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Context

Source: SIA/SRC 
https://www.src.org/newsroom/rebooting-the-it-revolution.pdf, 2015. 
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Energy Cost in a Processor/SoC

28nm
CMOS

500 pJ Efficient
off-chip 
link

16 nJ DRAM
Rd/Wr

• 64-bit FPU: 20pJ/op
• 32-bit addition: 0.05pJ
• 16-bit multiply: 0.25pJ

• Wire energy 
– 32 bits: 40pJ/word/mm
– 8 bits: 10pJ/word/mm

50 pJ (8 kB SRAM)

• Memory/Register-File
– Depends on word-length

[Adapted from Dally, IPDPS’11]

Courtesy of O. Sentieys
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A closer look at the processor…

• MOSFET 
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CMOS Technology

• Complementary MOS technology (CMOS)
– Two p- and n-channel MOSFETs as building 

blocks

Inverter Gate

A Q
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Dynamic power consumption
l Power consumption 

always measured at the 
power source (VDD)

l Energy to charge 
capacitor CL (via PMOS):

l Power consumption:

l Where f0®1 is the number 
of power-consuming 
transitions per second
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l One gate (0.25µm), 500MHz 
clock, load capacitance of 
15fF, VDD=2.5V and fanout
of 4 : 50µW
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More Complex Designs

1-bit Adder

1-bit SRAM cell
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Data Intensive Workload (example)

• Convolutional Neural Networks

• Layers

[Motamedi et al., 2016]

...
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Why CNN are so complex?

for (I = 1 to N)
out += Wi * Xi

X1

X2

Xn

…

Neuron
w1

w2

wn

out
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Computer Architecture

Source: A. Tisserand

for (I = 1 to N)
out += Wi * Xi

Load Wi, reg0
Load Xi,  reg1
Load out, reg2
Mul reg3, reg1, reg0
Add reg2, reg3, reg2
Store reg2, out

assembly

Out
Wi
Xi

Reg0
Reg1
Reg1
Reg2
Reg3

6 memory accesses for instructions
4 memory accesses for data
2 operations

nJ
nJ
nJ
pJ
pJ
nJ
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2 + 2 = 4
2 + 2 = 4

2 - 4 = -2

1 x 2 = 2

2 + 1 = 3

3 + 2 = 5

2 x 2 = 4
4 ÷ 2 = 2

2 + 2 = 4 2 + 2 = 4

2 + 2 = 3

2 + 2 = 4

2 + 2 = 4

3 - 2 = 2
2 - 3 = -1

2 + 2 = 4
2 ÷ 2 = 1

2 x 4 = 8

2 x 2 = 3

5 - 2 = 3

2 + 2 = 4
1 x 2 = 2

1

Let’s approximate…
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Intrinsic Application Resiliance

• Ability to produce acceptable outputs
despite underlying computations being
affected by errors/noise

[Chi13]
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Example: Resilience of ANN

• Our biological neurons are tolerant to 
computing errors and noisy inputs
– Quantization of parameters and computations 

provides benefits in throughput, energy, storage

Aoccdrnig to a rscheearch at Cmabrigde
Uinervtisy, it deosn’t mttaer in waht oredr the
ltteers in a wrod are, the olny iprmoatnt tihng
is taht the frist and lsat ltteer be at the rghit
pclae. And we spnet hlaf our lfie larennig
how to splel wrods. Amzanig, no!

[O. Temam, ISCA10]

Courtesy of O. Sentieys
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Example: Image Processing

Courtesy of Lukas Sekanina
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Example: Newton-Raphson Method 

i = 0i = 1i = 2i = 3i = 4
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Design Space Exploration

Cost
(area, power, 
performance)

Accuracy

Reference design

AxC Design Space

Design options
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Approximate Computing

• How can we « approximate » a computing
system?
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AxC Techniques Taxonomy

• Design time VS Run time (i.e., static VS 
dynamic)
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AxC Techniques Taxonomy

• Design time VS Run time (i.e., static VS 
dynamic)

• By Abstraction Layer

Hardware
Techniques

Hardware independent

Hardware dependent

Virtual ISA

ISA

Software

µP

Registers

Caches

RAM

Software
Techniques
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Static (HW)

Design

Wafer

Final Product

Manufacturing

Requirements

Ad-Hoc 
Approximation

Ad-Hoc 
Approximation
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Static (SW)

22

Source Code Compiler Code
executable

Ad-Hoc 
Approximation

Ad-Hoc 
Approximation
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Dynamic

