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This paper is concerned with the high-frequency dynamics of structures in the time
domain. In this frequency range, a di!erential equation governing the vibrational energy
density is proposed. This simpli"ed equation leads to the prediction of large scale space and
time evolution of the energy quantities averaged over time, frequency and space. For
one-dimensional undamped structures, the energy equation is the classical wave equation
whereas its generalization for damped structures leads to a telegraph-type equation. The
discussion is focussed on the comparison with the di!usion equation sometimes encountered
in the literature.
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1. INTRODUCTION

Medium- and high-frequency dynamics is the subject of a fantastic devotion and the great
number of works and publications is evidence of the interest of the scienti"c community in
such a question. As a matter of fact, there is still a real need to have predictive tools well
suited to medium and high frequencies and taking into account the numerous features of
this domain. Those peculiarities make the use of the classical methods ("nite element,
boundary element, etc.), not always possible or of less suitability in the non-modal range.

Among possible alternatives, one can mention the well-known Statistical Energy Analysis
[1] (SEA). SEA gives the vibrational energy of each subsystem of complex structures.
Nevertheless, SEA requires some improvements. In this matter, the reader can consult
references [2}4] for a review of SEA. An interesting survey and a number of critical
comments are given. Beyond these studies, a number of works attempt to enhance the SEA
robustness and predictivity. Among those tentatives, one can note the earlier work of Belov
et al. [5] and the interesting investigations of Nefske and Sung [6], who proposed the use of
the heat conduction analogy to obtain not only the total energy available in SEA, but also
the space spread of energy density within the subsystems. This leads to an energy
formulation of the dynamical equation of motion instead of the classical formulation based
on the displacement "eld. Basically, this way of thinking can be viewed as a local energy
formalism whereas the SEA formalism is based on global energies of "nite subsystems. This
model has been improved by Bernhard and his team [7}9] and also discussed in references
[10, 11].

However, a number of questions and debates are addressed towards the validity of the
heat conduction analogy, also called the vibrational conductivity approach. The reader can
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"nd more details in references [11}18]. It should be noted that all of those contributions
concern only the steady state dynamics. In all these studies, it has been shown that the
thermal analogy is a very particular case for the representation of the energy repartition in
the steady state condition. In fact, the thermal analogy is restricted to very simple
one-dimensional systems with one propagating wave. Further models have been proposed
for complex one-dimensional systems [17, 18] and for multi-dimensional systems
[11, 16, 19]. From &&exact'' consideration of energy #ow, Xing and Price [20, 21] have
treated the case of semi-in"nite systems, and have remarked that for a semi-in"nite
vibrating rod in tension or in compression, the time-varying energy does not satisfy the heat
conduction equation. But no equation concerning the "nite rod is given. Finally, it should
be noted that, a simpli"ed displacement method called, the transfer function technique
(TFT) was proposed by Colton et al. [22]. This method is based on a wave approach similar
to the technique used in this paper for an energy di!erential equation proof. It is restricted
to the analysis of a simple one-dimensional propagator. The di!erential energy equation
studied in this paper di!ers from the TFT in the simpli"cation hypothesis and tends to be
a general tool for high-frequency modelling of one or multi-dimensional elastoacoustic
phenomenon [11, 16, 17, 19].

The high-frequency dynamics in the time domain is not a frequent subject in the existing
literature. Only a few papers deal with transient responses from an energetic point of view.
An earlier work on the subject has been published by Manning [23] in the context of
transient SEA. More recently, Lai and Soom [24, 25], and Pinnington and Lednik [26, 27]
published additional transient SEA results. However, transient SEA requires more
theoretical investigations in order to clarify several problems, among them the coupling loss
factor de"nition versus time. Transient SEA seems to be relevant for the determination of
structural reverberation time. In the particular context of energy #ow methods, there exists
an attempt by Nefske and Sung [6] to generalize the heat analogy in the time domain. As in
transient SEA, the authors introduce the term L=/Lt where= is the total energy density to
complete the heat conduction equation. Neither a rigorous demonstration nor
a justi"cation is given. However, it is to be acknowledged that the authors did not solve the
heat conduction equation for transient problems. Only steady state results have been
shown.

