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Abstract. This article is a discussion on the origin of friction noise produced when rubbing
solids with rough surfaces. We show that the noise emerges from numerous impacts into the
contact between antagonist asperities of surfaces. Prediction of sound sources reduces to a
statistical problem of contact mechanics. On the other hand, the contact is also responsible
of dissipation of vibration. This leads to the paradoxical result that the noise may not be
proportional to the number of sources.

1. Introduction
Friction of solids having rough surfaces produces a typical wideband noise with generally a low
sound level. This is for example the case when rubbing hands of pushing a small object on a
table. Other examples are the sounds produced by a piece of sandpaper or a scouring sponge on
a saucepan. In all these example, the contact is weak and the mechanical interaction is confined
to the interface region at the top of surface asperities. All these sounds may be referred to as
roughness noise [1].

This study focuses on the question of the mechanical origin of roughness noise. We present
simple experiments and numerical simulations which aim to clarify what happens into the contact
and leads to the noise emission. The discussion is conducted in the case of flat metal samples
whose surface have been unpolished.

2. Acoustic characterization of roughness noise
A simple way to produce a roughness noise is to rub against each others two nominally flat
pieces of metal (figure 1) such as proposed in Ref. [2]. The surfaces of the sample have been
prepared by electric-discharge machining which leads to a random surface. In figure 2 is shown
the probability density function of heights of asperities obtained for the samples. The values of
quadratic roughness (standard deviation), Skewness and Kurtosis are specified. The Kurtosis is
close to 3, the theoretical value for a Gaussian distribution. The distribution is clearly Gaussian,
homogeneous and isotropic.

Several remarks must be pointed out concerning the noise emission.
The sound level is of course an increasing function of the sliding velocity as it can easily

be checked with the metal samples (try it by rubbing your hands!). The evolution law is of
exponential type [3]

∆Lp = 20 log10(V2/V1)
β (1)

where ∆Lp is the difference of sound pressure level between speeds V1 and V2.



Figure 1. Simple experiment of
friction sound with two steel sample
with surfaces prepared by electric-
discharge machining.

Figure 2. Distribution of asperity
heights.

The sound level is also an increasing function of roughness. An accurate measurement of the
dependence of sound with roughness also leads to an exponential law [4, 3]

∆Lp = 20 log10(R2/R1)
α (2)

where ∆Lp is the difference of sound pressure level between roughness R1 and R2.
Roughness noise is characterized by a relatively flat power spectrum. In figure 3 is shown

the power spectral density of friction sound recorded by a microphone for two different sliding
velocities. The spectrum is very wide and the entire audio frequency band is covered by sounds.
This wide band nature of sound is the main difference of roughness noise with other types of
friction sounds such as squeal noise for which the power is confined into the vicinity of a single
frequency and few harmonics.

In figure 3, we can also observe some emerging frequencies. These peaks exactly match with
the natural frequencies of solids. This coincidence shows that the mechanical contact between
both solids does not modify the natural frequencies (a strong contact stiffness would result in a
shift towards high frequencies). Consequently, the mechanical coupling between samples is weak.
This is an important characteristics of roughness noise. This condition is generally established
under a light contact pressure.

Figure 3. Power spectrum of
roughness noise produced by sliding
two parallelepipedic metal pieces.
Red, low sliding speed; blue,
high sliding speed. The vertical
black lines indicates the natural
frequencies of solids.

3. Mechanical origin of roughness noise
The mechanical process responsible of roughness noise must be discovered at the scale surface
asperities. Surface asperities whose typical size is of order of dozen of micrometres, represent
obstacles against motion. Percussion at the top of antagonist asperities act as many light impacts
at a very high rate. Since the surface is random by nature, all these impacts are very numerous,
short, and disordered events (Fig. 5).



Figure 4. Mechanical origin
of friction noise. Percussion of
antagonist asperities generates a
vibration of surfaces responsible of
noise emission.

These micro-impacts behave like small hammer strokes which mechanically excite the
structure. Since the Fourier transform of a pulse is constant, we now better understand why
the noise spectrum is so wide. More accurately, we may assess the impact duration for instance
with a model of an elastic sphere impacting a rigid plane. For a steel-steel contact, the impact
duration is of order of 0.1 ms. The frequency bandwidth of sound is therefore larger than 10 kHz
(we measured sound up to 50 kHz with a 1/4” condenser microphone).