Computing
System

Controller

PO

Energy/Accuracy
Monitors

PI

Energy/Accuracy
Tuning
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Some Examples

• Precision Reduction
– SW/HW, static and dynamic

From Double to Single

From Single to Half
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Commercial Example

• NVIDIA from the Pascal architecture offered
FP16 support. 
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Some Examples

• Loop Perforation
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Some Examples

• Loop Perforation
– Sobel filter for edge detection
– Different perforation rates [Vassiliadis et al., 

ACMSIGPLANS, 2015.] 
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Some Examples

• Over-Scaling Hardware
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Some Examples
• Functional Approximation:

– Modify the circuit netlist

Design

Requirements

Functional
Approximation

Inexact 
Circuit

Approximate Integrated Circtuit (AxIC)
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Some Examples

• 2-bit Multiplier [Kul11]

AxB

A[1:0]

B[1:0]
Out[3:0]

A B Out
0 0 0
0 1 0
0 2 0
0 3 0
1 0 0
1 1 1
1 2 2
1 3 3
2 0 0
2 1 2
2 2 4
2 3 6
3 0 0
3 1 3
3 2 6
3 3 9

Spec
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Some Examples
• Relax initial specifications

A B Out
0 0 0

0 1 0

0 2 0

0 3 0

1 0 0

1 1 1

1 2 2

1 3 3

2 0 0

2 1 2

2 2 4

2 3 6

3 0 0

3 1 3

3 2 6

3 3 9

A B Out
00 00 0000

00 01 0000

00 10 0000

00 11 0000

01 00 0000

01 01 0001

01 10 0010

01 11 0011

10 00 0000

10 01 0010

10 10 0100

10 11 0110

11 00 0000

11 01 0011

11 10 0110

11 11 1001

Relax??
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Some Examples
• Relax initial specifications

A B Out
0 0 0

0 1 0

0 2 0

0 3 0

1 0 0

1 1 1

1 2 2

1 3 3

2 0 0

2 1 2

2 2 4

2 3 6

3 0 0

3 1 3

3 2 6

3 3 9

A B Out
00 00 0000

00 01 0000

00 10 0000

00 11 0000

01 00 0000

01 01 0001

01 10 0010

01 11 0011

10 00 0000

10 01 0010

10 10 0100

10 11 0110

11 00 0000

11 01 0011

11 10 0110

11 11 1001

A B Out
00 00 0000

00 01 0000

00 10 0000

00 11 0000

01 00 0000

01 01 0001

01 10 0010

01 11 0011

10 00 0000

10 01 0010

10 10 0100

10 11 0110

11 00 0000

11 01 0011

11 10 0110

11 11 0111
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Some Examples

• Approximate 2-bit multiplier: almost 50% 
area reduction; shorter delay. [Kul11]

b1

a1

b0
a1

b1

b0

a0

a0

out3

out2

out1

out0

b1

a1

b0
a1

b1

b0

a0

a0

out2

out1

out0

ApproximatedPrecise
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Metrics

• How can we evaluate the impact of a given 
Approximation Technique?

• It depends on the abstraction layer:
– Component-layer: arithmetic citcuits, data 

precision, memory, …
– System-layer: user related metrics such as SSI 

for multimedia applications.
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Metrics

• How can we evaluate the impact of a given 
Approximation Technique?

• It depends on the abstraction layer:
– Component-layer: arithmetic citcuits, data 

precision, memory, …
– System-layer: user related metrics such as SSI 

for multimedia applications.

Precision
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Metrics (some examples)

• Error magnitude (worst case error):

• Average error magnitude:

• Error probability (error rate):

Introduction Approximate Computing AxC Techniques Design Flow Near Future Conclusion

AxC Techniques
Quality Metrics

Error magnitude (worst case error):

WCE = max
8i

���O(i)
approx � O

(i)
prec

���

Maximal relative error: erel = max
8i

���O(i)
approx�O

(i)
prec

���

O
(i)
prec

Average error magnitude: eavg =
etot

n
=

P
8i max

���O(i)
approx�O

(i)
prec

���
n

Error probability (error rate): eprob =

P
8i

���O(i)
approx 6=O

(i)
prec

���
n

Where

O
(i)
approx/prec is the i-th output of the accurate / approximate

implementation

n is the workload length

Error metrics are often application dependent, e.g. PSNR,

Hamming distance, ...

