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INTRODUCTION

For few years, various approaches have been attempted to generalise the Statistical Energy
Analysis (SEA) beyond its limits of application. One of them called Energy mow Analysis or
Power Flow Finite Element Analysis is an energy model for medium and high frequencies. It uses
tie same quantities as in SEA: energy and energy tlow and is based on an equation simdar to the
heat conduction equation in steady condition with a convection term. This is local equation leading
to a continuous analysis of structures whereas SEA is based on a discrete analysis. The partictiar
case of one dimensional systems such as rod or beam had been well studied [1,2]. But the mdti
dimension case was investigated by way of a direct generalisation of the thermal analogy valid
for the one dimension case. This genertisation was criticized by Langley [3] who remarked that,
for an infinite structure, the dwreasing in farfield of the solution of the heat conduction equation is
in contradiction with those of the energy density deduced from the Heholtz equation. I suggested
[4] an explanation of this paradox which raises up a limitation of the thermal analogy. But this
explanation uses the particular symmetry of infinite systems and no solution has been proposed for
the general case without symmetry.

This paper proposes an alternative of the heat conduction equation for multi dimension
systems such as plate or acoustical enclosure. This formulation is based on an integral equation
deduced from the Huygens’s principle [5]. No demonstration is performed in this paper for reason
of space but two numerical illustrations have been exposed: the first with a square plate and the
second with a pardlelepiped acoustical enclosure.

THEORETICAL FORMULATION

Two energy quantities are involved in this formulation: the energy density Wwhich is defined by
the sum of the kinetic energy and the potential energy (or deformation energy in case of structures)
and the energy ilow vector I which supports the motion of energy inside systems. Moreover the
group velocity c. is needed as a characteristic of the system. A first set of assumptions required to
derive the energy model is summarised as follows:
(H1) linear, isotropic system in steady state conditions harmonically excited with pulsation m,
(H2) tight damping loss factor,
(H3) evanescent waves wd nearfield are neglected,
(H4) interferences between propagative waves are not taken into account.
Another assumption will be add later.

The first step to establish this energy formulation is the well known power balance for an
unloaded region:

div. I + P{,i$,$=() with p,ii.~.~= ~@w or P,]i.,s = mcg w (1)

wherepdti$is the power density dissipated. The iirst relationship of this dissipative term is related
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to a hysteretic damping model (for structures) whereas the second one is related to an atmospheric
absorption (for acoustical enclosures).

Now let study the pure propagative waves. These waves are detined as the wave produced
by a single point.S and propagating in an infinite system. They are characterised by an especially
simple relationship between the energy ilow and the energy density:

I(M) = CgW(M)U(S,M) for M e Q (2)

where Q is the domain under study and u(S, M) the unity vector from the source S to the current
point M. This relationship is vatid in fariield for outgoing traveling wave (and not for evanescent
wave) for undamped system. For light damped system, this relationship is assumed to remain
valid tting into account the dissipation by way of the dissipative term in the power balance. So,
substituting (2) into the power balance (1) and solving the obtained equation gives the energy
quantities W and I of propagative waves which are respectively proportional to the following
functions:

-~r ~r

G(S,M) = + and H(S,M) = Cg + U(S, M)
r r

(3)

where n is the dimension of the space Q, r is the distance between S and M and the factor ~ is
replaced by m in case of acoustical enclosure.

In general, many propagative waves travel in a given system. So, we build up the fields W
and I by applying two principles. First of dl, we said that the interferences between propagative
waves are not taken into account in our model. Therefore, it resul~ that the energy quantities are
simply the sum of those of the propagative waves. This is a linear superposition principle.
Secondly, following the Huygens’s principle, the most general field comes from the superposition
of a direct field created by some primary sources (or red sources) inside Q and a diffracted field
created by some secondary sources (or fictive sources) on the boundary ~. These considerations
are summarised into the following relationships:

w(~) =~QP(S)G(S,~)~S+~m~(~)f(u.n)G(~,M)@ (4)

