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A simplified model is presented for medium and high frequencies in structures or
acoustics. This model, which does not take into account interferences between propagative
waves, is asymptotic in the sense that it is more accurate as frequency increases. Based on
energetic quantities and energy balance, the spirit of Statistical Energy Analysis (SEA) is
conserved. But, unlike SEA which involves global variables, this model considers local
variables. The description is more precise and, in particular, the repartition of energy
density inside each sub-system is predicted. Numerical simulations are presented, which
indicate that the results of this model are a good frequency average of the exact response
and are close to those of the ray tracing technique.
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1. INTRODUCTION

Medium and high frequencies have received less attention from researchers than low
frequencies. However, the success of modern techniques such as Statistical Energy Analysis
(SEA) for vibroacoustic and the ray tracing for room acoustics indicate the interest in
engineering to use such methods. Both methods have been applied with considerable
success and have proved their efficiency for industrial appplications. More recently, there
has been interest in generalizing these methods and correcting some of their shortcomings.
For instance, the predictive determination of coupling loss factors in SEA with an
acceptable accuracy is a major problem. So, many users prefer to use SEA as a
semi-empirical model by measuring the coupling loss factors. On the other hand, ray
tracing is an efficient method widely employed to solve problems in room acoustics
especially when the Sabine formula is not valid. But the equivalent technique for structural
problem has not yet been significantly developed and the particular problem of
vibroacoustics in respect to the ray technique remains an open problem.

For a number of years, various approaches have been attempted to generalize the SEA
beyond its limits of application. One of these, called Energy Flow Analysis or Power Flow
Finite Element Analysis [1], uses the same quantities as in SEA; energy and energy flow,
and is based on an equation similar to the heat conduction equation in steady state. This
differential equation leads to a continuous analysis of structures whereas SEA is based on
a discrete analysis. The particular case of one-dimensional systems such as rod or beam
have been well studied [1–3]. But the multi-dimensional case was first investigated by way
of a direct generalization of the thermal analogy established for the one-dimensional space
[1]. This generalization has proven to be valid for travelling plane waves in reference [4]
and for a diffuse field in references [5, 6]. This generalization was criticized by Langley [6, 7]
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who remarked that, for an infinite structure, the decrease in the far-field of the heat
conduction equation solution is in contradiction with those of the energy density deduced
from the Helmholtz equation. In agreement with Langley [6], LeBot et al. [8] suggested
an explanation of this paradox which points out a limitation of the thermal analogy. But
this explanation uses the particular symmetry of infinite systems and does not propose a
solution for general geometry without symmetry.

The aim of the present paper is to propose an alternative method to the heat conduction
equation for multi-dimensional systems such as plates or acoustical enclosures.

In section 2.1, the direct field is investigated by studying infinite systems. It is shown
that, unlike the heat conduction equation, the analytical solution obtained here is in
agreement with the exact result deduced from classical equations of motion. Next, the
diffracted field is taken into account by applying Huygens principle [9]. Then an integral
represention of energy fields is obtained in section 2.2. The fictive sources distributed
among the boundary are evaluated in section 2.3. At each point of the boundary, an energy
balance is stated and then fictive sources are found to satisfy an integral Fredholm
equation of the second kind. In section 2.4, the same method is applied to the structural
coupling problem. This leads to two integral Fredholm equations. These equations are
solved in section 3 by using the classical collocation method. Finally, two numerical
illustrations are presented: the first concerns a couple of square plates and the second an
acoustical enclosure.

2. THEORITICAL FORMULATION

Two energy quantities are involved in this formulation: the energy density W is defined
as the sum of the kinetic and the potential energies (or deformation energy for structures)
and the energy flow vector I which supports the motion of energy inside systems. Moreover
the group velocity cg is needed as a characteristic of the system. A first set of assumptions
required to derive the energy model is summarized as follows: (H1) linear, isotropic,
homogeneous system in steady state conditions excited in a broadband centred on v; (H2)
light damping loss factor; (H3) evanescent waves and near-field are neglected; (H4)
interferences between propagative waves are not taken into account. The necessity for
assumptions (H1)–(H4) will be highlighted in the course of subsequent developments.
Another assumption will be added later on.