The rate of impacts may also be assessed by the following reasoning. The length of correlation
in the contact may be defined as the smallest distance of motion for which the spot population
is entirely re-newed (a definition given by Rabinowicz to explain the transition between static
and kinetic friction [5]). Rabinowicz measured this distance D0 by an indirect technique and
obtained that tit ranges from 1 to 10 µm for different metallic contacts.

In static condition, the number of contact spots is generally low say, of order of n0 ∼ 10
which corresponds to a bearing rate of few percents. But in sliding condition with a speed V ,
provided that we assume quasi-static movement, the population is entirely re-rewed after a time
D0/V . The impact rate is therefore

n = n0
V

D0
∼ 105 impacts/s (3)

for a typical sliding speed V ∼ 10 cm/s and D0 = 10 µm.
A so large impact rate n ∼ 105 combined with a short duration τ ∼ 10−4 s leads to a large

overlap of impacts (say dozens of impacts at the same time). It is therefore impossible to ear
(or measure) separately the different impacts. The steady-sate aspect of roughness noise which
is perceived as a continuous noise by the human ear, stems from microscopic transient events
but so numerous that they appear as a unique one.

Figure 5. Correlation length of an
interface. Under a sliding of length
< D0, the population of spots is
not significantly modified. When
the sliding is > D0, the contact is
entirely affected and new spots are
created.

4. Numerical simulation of roughness noise
The numerical simulation of friction noise is in principle possible with the only laws of contact
mechanics. This is a problem of elasto-dynamics in the presence of contact.

Since the impact duration is of order of 0.1 ms, the time step in numerical simulation must be
much lower than that. In practice we used a time step of 10−8 s with classical time-integration
schemes. Contact detection between the top of asperities requires a very fine mesh. We applied
classical contact algorithms (penalty or Lagrange multipliers methods) with spatial step of 4 µm.



However, the mechanical and acoustical wavelengths involved in this problem are usually very
large (30 cm for the acoustical wavelengths at 1 kHz and several centimetres for the mechanical
wavelengths). So, a finite element model confined to the only elastic problem would not require
a so fine mesh.

This contradiction between a fine mesh for contact detection and a gross mesh for the
vibration prediction highlights that roughness sounds is basically a multiscale problem which is
numerically ill-posed.

We circumvented this difficulty by projecting the equations of motion on a modal basis. If
u(x, t) denotes the vibration field and ωk, ψk(x), k = 1, 2, . . . the sequence of natural frequencies
and mode shapes, then the modal projection reads,

u(x, t) =
∑
k≥1

Uk(t)ψk(x) (4)

where Uk is the modal amplitude to be determined. The equations of motion on modal
amplitudes are

mk

(
Ük(t) + 2ζωkU̇k(t) + ω2

kUk(t)
)

= Fk(t) (5)

where mk is the modal mass, ζ the modal damping factor and Fk the modal force induced by
contact. The number of equations of motion is very low since we saw that relatively few modes
are involved in this problem. But determining modal contact forces Fk requires to detect all
contact points at each time step. This is achieved by computing the surface deformation on a
fine mesh at each time step. This is of course the most time consuming step. The gain compared
with classical finite element method is therefore in the time-integration scheme limited to a low
number of equations of motion. Details of the method may be found in Ref. [6].

An example of result is shown in figures 6, 7. The studied system is composed of a small cube
of length 2 cm made of stainless steel sliding on a large elastic plate of thickness 2 mm. The
surfaces have been modelled by numerically generating a gaussian surface of various roughnesses.
We can observe from figure 6 that the vibrational level (and therefore the Sound Pressure Level)
follows a log evolution with sliding velocity and roughness. This is in agreement with empirical
laws of Eqs. (1) and (2). Furthermore, from figure 7, we also observe that the rate of impacts is
about 105 impacts/s for V = 10 cm/s in a fine agreement with Eq. (3). However, it also appears
that the impact rate decreases with the sliding speed. This may be interpreted as a dynamical
effect. The more rapid the movement, the more strong the impacts. This may result in a loss
of contact and an increase of the flight duration of the slider. This phenomenon is of course not
taken into account in Eq. (3) based on the quasi-static assumption.

5. Dissipation of vibration
It is well-known in engineering that contacts are responsible of a strong dissipation of vibrations.
A metallic structure, such as a shell or a frame, is generally highly reverberant and may easily
transmit sound and vibration in the overall system. However, the same structure attached
by bolts, welding points, or rivets presents a much lower reverberation time. The presence of
contact in attachments induces a strong dissipation of vibration by micro-slips into the contact.
This mechanism is sometimes used to design low reverberant components in built-up structures.
A particularly impressive example is car oil sump made by stamping together two metal sheets
instead of a single one, resulting in a highly absorbant element which does not contribute to
radiate sound.