I(M) = ~QP(S)H(S,~)dS + ~m@P)f(u.n)H(P, M)dP (5)

where p and o are respectively the magnitudes of the primary and the secondary sources, ~is the
directivity diagram of the secondary sources and n is the outward normal vector at point P.
Another assumption concemingfis necessary:
(H5) The directivity diagram.fof fictive sources is known and does not depend on point P.
So, the function .~has to be chosen. In what follows, we study the choices 1,COS(U.n) (Lambert’s
law) orcosz (u. n). Indeed, the primary density p is assumed to be known because real sources
constitute a data of the problem. But the secondary density d is unknown and an equation which
determines i~ value has to be exhibited.

This expected equation on c is obtained by applying the power balance on the boundary ~.
No detail of the demonstration is given there but it is based on first, the incident power at point P
which may come from both primary and secondary sources and secondly, the reflected power
produced by the secondary source ~P) at point P. The boundary is characterised by an absorption
coefficient a between () and 1 which is the part of absorbed power from incident power. This
coefficient a may depend on the point P. After this reasoning, one obtains the following equation:
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l-a(P)
O(P) =

yc, {J }
*p(S)H(S,P)(/S + ~~c(P)~(u.n’)H(P ,P)tlP n(P) (6)

where n’ is the outward normal vector at point F, u the unity vector from P’ to P, * designates
the principal value in Cauchy sense and yhas a value depending on the choice of the directivityj
me following table summarises tiese values:

I tmwtitityf I 1 I cos(u. n) I cos’(u. n)
I

Thus, tie quation (6) is a Fredholm integral equation of second tind on the layer o.
~uations (4), (5) and (6) are the basic relationships of our model. The properties of such a

formulation are really interesting but are not smdied here. It could be done in another paper. In
what fo~ows, we first develop a numerical implementation and hen study two examples.

NUMERICAL IMPLEMENTATION

To solve the system of equations (4,5,6), the boundary ~ is discretized into
(figure 1). Wniiig.1 Boundary discretizatlon

segments Si i=l ,n

If Pi denotes the middle of the segment Si., ni the outward normal vector at point Pi , ai the
absorption coefficient at Pi. and assumethat the layer a is constantover Si. andhasthe v~ue ~i.,

then the Fredholm equation (6) with a single point source of magnitude A at S, becomes:

Oi =

{ }
- AH(S,8).ni + ~ ~j~$ f(u.n)H(Q, ~). nidQ for i=l,n
w, j=l,j*i J

(7)

The n utiowns ~i are determined by solving the above equation. Then. the fields W and I are
calculated with:

W(M) = AG(S,M) + ~ ajj,, .fG(Q,M)dQ, I(M) = AH(S,M) + ~ ajj,, ~(Q,M)dQ (8,9)
j=l .] j=l J

where~is the directivity at Q into M. These equations can be solved with art appropriate software.

NUMERICAL SIMULATION

The f~st example concerns a square plate. A hysteretic damping factor is introduced but there is no
dissipation at the boundaries. The boundaries are simple supported and then the reference
calculation is based on a modal development of the solution of the Love plate equation. The above
formulation (SEF) is implemented for the second calculation with Larnbert’s law. Results are
presented on the two first figures.

The second example concerns an acoustical enclosure. The room under study is
parallelepipeds and absorption of walls is introduced. A point source is defined. Two calculations
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are performed. The first is realised with a ray tracing software called RAYON2.0 and developed at
EDF. The second is based on the above formulation (SEF) with Lambert’s law which is a classical
model of diffuse reelection. The two last figures show the acoustical pressure in dB inside the
reception plane. No more than 2 dB difference is done.
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CONCLUSIONS

The energy formulation presented in this paper is well suited for medium and high frequencies
domain because of the smooth response predicted. In one dimension case, it reduces to the well
known equation based on a thermal analogy. But, significant differences appear for multi
dimension case between this formulation and the direct generalisation of the thermal analogy.
me nurnericd results obtained indicate that this method is closed to the ray tracing technique.
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