The first step to establish this energy formulation is the well known power balance for
a local region:

div . I+ pdiss = pinj . (1)

Here pdiss is the power density being dissipated and pinj the injected power density supplied
by sources. Observe that no accumulation term occurs in this power balance by virtue of
the steady state assumption in (H1). (A list of notation is given in Appendix C.)

The power density being dissipated is proportional to one form of energy. For instance,
for a viscous model, the power density being dissipated is proportional to the kinetic energy
density. In opposition, hysteretic damping leads to a proportionality to potential energy
density. For a pure propagative wave and with the nearfield and evanescent waves
neglected, it is laborious but not difficult to verify for several system examples that kinetic
and potential energy densities are equal [10]. An example of such a calculation is fully
developed in Appendix A. Moreover, with interferences between propagative waves
neglected as previously specified in (H4), this equality between the two forms of energy
remains valid for a more complete wave field constructed as a superposition of propagative
waves. Hence, two models of dissipation are considered below. The first one is the same
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as in SEA with pdiss = hvW where h is the hysteretic damping loss factor of structures.
The second one is related to an atmospheric absorption for acoustical enclosures
pdiss =mcgW where m is the attenuation coefficient and cg is the acoustical group velocity.
Note that, for the sake of simplicity, the standard definition of the attenuation coefficient
which is m times 10 log e and is usually given in dB/m, is not used here.

This energetic formulation is established in two steps. First, pure propagative waves are
considered. Their role is similar to those of the elementary solution of classical differential
problems. Second, more complete wave fields are considered.

2.1.  

Of particular interest are propagative waves in a system. These can be of many kinds.
But, for the purpose of constructing complete fields, one is interested only in one sort of
travelling waves, which are fields created by a single point source S and propagating in an
infinite system. These are plane waves for one-dimensional systems, cylindrical waves for
two-dimensional systems and spherical waves for three-dimensional systems. So, in all the
text, ‘‘propagative waves’’ means these particular propagative waves without specifying
any restriction.

As space is isotropic, these waves are symmetric around the source point S. So, their
fields depend only on the distance r between the observation point M and the source S.
In particular, the intensity I has just a radial component, the algebraic value of which is
denoted by I. One can rewrite the power balance (1) as

1
rn−1

d
dr

(rn−1I)+mcgW=0, (2)

where n is the dimension of the space under consideration (n=1, 2 or 3). m could be
replaced by hv/cg for hysteretic damping. Propagative waves are characterized by an
especially simple relationship between the energy flow and the energy density [10]: a
proportionality coefficient which is exactly the group velocity; I(r)= cgW(r). Thus, the
equality is

I(M)= cgW(M)uSM , (3)

where uSM is the unit vector from the source S toward the observation point M. This
relationship is valid in the far field for outgoing travelling waves (and not for evanescent
wave) and for an undamped system. For a lightly damped system (H2), this relationship
remains valid upon taking into account the dissipation by way of the dissipative term in
the power balance (1). A proof of this assertion is given in Appendix A for plate structures.
So, by substituting this constitutive equation (3) into the power balance (2) , a first order
differential equation on W(r) alone is obtained:

1
rn−1

d
dr

(rn−1W)+mW=0. (4)

Solving this equation gives the energy quantities W and I of propagative waves which are
respectively proportional to the functions

G(S, M)=
e−mr

rn−1 and H(S, M)= cg
e−mr

rn−1 uSM , (5)

where r is the distance between S and M and the factor hv/cg could replace m in case of
structural damping. These functions will often be invoked below as they play a crucial role
when one constructs more complete wave fields. It can be observed that a reciprocity
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relationship is satisfied, G(S, M)=G(M, S), as G depends only on the distance r according
to the homogeneity and isotropy of space.