After this brief description of the state of the art, the main goal of this paper is to
generalize and extend the discussion about the thermal analogy by considering both space
and time variables. Actually, by using a wave approach very similar to the one in reference
[17] in the steady state case, the time domain is tackled for both damped and undamped
cases. It will be shown that in both cases, the thermal analogy fails in representing the
energy spread for very simple systems. A wave type equation is obtained in the undamped
case, whilst a telegraph type equation is derived for the energy in the time and space domain
in the damped case. Comments and comparisons are "nally given in order to point out the
di!erences between this model and the vibrational conductivity approach. In particular, it is
shown that the equivalence between vibrational energy #ow and heat #ow is physically
a very restricted matter.

2. SOME DEFINITIONS AND ASSUMPTIONS

This section introduces the main de"nitions and concepts needed to derive the energy
equations, to discuss its features and to appreciate its interest. In the subsequent
presentation, the terms f(s!ct) and g (s#ct) will designate travelling waves in
a one-dimensional medium, considered as an homogeneous waveguide. The space variable



Figure 1. Wave designation for a simple waveguide.
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along the system is sand the time is denoted by t. The "rst term is a wave propagating in the
s-positive direction (right-travelling) whereas the second is propagating in the s-negative
direction (left-travelling, see Figure 1). In the case where the disturbance is governed by the
wave equation, d'Alembert's solution shows that, in general, two such waves propagate
simultaneously in the system.

With the view of describing the energy transfer inside the medium, two continuous energy
"elds are introduced. The "rst energy quantity is the total energy density=(s, t) de"ned as
the sum of the potential energy density and the kinetic energy density. The second energy
variable I(s, t) is the energy #ow de"ned as the energy per unit time #owing through
a section of the waveguide. This quantity is attached to the propagating part of the wave.
For pure evanescent waves it vanishes and these waves are not taken into account in the
evaluation of the energy transfer process. These energy quantities are local, as opposed to
the energies per subsystem involved in SEA.

Both propagating waves f (s!ct) and g (s#ct) involve partial energy quantities de"ned
as the energy variables associated to those waves. Henceforth, I`(s, t), I~(s, t),=`(s, t) and
=~(s, t) will represent, respectively, the energy #ows and the energy densities attached to
the right-travelling and the left-travelling waves.

In order to establish a relationship between the partial energies=$(s, t) and I$(s, t) and
the total ones = (s, t), I (s, t), an additional assumption is introduced. This assumption
postulates that interferences are not considered in the model. As a consequence, the
superposition principle is valid for energies as is the case for the disturbance "elds f and g in
the linear situation:

=(s, t)"=`(s, t)#=~(s, t), I(s, t)"I`(s, t)#I~(s, t). (1)

In addition, it is well known, in the literature of wave dynamics, that a proportionality
exists between the energy #ow and the energy density associated with travelling waves
[28, 29],

I$(s, t)"$c=$(s, t), (2)

where c is the energy velocity of waves. The sign before the energy velocity on the right-hand
side stems from the direction of propagation. This relationship must be considered as the
de"nition of the energy velocity. It should be noted that the energy velocity and the group
velocity match for a lossless medium [28]. However, for light damping (a condition that is
met in nearly all practical structures) the energy velocity does not signi"cantly di!er from
the group velocity. Equation (2) has been encountered in many papers concerning
high-frequency literature. For instance, Nefske introduced this expression in his famous
paper [6] giving the di!usion equation. Langley [30] used this expression in order to
establish the=ave Intensity ¹echnique equations. Many other veri"cations can be found in
references [7, 17}19, 13].

The main step in deriving the energy equation is the local energy balance for
a non-loaded region,

LI

Ls
(s, t)#

L=
Lt

(s, t)#p
diss

(s, t)"0, (3)
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where p
diss

is the power density being dissipated. For undamped systems, the local energy
balance (3) becomes

LI

Ls
(s, t)#

L=
Lt

(s, t)"0. (4)

The damping model adopted here is the same as in SEA: power density being dissipated is
proportional to the energy density. Hence

p
diss

(s, t)"gu=(s, t), (5)

where g is the damping loss factor and u the circular frequency. The validity of this
relationship has been discussed in the literature [24, 26] about SEA. Additional comments
and discussions concerning equation (5) are included in reference [1]. From the power
balance (3) and the given dissipation model (5), an equation giving the time and space
evolution of= can be written only if the energy #ow I can be related to the energy density
= with an appropriate intrinsic relationship. To seek such a relationship is the purpose of
the next sections.

