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INTRODUCTION

Statistical Energy Analysis (SEA) is a method that can be used to investigate power flows in a
dynamical system /1/. SEA requires one to evaluate the Damping Loss Factors (DLFs) and the
Coupling Loss Factors (CLFS) of the system. Those modelling parameters can be identified by
doing an experiment called “the power injection method” /2/. According to that method, one writes
a balance on the power injected into the system. In agreement with SEA theory however, only the
active part of mean power is considered in that balance. When the frequency band of analysis goes
down to the lower frequency limit of the domain of SEA applicability, the power injection method
often provides negative, non physical, parameters. Conservation of power injected into a system
is a physical principle that is valid for the active and the reactive part of pure tone power. On the
basis of that remark, we propose a new way for processing the output data of the power injection
method. We apply that new way and the classical one to investigate power flows in a system made
of two rods coupled in series. Both results are compared to those obtained analytically /3/.

USING THE ACTIVE AND THE REACTIVE PART OF PURE TONE POWER

Using only the active part. Let us consider a frequency band [fmin-fmax] and an N part
system. Let Pj(f) be the active power injected at frequent y f into part j and P~iss (f ) be the power
dissipated at frequency fin part i when part j alone is excited by Pj(f). Depending on the kind of
damping assumed, conservation of the active power injected into the system allows us to write :

{
Pj(f) = 5 Pfiiss(f) = 4nf ; q~(f)E;(f)

}{ }
or Pj(f) = ~ P~iss(f) = 4Zf Y @’(f) E~(f) (1)

i=l i=l i=l i=l

Where q?(f) is the pure tone hysteretical damping of part i. Despite the usual convention, we
here adopt for symmetry a frequency dependent pure tone viscous damping. The one of part i is
denoted by q:(f). E!(f) and E;(f) respectively are the pure tone potential and kinetic energies
of part i when part j is excited. The two “s” signs mean that the damping of each part is neither
totally hysteretical nor totally viscous is practical cases. By using a Fourier’s analyser and today’s
transducers, we can easily measure the Pj(f) and the E:(f) at Nf discrete frequencies fm in the

band [fmln-fmaX]. Since the E;(f) are not as easily measurable nowadays, the use of them as
input data for our method is not considered. For any frequency fm, the here above two equations
are valid and the second one of them can be rewritten as a linear system of N equations :
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(2)

By solving (2) for each frequency fm, we get for each fm the viscous damping of all the parts.
On the contrary, since the E? (f m) are not easily measurable, we can not in practice determine the

‘TIP(f m) by inverting the first one of equations (I).

Using the active and the reactive part. For any frequency fm, the E~(f m) and the q! (f m)
are positive. For any fm, one can therefore write by using the first one of equations (1) :

(3)

Let Qj(f) be the pure tone reactive power injected into part j. Let Lij (f ) be the pure tone
lagrangian energy of part i when part j alone is excited. The principle of conservation of the
reactive power injected into the system allows us to write for any frequency fm /3/:

Qj(frn) = 4~fm ~Lij(frn) = d~ftn ~ [E~(fm)-E~(fm)]
i=l i=l

Let us denote by ctjm the following expression :

Pj(frn) 1 Pj(frn) 1
~jm =

4nfm ; E~(fJ
[

= 4nfm N
ZE~(fnJ-

Qj(fm)

i=l i=l 47Cfm 1

(4)

(5)

Where ~ E? (f m) has been rewritten in terms of the E; (f m) and of the Qj (f m) (see equation
i=l

(4)). After dividing equation (3) by ! E~(f m) and by introducing ~jm, one gets the following
i=l

upper and lower bounds respectively for min (TIP(f m)) and for ~nM#N(~~ (f m)) :
l<i<N

{
min (~~(frn)) S min (Ujrn)

}
and

{
max (CY.jrn)S max (T~(fm))

}
(6)

l<i<N lSj<N l<j<N l<i<N

After measuring the kinetic energies E; (f m), the active powers pj (fm) and the reactive

powers Qj (f m) for each frequency fm, we can for each fm determine the ~jm and derive bounds

for min (~~ (f m)) and for max (q! (fm)). Those bounds even allow one to compute the
l<i<N l<i<N

ll~(fm) foreach f m, in the particular case where all the parts have the same hysteretical damping
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APPLICATION TO THE CASE OF TWO RODS COUPLED IN SERIES

Let us now simulate the application of our new procedure and the one of the classical power
injection method for investigating power flows in the case of the system presented in figure 1.

% p, E,q, Sl p, E,q, S2
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Figure 1: system made of two rods coupled in series excited by two uncorrelatedforces

That system is excited by two uncorrelated forces F 1 and Fz in the octave band centred on
fO=2000 Hz. Each rod is considered as one part in the sense of SEA (N=2). For illustration of our

method, we want to evaluate the mean active power P~ss dissipated in rod 1. P~ss will be

displayed as a finction of A, the geometrical average of the modal overlaps of the two rods:

A= (7)

Where li is the length of rod i, ~i, pi and Eoi respectively are the pure tone damping, the
density and the real part of Young’s complex modulus Ei of rod i. Both rods are assumed to be
made of steel so that : q I=T12=T= 10-4 (in the whole octave band) and p 1=pz=p=7800 kg/ins.
Hysteretical damping being assumed, one can write : E1=E2=E=2. 101 1(l+ql) (with ~=-1).

The sections of rod 1 and of rod 2 are respectively equal to 1e-4 m2 and 3.e-4 m2. To avoid
that geometry may induce any peculiar coincidence between modes of rod 1 and modes of rod 2,

~ is kept equal to prime number # whatever the value of A. For Nf frequencies regularly spaced
11
in the octave band of analysis (Nf= 128), the one dimensional Helmholtz equation subject to the
ad hoc force and displacement continuity conditions is first solved. The required pure tone
potential and kinetic energies E! (f ~) and E; (f ~), the pure tone active and reactive powers

Pj (f m) and Qj(f m) = then calculated. Uncorrelation between F1 and F2 is simulated as

following. The value taken by any energetic quantity when the system is excited by the two
uncorrelated forces is computed by adding up two terms : the value taken by the quantity when
rod 1 alone is excited and the one taken by the quantity when rod 2 alone is excited. The E! (f m),

Et (f ~), Pj (f m) and Qj (f rn)are frequency averaged in the octave band to respectively Provide

the required ~ , ~, ~ and ~. Equations (8), (9) and (10) are then used for computing P~iss.
analytically (8), by u~ing the classical power injection method (9) and by using only the active part
of pure tone power injected (10). Knowledge of the potential energies is assumed only in equation

‘E* denotes the DLF of part 1, as determined by using the classical power(8). In equation (9), ‘flI
injection method. The pure tone viscous damping in equation (10) is determined by applying
equation (2). In our particular case where both rods have the same hysteretical damping, equation
(6) exactly provides that damping T l(fm)=~z(fm)=~(fm) for each frequency fm. Equation (11)
differs from equation (10) only by the taking into account of that additional information.
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Figure 2: P~iSs calculated by equations (8), (9), (10) and (11) as a function of A

CONCLUSIONS

Power dissipated has been computed by four methods, as a function of one criteria for SEA
applicability : the geometrical average of the modal overlaps of the rods, A. The classical power
injection method leads to small random errors that may even become large for some specific
values of A. It provides as expected negative dissipated power for low modal overlaps. Unlike the
one obtained by using the classical method, both curves obtained by using the pure tone power
injected fit the analytical curve. Although using both the active and the reactive part of power
provides the exact hysteretical damping, this does not improve significantly the prediction.
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