

RV

Client

Be here Be here

Technician Technician

Work Coop

History analyse

PDA PDA

Manager

Helping

Doc

PDA

PC

Client

� � v � .

�.

Patterns

Fig. 4. Different ORCHESTRA description of heating maintenance activities example

In figure 4 we show ORCHESTRA modelling for this case study and associated
patterns. Individual activities are expressed on one staff. For collaborative activity,
several staffs are needed, each for a role. In this way we describe on the same sheet,
the participation of each actor to this collaborative episode and we facilitate its
understanding.

Conclusion

In this paper, we outlined a new formalism called ORCHESTRA, which objective is
to provide a graphical expression of Cooperative Behavior Model. CBM, elaborated
from a collection of scenarios, as a reference for the transformation process allowing
different implementations. As it is important to associate different actors to this
constructive process, we propose a formalism which could be used during initial
discussions as well as during the implementation and adaptation process. We
presented a set of reusable patterns which are useful to accelerate and do design

10 Bertrand David, René Chalon, Olivier Delotte, Guillaume Masserey

process more powerful. We propose to use them in a pattern oriented walkthrough, in
which patterns are considered as best practices, as a collection constituting an
inspiration sourcebook and as a use guide. We presented ORCHESTRA use on a case
study. Of course ORCHESTRA explains a global view of cooperation. An in-depth
view is necessary to describe completely the content of “notes” with the help of an
editor.

ORCHESTRA has been tested in several case studies and we may continue to
upgrade it by new concepts as result of these tests. The connection with mixed reality
has not been described in this paper, even if we are currently working on it.

References

1. Alexander, C., Ishikawa, S., Silverstein, Jacobson, M., Fikdhl-King, I., Angel, S.: A Pattern
Language: Towns; Building, Constructions. Oxford University Press, New York (1977)
1216 p.

2. Andriessen, J.H.E.: Working with Groupware: Understanding and Evaluating Collaboration
Technology. Springer, CSCW Series (2003) 206 p.

3. Borchers, J.O: A Pattern Approach to Interaction Design. In ACM Press John Wiley & Sons
(2000) 369 – 378

4. Chalon, R., David, B.: IRVO: an Interaction Model for designing Collaborative Mixed
Reality Systems, HCI International 2005, Las Vegas, USA, 22-27 July (2005)

5. David, B., Chalon, R., Delotte, O., Masserey, G., Imbert, M.: ORCHESTRA: formalism to
express mobile cooperative applications. In Book Series Lecture Notes in Computer
Science, Vol. 4154, Springer, (2006) 163-178

6. David, B., Chalon, R., Vaisman, G., Delotte, O.: Capillary CSCW. In Proceedings of HCI
International, Crète (2003)

7. David, B., Delotte, O., Chalon, R.: Model-Driven Engineering of Cooperative Systems. In
proceedings of HCI International 2005, Las Vegas, USA, 22-27 July (2005)

8. David, B. : IHM pour les collecticiels. In Réseaux et Systèmes Répartis, Hermès, Paris, vol.
13 (2001) 169–206

9. Ellis, C., Gibbs, S.J., Rein, G.L.: Groupware: some issues and experiences. In
Communications of the ACM, vol. 34, n° 1, (1991) 38–58

10. Ellis, C., Wainer, J.: A conceptual model of Groupware, In Proceedings of CSCW'94, ACM
Press, (1994) 79–88

11. Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns, Elements of reusable Object-
Oriented Software, Addison-Wesley Publishing Company (1995).

12. Javahery, H., Seffah, A., Engelberg, D., Sinnig, D.: Migrating User Interfaces between
Platforms Using HCI Patterns. In: Seffah A.; Javahery H.; (Eds): Multiple User Interfaces:
Multiple-Devices, Cross-Platform and Context-Awareness. Wiley (2003) 241-259

13. Mori, G., Paternò, F., Santoro, C.: CTTE: Support for Developing and Analyzing Task
Models for Interactive System Design. In IEEE Transactions on SE, vol. 28, n. 9 (2002)

14. Object Management Group, http://www.omg.org/mda/
15. Paternò, F.: Model-Based Design and Evaluation of Interactive Applications. Applied

Computing Series, Springer -Verlag (2000)
16. Rosson, M.B., Caroll, J.M.: Usability engineering scenario-based development of human-

computer interaction. Morgan Kaufmannn (2002)
17. Szekely, P.: Retrospective and Challenges for Model-Based Interface Development. In:

Vanderdonckt, J. (eds): CADUI'96, 5-7 June 1996, Namur (1996)
18. Stewart, D., The Musician’s Guide to Reading and Writing Music. Backbeat (1999) 117 p.