3. VIBRATIONAL CONDUCTIVITY APPROACH

The most natural of these intrinsic relationships stems from the remark that the problem
of the repartition of vibrational energy along absorbing systems is similar to the heat
conduction problem [5]. In reference [6], this analogy is invoked to postulate that Fourier's
law should be valid. The energy #ow is proportional to the gradient of the energy density.
The involved coe$cient is readily found on the basis of a wave analysis. It yields

I(s, t)"
c2

gu
L=
Lx

(s, t). (6)

Now, substituting relationship (6) into the power balance (3) gives

!

c2

gu
L2=

Ls2
(s, t)#

L=
Lt

(s, t)#gu=(s, t)"0. (7)

This equation is termed the heat conduction equation or the di+usion equation. As a matter
of fact, it is analogous to the heat conduction equation with a convective term gu= [6].
This equation (7) predicts only the non-oscillating evolution of the energy density. The
solution of this di!usion equation may be viewed as the frequency average or the local space
average of the energy density deduced from classical governing equations [7]. Particular
energy boundary and coupling conditions [31, 32] are "nally introduced to solve the energy
equation.

4. TRANSIENT ENERGETICS FOR UNDAMPED CASE

Consider an undamped waveguide with a right-travelling and a left-travelling wave. As
the disturbance "elds f and g attached to these waves are solutions of the equation of
motion, the energy balance is satis"ed separately for each wave,

LI$

Ls
(s, t)#

L=$

Lt
(s, t)"0, (8)
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where the dissipation term has been discarded. Introducing equations (2) into the power
balance (4) leads to partial di!erential equations for only the partial energy densities:

$c
L=$

Ls
(s, t)!

L=$

Lt
(s, t)"0. (9)

This is exactly the energy equation obtained by Xing and Price [20, 21] for simple
semi-in"nite rods in tension or compression, derived from another point of view. In these
papers, the authors start from the governing equations of small disturbances in a continuum
elastic medium and derive equation (9) without any simpli"cation. A further substitution of
equation (2) into equation (9) gives

LI$

Lt
(s, t)"!c2

L=$

Ls
(s, t). (10)

By applying the linear superposition relationships (1), equation (10) yields

LI

Lt
(s, t)"!c2

L=
Ls

(s, t). (11)

At this stage, one can clearly con"rm that the relationship relating the energy #ux and the
energy density is of a di!erent kind when comparing it to the classical Fourier's law (6), even
for very simple vibrating systems.

Finally, by introducing relationship (11) into the derivative respect to t of the energy
balance equation (4), it becomes

!c2
L2=

Ls2
(s, t)#

L2=

Lt2
(s, t)"0. (12)

Equation (12) describes the energy spread within a one-dimensional system when
interferences are not taken into account. This equation is a wave-type equation instead of
the di!usion equation presented by Nefske [6].

5. TRANSIENT ENERGETICS FOR DAMPED CASE

Consider now the case of damped systems. The linear superposition (1) of energy
previously used is still valid. The derivation of the energy equation comes, once again, from
the local energy balance (3) for damped systems. For a particular travelling wave solution,
the power balance (3) may still be applied, and so

LI$

Ls
(s, t)#

L=$

Lt
(s, t)#p$

diss
(s, t)"0. (13)

The power density being dissipated (5) is obviously satis"ed by the particular travelling
wave solutions, so that

p$

diss
(s, t)"gu=$(s, t). (14)

Now, by substituting equations (14) and (2) into the power balance equations (13), one
obtains:

c2
L=$

Ls
(s, t)#

LI$

Lt
(s, t)#guI$(s, t)"0. (15)
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By adding equation (15),

!c2
L=
Ls

(s, t)"
LI

Lt
(s, t)#guI(s, t). (16)

Once again, relationship (16) can be compared with Fourier's law (6). The former has
a time-derivative term that is not present in the latter. In fact, relationship (16) generalizes
Fourier's law (6) by adding the time-derivative term revealed by relationship (11). Deriving
the local power balance equation (3) with respect to time leads to the expression

!c2
L2=

Ls2
(s, t)!gu

LI

Ls
(s, t)#

L2=

Lt2
(s, t)#gu

L=
Lt

(s, t)"0, (17)

where LI/Lt has been evaluated from equation (16). Finally, the energy equation is obtained
from equation (17) by substituting the expression of LI/Ls from the energy balance (3):

!c2
L2=

Ls2
(s, t)#

L2=

Lt2
(s, t)#2gu

L=
Lt

(s, t)#(gu)2= (s, t)"0. (18)

Equation (18) is the energy equation representing the time and space evolution of the
non-oscillating part of the energy density. This equation is a telegraph-type equation and it
generalizes directly the wave equation (12) obtained for undamped systems.