These solutions (5) can be compared with a well-known result of the equation of motion.
In the case of an infinite membrane, the analytical solution of the equation of transverse
motion is the Hankel function of order zero and second kind H(2)

0 (kr) where k is the
complex wavenumber. A similar argument as used in Appendix A leads to the energy
density W(r)Ae−hk0r/r where k0 is the undamped wavenumber. It should be added that
membranes are nondispersive systems so k0 =v/cg and then W(r)Ae−hvr/cg/r. This result
has to be compared with G(S, M) given in equation (5). Unlike this, the asymptotic
development of the solution of the heat conduction equation is [6, 8] e−hvr/cg/zr. The
decrease is like 1/zr in opposition with 1/r for the exact result. This contradiction points
out that the heat conduction equation and the method proposed below are truly not
equivalent. Indeed both methods involve the same quantities W and I and depend on
power balance, then they are close each other. But fields stemming from the heat
conduction equation are constructed as a superposition of plane waves whilst the fields
here are cylindrical waves for two-dimensional structures and spherical waves for acoustic
space.

One can now try to find the local power balance satisfied by the field G and H.
Obviously, as they have been constructed for this, everywhere except at S itself, the
homogeneous version (pinj =0) of the power balance (1) is satisfied by G and H. But the
question is, what is the injected power density exactly at S? The full explanation is given
in Appendix B. G and H are identified as distributions and the differential operator
occuring in equation (1) is taken in the distribution sense. The result is

divM . H(S, M)+mcgG(S, M)= g0cgdS (M), (6)

where g0 is the solid angle of space at hand. This means that the fields G and H are the
elementary solutions of the power balance (1) which satisfy equation (3).

2.2.   

In general, many propagative waves travel simultaneously in a given system. The
problem now is to establish the fields W and I for any domain V bounded or not and
submitted to any excitation. The boundary of the domain V is noted 1V. Two principles
are invoked: a linear superposition principle and Huygens principle.

First of all, consider the equation of motion Lc= g of a structure. L is a linear operator,
c the unknown field (pressure for acoustic or displacement vector for structures) and g
the source term. Indeed the linear superposition principle is valid for such an equation.
So, if c1 and c2 are two propagative fields associated with the point source terms dS1 and
dS2 and subject to the Sommerfeld radiation condition, then c1 +c2 is the field associated
with the source dS1 + dS2. The energy density W is now obtained by squaring the fields:

W= b=c1 +c2=2 = b=c1=2 +2bRe{c1c*2 }+ b=c2=2 =W1 +2bRe{c1c*2 }+W2. (7)

Here b is a constant depending on the characteristics of the system and W1 and W2 are
the energy densities of c1 and c2 separately. According to (H4) interferences between
propagative waves are neglected. This means that the cross product 2bRe{c1c*2 } can be
removed in expression (7). Thus, the energy density of a superposition of simple fields is
merely the sum of the energy densities of each field. This is the linear superposition
principle extended to energy quantities.

Linear superposition principle: Energy quantities of a superposition of simple propagative
fields are merely the sums of the energy quantities of each propagative field.
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The removal of the middle term in equation (7) has been interpreted in various ways
in the literature. For instance, in reference [2], space averages over a half-wavelength are
considered. The average of this interfering term is then found to vanish.

Second, following Huygens principle, the most general field comes from the
superposition of a direct field emerging from actual sources located in the domain and a
diffracted field emerging from fictive sources located on the boundary of the
domain.Usually, Huygens principle is involved for classical kinematic fields. For instance,
the Helmholtz–Kirchhoff formula gives an integral representation of any acoustical field
governed by the Helmholtz equation. This formula indicates that the diffracted field is
constructed as the superposition of a single and a double layer potential. The originality
of the present model is that Huygens principle is applied directly to energy quantities.
Obviously, in this respect, Huygens principle is adopted here as a premise, and hence does
not require prior justification.

Huygens principle: At any point M, the functions W(M) and I(M) are the superposition
of a direct field created by primary sources (or actual sources) r located at S inside V.
r(S)G(S, M) and r(S)H(S, M), and a diffracted field created by secondary sources (or
fictive sources) s located at P on 1V, s(P)f(uMP , nP )G(P, M) and s(P)f(uMP , nP )H(P, M).

The secondary sources have a directivity diagram f which depends on the angle between
the direction uMP of the emission and the outward normal vector nP at point P. This
function is subject to an additional assumption: (H5) all fictive sources have the same
directivity diagram f which does not depend on the point P.