Alberto Bosio - bosio@lirmm.fr 16 of 36
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Metrics (2-bit multiplier example)

Component-level: precision of the component

• WCE: 2 (7 instead of 9 for 3x3); 
• Average error magnitude: 2/16; 
• Error Probability: 1/16; 

Introduction Approximate Computing AxC Techniques Design Flow Near Future Conclusion

AxC Techniques
Approximate 2-bit multiplier

A x B 0 1 2 3
0 0 0 0 0

1 0 1 2 3

2 0 2 4 6

3 0 3 6 7

WCE: 2 (7 instead of 9 for 3x3);

Maximal relative error: 2/9;

Average error magnitude: 2/16;

Error Probability: 1/16;

Alberto Bosio - bosio@lirmm.fr 17 of 36
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Metrics

• How can we evaluate the impact of a given 
Approximation Technique?

• It depends on the abstraction layer:
– Component-layer: arithmetic citcuits, data 

precision, memory, …
– System-layer: user related metrics such as SSI 

for multimedia applications.

Accuracy
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Metrics (2-bit multiplier example)

System-level: Accuracy of the result

• Application: JPEG encoding
– Power Reduction 41.5% 
– SNR : 20.365dB; 

Introduction Approximate Computing AxC Techniques Design Flow Near Future Conclusion

AxC Techniques
Approximate 2-bit multiplier: Impact on the final application

Table IV
ERROR RATES AND POWER SAVINGS FOR INACCURATE ADDER BASED

MULTIPLIER

Error
Prob.

Mean Error Max Error Power Reduction

0.29 10.07% 62.22% 37.89%
0.23 6.01% 57.14% 32.35%
0.20 4.40% 57.14% 28.87%
0.15 3.40% 57.14% 20.16%
0.16 3.04% 57.14% 16.83%
0.19 2.92% 44.44% 19.81%
0.12 2.18% 44.44% 12.14%

D. Partial Products vs. Adder Tree

Our design introduces errors via the partial products. Alter-
natively it is also possible to introduce the inaccuracy via the
adder-tree, using an inaccurate adder like the one introduced in
[9]. One of the issues with this is that it is hard to analyze the
errors, as noted in [8], making it difficult to build a correction
unit. For a comparison of the power-accuracy trade-off for
such a system, we used the inaccurate adder introduced in [9],
to build inaccurate multipliers. Using accurate partial products
and by placing these inaccurate adders (best possible locations
were exhaustively searched) at different points in the adder
tree we were able to obtain the error-power tradeoff. It can
be seen from Table IV that the mean and max error from this
technique is relatively large. Moreover, the power savings are
roughly in the same range as what we encountered before.
The accuracy-power tradeoff (Fig. 7) for the partial product
technique is better than the inaccurate adder technique.

Figure 7. Accuracy vs. power tradeoff comparison for partial product and
adder based approaches. The proposed partial product based approach give a
much better tradeoff.

IV. IMPACT ON REAL APPLICATIONS

In this section we test our inaccurate multiplier on two image
processing applications and then compare software based
power-quality tradeoff to our hardware based technique on the
JPEG image compression algorithm.

A. Image Filtering

The first application we use is a Gaussian smoothing based
image sharpening filter, modeled in MATLAB, similar to the
one used in [8]. This is done by convolving the image with a
matrix identical to the one presented in [8]. For the inaccurate

filter, the 8-bit multiplication in the convolution is performed
by an inaccurate multiplier, using its corresponding MATLAB
model. Fig. 8 shows the results for accurate as well as
various inaccurate multiplier approaches. Our underdesigned
multiplier has an average power saving of 41.48% with a SNR
of 20.36dB. In comparison, the authors in [5] report a SNR
of 19.63dB for 21.7% power saving (though for a different
technology) over baseline, using four different voltage do-
mains. Fig. 8 (e) and 8 (d) show that our approach results
in 2X - 8X better SNR when compared to simple voltage
over-scaling [6]. This suggests that image processing/filtering
applications could employ the presented inaccurate multiplier
with significant power savings and minimal loss in image
quality. Note that the SNR for the filtering application is
defined between the accurately filtered image and inaccurately
filtered image, this was done for sake of uniform comparison
with [5], who use this notation. For the JPEG application we
revert back to the more common definition, where SNR is
defined between the original noise-less image and the filtered
result.