The following experiment illustrates the phenomenon [7]. We measured with a sonometre
the sound pressure level induced by the sliding of sugar lumps on a table surface (a large wood
table). Not surprisingly, we observed that the sound pressure level increases with the number
of sugar lumps. We may add that sugar lumps are sound sources which are uncorrelated. Their



Figure 6. Vibrational level
versus sliding speed for various
roughnesses (from bottom to top
Ra=3, 5, 8, 10, 20, 30 µm).

Figure 7. Impact rate versus slid-
ing speed for various roughnesses
(from top to bottom Ra=3, 5, 8,
10, 20, 30 µm).

powers add together and therefore the theoretical law is an increase by 10 dB of Sound Pressure
Level by decade of sugar lumps. The overall increase of 18 dB for a number of sugar lumps
ranges from 1 to 100 indicates therefore an experimental slope of 9 dB per decade which is very
close to the theoretical value.

However, when reproducing this simple experiment on a drum membrane, we observe that
the Sound Pressure Level is almost constant (we did the experiment from 1 to 80 sugar lumps).
This result is rather surprising at first sight. If the lumps are uncorrelated noise sources on a
table wood, we may wonder why they are not on a drum membrane.

The key of this phenomenon is not in the additive law of sound powers but rather in the
dissipation process. We may propose the following thermodynamical reasoning. The structure
(table plate or drum membrane) is a tank of vibrational energy. Sources (sugar lumps) inject
vibrational energy in this tank. The power balance reads Pinj = Pdiss where Pinj is the power
being injected by sources and Pdiss the dissipated power. The total power supplied by sources
is Pinj = Np where N is the number of sources and p the unit power. When the dissipation of
vibration occurs in the material by hysteretic damping, a widely-accepted dissipation law [8] is

Pdiss = ηωWA (6)

where η is the damping loss factor, ω the central frequency, W the energy per unit area (assumed
to be uniformly distributed), and A the plate area. Substituting Pinj and Pdiss into the energy
balance, the energy density is found to be proportional to the number of sources, W ∝ N . This
result explains the additive law and the slope of 10 dB per decade.

But in the case of a membrane, the natural dissipation in material is almost negligible. In the
sugar lumps experiment, the dissipation of vibration mainly stems from the presence of lumps
themselves. The micro-slips occurring at the interface between the sugar lumps and membrane
induces most of dissipation. It is therefore reasonable to assert that dissipation is proportional
to the contact area. More specifically, we may infer by analogy Eq. (6) law that

Pdiss = η′ωWS (7)

where η′ is an ad-hoc damping loss factor (due to contact) and S the total contact area. Letting
S = Ns where s is the contact area of a single lump, we get W ∝ 1 that is the vibrational



energy density is independent of the number of sources. The number of lumps is responsible of
an increase of the supplied power, but, in the mean time, it is also responsible of an increase
of dissipation exactly in the same proportion. This well explains the constant regime observed
on the drum. Other experiments reveal that when combining both dissipation mechanisms, all
intermediate regimes exist from constant to linear [7].
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Figure 8. Friction noise generated
by sugar lumps sliding on a wood
table. The Sound Pressure Level
(SPL) increase by 9 dB per decade
(linear regime).
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Figure 9. Same experiment a
drum membrane. The Sound
Pressure Level (SPL) is almost
independent on the number of
lumps (constant regime).

6. Conclusion
Roughness noise is a very rich phenomenon. The mechanical problem of contact and vibration
is strongly multiscale (scale of asperities versus scale of vibration). This is also a statistical
problem of contact mechanics since the surfaces in presence are random by nature. The numerical
simulation of the contact mechanics is intensively time-consuming but optimized methods may
lead to interesting results such as impact rate, impact duration and so on.

The dual characteristic of contact, source of vibration but also responsible of dissipation of
vibration is certainly the most intriguing characteristics. If the complexity of events in the
contact does not allow a deterministic answer, the fact that microscopic events responsible
of noise emission are numerous, short and random is certainly a favorable condition to apply
methods and concepts of statistical mechanics.

Acknowledgments
This work was performed within the framework of the Labex Celya of Université de Lyon,
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