All these considerations are summarized the following relationships:

W(M)=gV

r(S)G(S, M) dS+g1V

s(P)f(uMP , nP )G(P, M) dP, (8)

I(M)=gV

r(S)H(S, M) dS+g1V

s(P)f(uMP , nP )H(P, M) dP. (9)

Here r and s are respectively the magnitudes of the primary and the secondary sources.
Indeed, the primary sources r are assumed to be known because actual sources constitute
data of the problem. But the secondary sources s are unknown and an equation which
determines their value has to be exhibited. This is the topic of section 2.3.

The validity domain of the assumption (H4) has not yet been defined. As specified by
Huygens principle, propagative waves can emerge from both primary and secondary
sources. To neglect interferences of propagative waves created by primary sources is valid
under the condition that all excitation points are uncorrelated. On the other hand, to
neglect interferences of the diffracted field refers to situations where the modal behavior
of the system is irrelevant. This occurs in the high frequency domain especially when the
modal overlap is high.

It is interesting to note that equations (8) and (9) can be derived directly from the
Helmholtz–Kirchhoff integral representation for the acoustical case. For an interior or
exterior problem, the acoustical pressure p at any point M of the domain V is

p(M)=gV

a(S)g(S, M) dS+g1V $1p
1n

(P)g(P, M)− p(P)
1g
1n

(P, M)% dP, (10)

where 1./1n means the outward normal derivative and g(A, B)= e−ikr/4pr with r= =AB=
is the Green function for the infinite system. The wavenumber k can be a complex number



.  542

to take into account the atmospheric absorption k= k0 − im/2. The total energy density
W is deduced from the pressure as

W(M)=
1

4rc2=p=2(M)+
1

4rv2 =grad p=2(M), (11)

where r is the density of the fluid and c the sound speed. One can now substitute equation
(10) in the relationship (11). The squared integrals or cross product appearing can be
rewritten as integrals over the Cartesian products V×V, V× 1V and 1V× 1V. Now, the
assumption (H4) is interpreted in this way: in the integrand of an integral over A×B, only
the terms due to the same point (P, P) are retained, the other terms are due to interferences;
then,

WgA×B

f(P)g(Q) dP dQw= mgdiagA×B

f(P)g(P) dP, (12)

where � . � means that interferences have been removed and m is necessary for
dimensionality. The operator � . � may be viewed as an ensemble average in the following
way. Upon assuming that the functions f and g are statistically independent, an ensemble
average would yield �f(P)g(Q)�= mf(P)g(P)dP (Q). Then equation (12) is a consequence
of this relationship. After evaluating these terms, one has

�W�(M)= mVgV

=a=2(S)6 1
4rc2 =g=2 + 1

4rv2 =gradMg=27 dS

+ m1Vg1V b1p
1nb

2

(P)6 1
4rc2 =g=2 + 1

4rv2 =gradMg=27 dP

−2m1VReg1V

1p
1n

p*(P)6 1
4rc2 g

1g*
1n

+
1

4rv2 gradMg . gradM
1g*
1n 7 dP

+ m1Vg1V

=p=2(P)6 1
4rc2 b1g

1nb
2

+
1

4rv2 bgradM
1g
1nb

2

7 dP. (13)

Six functions derived from g appear in this relationship. All of them can be analytically
evaluated from the explicit expression for g. But using the far field assumption (H3) and
the light damping assumption (H2), some drastic simplifications are realized and finally
all these functions are found to be proportional to the previous function G: for instance,

=g=2 = e−mr

16p2r2 =
1

16p2 G, =gradMg=2 = e−mr

16p2r2 bik+
1
rb

2

1 =k0=2
16p2 G, . . . . (14)



Boundary ∂Ω

Incidence cone

Emission cone

d

dP'

P'

dP

P'
S+

P

θ

n

Pn

   543

This last equality stems from a first order development for small m/k0 (H2) and a second
order development for small 1/k0r (H3). Then

�W�(M)=gV

mV

32p2rc2 =a=2(S)G(S, M) dS

+g1V

m1V

32p2rc2 6b1p
1nb

2

−2Re0ik*
1p
1n

p*1uPM . nP

+ =kp=2(uPM . nP )27G(P, M) dP, (15)

where G is the function given by (5) and uPM is the unit vector from P to M. This is exactly
the same form as expression (8). An equivalent relationship is obtained for �I�(M).