Figure 8. Image sharpening (a) original blurred image; (b) enhanced using
accurate multiplier; (c) by inaccurate multiplier, power reduction 41.5%,
SNR : 20.365dB; (d) voltage over-scaling for 30% power reduction, SNR :
9.16dB; (e) voltage over-scaling for 50% power reduction, SNR : 2.64dB;
(f) by introducing errors via the adder-tree, SNR : 7.3dB
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Precise AxC

Application: JPEG encoding

power reduction 41.5%

SNR : 20.365dB;

Alberto Bosio - bosio@lirmm.fr 18 of 36

[Kul11]
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Some real applications
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Precision Reduction for CNN

• Quantization*: change the data type and 
bit-width

• +Reduced memory footprint
• +Simpler arithmetic circuit 

• Challenges:
– Which data type? 
– Which part(s) of the CNN to quantize;
– Homogeneity/heterogeneity of the data type
– When to quantize (during or after training)

*arXiv:1602.02830 , arXiv:1605.04711 , arXiv:1712.05877
10.1007/978-3-319-46493-0_32
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Data Type Representation
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Approximate CNNs: Accuracy

• 10k images, MNIST/LeNet-5
• Fixed-Point Arithmetic

W = 8 bits

I = 2 bits
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M = 4 bits

E = 6 bits

Approximate CNNs: Accuracy

• 10k images,  MNIST/ LeNet-5
• Custom float

• 10-bit FlP keeps accuracy near reference
• Better results would be achieved with 

longer training and fine tuning and also 
smarter word-length opt.
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Weight Sharing

17 3 18 11 19

5 14 9 13 7

19 5 7 0 12

10 12 20 8 10

14 1 16 10 14

17 3 18 11 19

5 14 9 13 7

19 5 7 0 12

10 12 20 8 10

14 1 16 10 14

5x5 Convolutional 
Kernel

K-means 
Clustering

• 8 bits x W
– 200 bits  
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Weight Sharing

• 3 bits x W
– 75 + 40 = 115 bits (instead of 200)

• ~42% bits reduction

5x5 
Convolutional 
Index Kernel

4 0 4 2 4

1 3 1 3 1

4 1 1 0 2

2 2 4 2 2

3 0 3 2 3

0

5

10

15

20

@0

@1

@2

@3

@4

WS table

10.23919/DATE48585.2020.9116350
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Results E. Dupuis, et al. AS-DAC 2022
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Pruning: loop perforation for CNN

Source: https://medium.com/tensorflow/tensorflow-model-optimization-toolkit-pruning-api-42cac9157a6a
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Pruning: loop perforation for CNN

arXiv:1705.08922
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Results

arXiv:1705.08922
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Functional Approximation

b1

a1

b0
a1

b1

b0

a0

a0

out3

out2

out1

out0

b1

a1

b0
a1

b1

b0

a0

a0

out2

out1

out0

ApproximatedPrecise

10.1109/TVLSI.2019.2940943 
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Experiments

• Inexact Multipliers
– EvoApprox8b Library

• http://www.fit.vutbr.cz/research/groups/ehw/ approxlib/ 
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Results
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Results

• Up to 71.45% more energy-efficient 
• Up to 61.55% smaller
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• Bottom-Up: From a given precision
compute the accuracy

Design Approaches

API API
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Design Flow

• What are the inputs?
– Error Metrics:  quantify the error; 
– Error Threshold: what is acceptable;
– Gain: what you want to optimize (e.g., area, 

performance, power). 
• How to introduce the approximation?

– Source-code: modify the source code and then
perform a classical synthesis/compile: 

• Gate-Level: modify the netlist;
• HDL/C code: RTL/HLS synthesis;
• C code: compiler;

User’s
Requirements
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Exploring the approximation space

‘Moving’ through 
the 
approximation 
space

l Controlling the 
approximation 
parameters;

l Observing the 
effect of the 
changes.

Q
ua

lit
y

Gain
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State-of-the-Art
• RTL/C Code: Existing approaches exploit source 

code annotations 

• It requires a huge knowledge of the source 
code 

• You must know the impact of your
approximation..

• … and its gain

Introduction Approximate Computing AxC Techniques Design Flow Near Future Conclusion

Design Flow
State of the Art

Existing approaches exploit source code annotations
2

Original Code

blocki;
for(i = 0; i < n; i++){

body
}
blocki+1;

Annotated Code

blocki;
#pragma approximate
for(i = 0; i < n; i ++){

body
}
#pragma end approximate

blocki+1;

It requires a huge knowledge of the source code

You must know the impact of your approximation

1[DATE’14], [SC ’13], [PLDI ’11], [D&T’16]
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IIDEAA 
• IIDEAA Is a Design Exploration tool for Approximate 

Algorithms 
– https://ieeexplore.ieee.org/abstract/document/9449861

Goal: automatically finding the approximation parameters to obtain the best 
variants in terms of trade-off between error and gain
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Chimera Example (loop perforation)

Original 
code:

Clang-chimera is capable to automatically mutate the code by 
applying an approximation operator: e.g., Loop perforation

The next step is to explore the effects entailed by different values of stride1 and stride2, in 
terms of Error and Gain.
IIDEAA explores the approximation variants through Bellerophon

Mutated code:
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How does it work?