6. BOUNDARY CONDITIONS

The simplest boundary conditions to be applied to a waveguide of length ¸ are for
non-dissipative extremities. Indeed, in this case

I(0, t)"0, I (¸, t)"0 (19, 20)

should be valid at any time.
In the presence of absorbing boundaries, the absorption coe$cient a is introduced. It is

related to the re#ection e$ciency R"1!a de"ned as the ratio of re#ected energy #ow to
incident energy #ow. So, for the left boundary location at s"0 (see Figure 2)

I`(0, t)"!(1!a)I~(0, t). (21)

The net or total energy #ow is then

I (0, t)"I`#I~"aI~(0, t). (22)

Now, consider the energy densities. Propagation condition (2) leads one to re-write
equality (21) as

=`(0, t)"(1!a)=~(0, t) (23)
Figure 2. Waveguide boundaries.
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and the following is obtained for the total energy density:

=(0, t)"=`#=~"(2!a)=~(0, t). (24)

By comparing equations (22) and (24), a local relationship involving only total energy
quantities is derived;

I (0, t)"!c
a

(2!a)
=(0, t). (25)

Applying a similar condition for the right boundary s"¸ with a reverse sign, one obtains
now two boundary conditions for absorbing extremities:

I (¸, t)"c
a

(2!a)
=(¸, t). (26)

Indeed, the case a"0 matches conditions (19). More interesting is the case a"1 for which

I (0, t)"!c=(0, t), I(¸, t)"c= (¸, t). (27)

Boundary conditions (27) to be applied for totally absorbing ends are nothing more than
propagation conditions (2).

7. COMMENTS

Many comments and remarks can be made owing to the formulations presented before.
For the sake of clarity, one can "rst summarize the three equations for the energy obtained
in previous sections:

!c2
L2=

Ls2
(s, t)#gu

L=
Lt

(s, t)#(gu)2= (s, t)"0, (28)

!c2
L2=

Ls2
(s, t)#

L2=

Lt2
(s, t)"0, (29)

!c2
L2=

Ls2
(s, t)#

L2=

Lt2
(s, t)#2gu

L=
Lt

(s, t)#(gu)2= (s, t)"0. (30)

First of all, it should be noted that under steady state conditions, no di!erence exists
between the model of di!usion equation (28) and model (30) presented here. In this way,
equation (30) proposed in this paper generalizes e!ectively the vibrational conductivity
equation under steady state conditions widely studied in the literature [12, 8]. However,
when both time and space domains are involved, many fundamental di!erences appear
between equations (28) and (30).

From a purely mathematical point of view, it should be noted that energy equation (28) is
of di!erent nature than the others two (29, 30). In fact, energy equation (28) is a parabolic
equation whilst equations (29, 30) are hyperbolic (if time t is considered as being the second
co-ordinate). More precisely, equations (29, 30) admit two families of real characteristics.
The d'Alembert solutions for wave equation (29) and telegraph equation (30) are of the
form

=(s, t)"e~gutF(s!ct)#e~gutG(s#ct), (31)



Figure 3. Waveguide under a unit energy source at s"0 and t"0.
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where F(s!ct) and G(s#ct) are the right- and left-travelling energy densities=`(s!ct)
and =~(s!ct). Finally, parabolic equation (28) has only one family of characteristics
which leads to a drastically di!erent solution behaviour. In particular, the oscillatory
properties of their fundamental solutions are di!erent. It should be noted that these
oscillatory properties condition the numerical interest of energy-based models at high
frequencies.

Among additional comments to be given, the energy derivative with respect to time is
a fundamental matter. In particular, the "rst derivative of the energy density with respect to
time, namely the term L=/Lt appears in both di!usion equation (28), and telegraph
equation (30). This term traduces a non-conservation of energy and breaks the symmetry
with respect to time. This means that a di!erent kind of solution is obtained, if the sign of
the time t is reversed. This non-conservation of energy is accompanied by a continuous
increasing change in entropy as time goes on.