To measure both gain and error, IIDEAA executes the approximate variants.
The DSE is performed by means of a genetic algorithm

Bellerophon automatically performs a design space exploration (DSE).
Goal: finding the best values for approximate parameters in terms of 

Error and Gain.

Example: Loop perforation
l stride1 and stride2 are the approximate 

parameters;
l the gain is the number of skipped loops
l the error is measured according to the application.

Error

G
ai

n

s1=stride1
s2=stride2

s1=a1
s2=a2 s1=b1

s2=b2

s1=c1
s2=c2

s1=d1
s2=d2
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Target implementation 

Individual Stride1 Stride2 Error Gain
0 3 5 5 8
1 2 9 7 11
.
.

.

.
.
.

.

.
.
.

k-1 5 2 3 7
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Results

JPEG software implementation

Setup:
Discrete Cosine Transform (DCT) 

approximation

Approximation parameters:

loop perforation

Quality fitness: structural 

similarity index measure (SSIM)

Gain fitness: % of skipped loops

Target: CPU

DSE time: ~ few hours
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Results

Sobel filter software implementation

Setup:
Approximation parameters:

loop perforation

Quality fitness: structural 

similarity index measure (SSIM)

Gain fitness: % of skipped loops

Target: CPU

DSE time: ~ few minutes
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CAD tools

• Design Exploration Tools
– From Precise C/C++ to Approximate C/C++

• https://sampa.cs.washington.edu/research/approximati
on/enerj.html

• http://wpage.unina.it/mario.barbareschi/iideaa/
– HLS: From Precise C/C++ to HDL

• https://link.springer.com/chapter/10.1007/978-3-319-
99322-5_10

• Approximate Logic Synthesis (ALS)
– [DATE’10] Minterm Complement Technique 
– [LASCAS’15] Pruning Technique  
– [ICCAD’13] GALS: ALS under EM and ER constraints 
– [ICCAD’14] MALS: ML-ALS under EM and ER constraints 
– [DAC’12] SALSA: ALS as Traditional Logic Synthesis
– [ICCAD’14] ASLAN: ALS for Sequential Circuits
– [DATE’17] Evoapprox8b: ALS using genetic algorithms

https://sampa.cs.washington.edu/research/approximation/enerj.html
http://wpage.unina.it/mario.barbareschi/iideaa/
https://link.springer.com/chapter/10.1007/978-3-319-99322-5_10
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Agenda

• Introduction
• Approximate Computing
• Techniques and DSE
• Approximate Computing For Safety-Critical 

Systems 
• Conclusions
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Safety-Critical Systems
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What are the consequences?

• Defects in the HW
– Manufacturing Defects

• Ageing
• Harsh Environment:

– Neutron radiations from cosmic rays, alpha 
particles from packaging materials and 
environmental/design variations are common 
causes of perturbations

0

1

IONIZING PARTICLE

1

0
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Error Classification

Observed failures
under neutron beam 

P. Rech et al. [VTS’18] 
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Error Classification

Tolerable errors

P. Rech et al. [VTS’18] 
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Error Classification

• Observed failures can be very different! 

Golden 5dB30dB40dB

Malignant FaultsBenign Faults

M. Benabdenbi et al. [JETTA’18] 
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Error Classification

• Observed failures can be very different! 

P. Rech et al. [VTS’18] 

error can be in the
float intrinsic variance

Values in a given range 
are accepted as correct 
in physical simulations
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Reliability VS Approximation

• An approximate application is more or less 
reliable w.r.t. the precise application?
– Issue?



Institut des Nanotechnologies de Lyon UMR CNRS 5270       

Reliability VS Approximation

• Example: Lenet

• Precise version:
– Weights stored as 32 bit floating point data 

types.
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Reliability VS Approximation

• Fault Injection on the weights [DSD’20]
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Reliability VS Approximation

• Approximate Lenet
– From 32 to 16 bit fixed point data type (9,7)
– Fault Injection
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Reliability VS Approximation

• Some data considering 1 MB of memory
– Precise:

• 512 KB of weights in 32 bit floating points
– 131K weights -> 1 critical bit per weigth -> 131Kbit/8Mbit 

=> 16 * 10-3 -> 1.6 * 10-2

– Approximate: 
• 256 KB of weights in 16 bit fixed points: 

– 6 critical bits  per weigth -> 1536 Kbit / 8 Mbit -> 192 * 
10-3 -> 1.92 * 10-1

Approximate Lenet is more energy 
efficient but less reliable
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Another Example: Newton-Raphson

i = 14 i = 37 i = 71

~92%

[M&R 2019]
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Reliability: Approximate Fault Tolerance

• Opportunity
Cost
(area, power, 
performance)

Reference 
design: No AxC,
no protections

Protected Design 
Space

Design options 
with AxC, lower 
cost but SAME 

robustness

Robustness

Accuracy
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Quadruple Approximate Modular Redundancy

• QAMR guarantees the same reliability level 
as a full TMR [ETS’20][PESW’20]
– Underlying insight: a good approximation 

achieves more gains than it reduces the 
system accuracy
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Introduction AxC Techniques Test Reliability Summary

Quadruple Approximate Modular Redundancy

• QAMR guarantees the same reliability level as a full TMR [ETS’20]

• Underlying insight: a good approximation achieves more gains
than it reduces the system accuracy

System

System

System Voter OUTIN

Ax. system

Ax. system

Ax. system

Voter OUTIN

Ax. system
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QAMR: How does it works? 

• When one module delivers an approximate
(i.e., wrong) response, the others must 
deliver the precise (i.e., correct) one 
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Introduction AxC Techniques Test Reliability Summary

QAMR: How does it works?

• When one module delivers an
approximate (i.e., wrong)
response, the others must deliver
the precise (i.e., correct) one

40/45



Institut des Nanotechnologies de Lyon UMR CNRS 5270       

Output-cutting-based QAMR

S0
S
1S2
S3

The voter is the same as the TMR!
For each output, we still have three replicas

B. Deveautour, M. Traiola, A. Virazel, P Girard, "QAMR: an Approximation-Based Fully Reliable TMR Alternative for Area Overhead Reduction” - IEEE 
European Test Symposium (ETS) 2020
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How to implement QAMR
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Introduction AxC Techniques Test Reliability Summary

QAMR: How to implement?

  10

Output-cuttg-based QAMR
A B C O

0
O

1
O

2
O

3

0 0 0 1 0 1 1
0 0 1 0 0 0 1
0 1 0 0 1 0 0
0 1 1 1 1 1 1
1 0 0 0 0 0 1
1 0 1 0 1 1 1
1 1 0 1 0 1 0
1 1 1 1 0 1 0

A B C O
1

O
2

O
3

0 0 0 0 1 1
0 0 1 0 0 1
0 1 0 1 0 0
0 1 1 1 1 1
1 0 0 0 0 1
1 0 1 1 1 1
1 1 0 0 1 0
1 1 1 0 1 0

A B C O
0
O

2
O

3

0 0 0 1 1 1
0 0 1 0 0 1
0 1 0 0 0 0
0 1 1 1 1 1
1 0 0 0 0 1
1 0 1 0 1 1
1 1 0 1 1 0
1 1 1 1 1 0

A B C O
0

O
1

O
3

0 0 0 1 0 1
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 1 1
1 0 0 0 0 1
1 0 1 0 1 1
1 1 0 1 0 0
1 1 1 1 0 0

A B C O
0

O
1
O

2

0 0 0 1 0 1
0 0 1 0 0 0
0 1 0 0 1 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 1 0 1 1
1 1 0 1 0 1
1 1 1 1 0 1

For a circuit havitg a set of outputs S, the subset of outputs S
i
 will be removed from the AxIC

i
. 

Cotstraitts:

S
0

S
1

S
2

S
3

The voter is the same as the TMR!

For each output, we stll have three replicas

41/45
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Results
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Introduction AxC Techniques Test Reliability Summary

Results

42/45



Institut des Nanotechnologies de Lyon UMR CNRS 5270       

Results
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Introduction AxC Techniques Test Reliability Summary

Results
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Conclusions

• Approximate computing is (still) a hot topic! 
• We are investigating on the impact of 

hardware faults on the quality of 
applications outputs.
– Reliability

• Need of automated tools and Frameworks
– Complex applications: DSE feasible?

• Fault Classification is still key issue   
– Time consuming 
– Linked to application/workload
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