Equation (28) is a &&perfect'' di!usion equation with respect to both time and space.
However, the di!usion equation predicts that the temperature will rise instantaneously
everywhere, under the e!ect of an instantaneous heat source. Similarly, equation (28) means
that the energy #ow propagates instantaneously from a source to an observation point on the
vibrating system. This energy #ow is obviously physically impossible. On the other hand,
the wave or the telegraph equation predicts a ,nite velocity of propagation of mechanical
energy #ow. Consequently, there are some lacks in the analogy between the vibrational
energy #ow and the thermal #ow. This systematic analogy leads to misunderstanding of the
physical phenomenon and to an energy equation of limited consistency.

In order to continue the discussion, Green functions corresponding to the system
represented in Figure 3 for the di!erent energy equations are summarized as follows:

G(s, t)"
Jgu

2cJnt
e(~gu@4c2t)s2 e~gutH(t) (32)

for di!usion equation (28),

G (s, t)"
1

2c
H(c2t2!s2)H(t) (33)

for wave equation (29),

G(s, t)"
1

2c
e~gutH(c2t2!s2)H(t) (34)

for telegraph equation (30) proposed in this paper. In these expressions, H denotes the
Heaviside function.

First of all, it should be pointed out that the Green function (33) for the wave equation
can be, as expected, obtained from the Green function (34) of the telegraph equation when
the damping loss factor g goes to zero.



Figure 4. Green function versus s-axis for the di!usion equation at various time values; solid line ct"1, } } } }
line ct"4 and } ) } ) } ) } line ct"9.

Figure 5. Green function versus s-axis for the wave equation at various time values; solid line ct"1, } } } } line
ct"4 and } ) } ) } ) } line ct"9.
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In Figures 4}6, Green the respective functions are plotted versus the s-axis for various
time values. These "gures con"rm that the various Green functions have di!erent properties
and behaviour.

Ultimately, the last comment to be mentioned, in the analysis of these energy equations,
concerns the manner in which di!usion equation (28) may be a possible approximation of
telegraph equation (30). As stated in reference [33] for the heat #ow analysis, after



Figure 6. Green function versus s-axis for the telegraph equation at various time values; solid line ct"1, } } } }
line ct"4 and } ) } ) } ) } line ct"9.
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a su.ciently long time, instantaneous propagation of energy can be acceptable, and hence
also the di!usion equation. In reference [33], a correction of the di!usion equation is
proposed. As instantaneous propagation is impossible, an additional term 1/c2(L2 )/Lt2) is
introduced. A similar procedure cannot be introduced immediately when dealing with
energy behaviour. In fact, the correction of the di!usion equation must give asymptotically
the di!usion equation for large values of the energy velocity (cPR) or equivalently, when
ct is much greater than Ds D (ctADs D). This approximation cannot be done here as the
equivalent di!usion coe$cient is energy velocity dependent, so that the behaviour when
cPR is di!erent from that of the di!usion equation. Hence, no obvious approximation
can be given for the di!usion equation, con"rming once again the di!erence between heat
#ow and mechanical energy #ow.

Thus, telegraph equation (30) that has been derived in this paper from a propagative
approach, is not a simple correction of di!usion equation (28) but is something completely
di!erent.

8. CONCLUSION

In this paper, some energy equations in the space-time domain have been studied within
the context of SEA alternatives well suited for medium- and high-frequency dynamics.
Actually, a propagative approach dealing with wave contents of studied systems is used,
leading to transient energy-based equations. These equations remove the oscillating parts of
quadratic "elds and consequently predict only the incoherent quadratic levels. It is well
known that such an approximation is, in return, signi"cantly advantageous for the
numerical cost [8, 9].

The transient local energy equations given here point out that Fourier's law (6) fails for
the time-varying vibrational energy. It should be replaced by relationship (16) in which
a time-derivative term has been included. The analogy between the vibrational energy #ow
and the thermal #ow in the conduction problem, is no longer valid. Transient equation (30)
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derived in this paper shows that the energy #ow is governed mainly by a propagation
process rather than a di!usion one. So that, a telegraph-type equation which reduces to
a wave equation as a particular case, seems to be more adequate for energy transfer
prediction.

It should be pointed out that the propagative approach proposed in this short paper can
readily be generalized to multi-propagative modes in one-dimensional waveguides [17] or
to multi-dimensional systems [11, 19].

Finally, in the context of some speci"c applications in technical engineering, such as
impact noise, shock response problems and so on, the transient local energy approach
proposed in this paper, could turn out to be an additional tool for transient SEA. So, in
addition to the simulation of decay rate and energy envelopes [25] provided by transient
SEA, the transient local energy equation permits the prediction of the repartition of
vibrational energy inside subsystems.
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