2.3.  

This expected equation for s is obtained by applying the power balance on the boundary
1V. At any point P on the boundary, the incident power comes from both the direct field
and the diffracted field. The boundary is characterized by an absorption coefficient a lying
between 0 and 1 which is defined as the ratio of absorbed power to incident power. This
coefficient a may depend on the point P. The reflected power emitted by the secondary
source s(P) at point P is equal to the incident power minus the absorbed power. It can
be written as

Pemit =(1− aP ){Pdir +Pdif}, (16)

where each term is the infinitesimal power emitted or received from a solid angle du by
an infinitesimal surface dP surrounding P. Notations are defined in Figure 1.

First, consider the emitted power. It is the flux of the intensity created by the source
of magnitude s(P) dP through a part of the sphere of radius o (surface on−1 du)
corresponding to the emitted direction:

Pemit = cgs(P) dPf(uP'P , nP )lim
e:0 0e−me

en−1 en−1 du1= cgs(P) dPf(uP'P , nP ) du. (17)

Figure 1. Power balance on the boundary at point P. The power emitted by a fictive source located inside
dP is toward the emission cone and the incident power comes from both actual sources located at S and the
fictive source located at P'.
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T 1

Values of the coefficient g, n is the dimension of space at hand and
f is the directivity of fictive sources; f=1 is a constant directivity;
f= u . n the directivity equals the cosine of the angle between emission
direction u and the normal to the boundary n (Lambert’s law);
f=(u . n)2 the directivity equals the square of the cosine of previous

angle

n=1 n=2 n=3

f=1 g=2 g= p g=2p
f= u . n g=2 g=2 g= p
f=(u . n)2 g=2 g= p/2 g=2p

Second, the incident power of the direct field is the flux through the surface dP of energy
flow from actual sources of magnitude r(S) located in the cone of the vertex P and solid
angle du:

Pdir =gP'P

r(S)H(S, P)SPn−1 du dS . nP dP. (18)

Here SPn−1 du dS is the infinitesimal volume in general spherical co-ordinates, and the
integral is performed over a segment P'P. The scalar product ·nP dP stems from the
calculation of the flux.

Finally, the incident power from the diffracted field is the flux over the surface dP of
energy flow from the fictive source P' of magnitude s(P') dP:

Pdif = s(P') dP'f(uPP', nP')H(P ', P) . nP dP. (19)

Note that dP' is the part of the boundary covered by the solid angle du. After equating
and integrating the result over the half-sphere HSP of inward directions at P with respect
to du, one obtains

gHSP

cgs(P)f(uu , nP ) du=(1− aP )$gHSP
gP'P

r(S)H(S, P)SPn−1 dS du

+g1V

s(P')f(uPP', nP')H(P', P) dP'% . nP , (20)

where uu is the unit vector for the direction u. The second sum is established by remarking
that when the direction u covers the half-sphere HSP , the point P' entirely covers the
boundary 1V. The first sum can be transformed by integration over V:

s(P)=
1− aP

gcg 6gV

r(S)H(S, P) dS+g1V

s(P')f(uPP', nP')H(P', P) dP'7 . nP . (21)
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Here

g=gHS

f(uu , n) du (22)

has a value depending on the dimension n of the space. Table 1 summarizes these values.
Evidently, equation (21) is a Fredholm integral equation of the second kind on the

layer s.

2.4.  

Now consider two systems V1 and V2 coupled along a common boundary 1V1J1V2.
Indeed, Huygens principle remains valid and inside each system i the fields Wi and Ii are
obtained with the relationships (8) and (9) where V and 1V are respectively replaced by
Vi and 1Vi . Moreover, at each point P of the boundary which is not located on the interface
1V1J1V2, the boundary condition (21) still applies. But, at a point P on the common
boundary 1V1J1V2, two fictive potentials si are now involved, one on each side of the
boundary. So, two coupling conditions on these potentials are expected at this point P.

These coupling conditions are derived in the same way as the previous boundary
condition (21): i.e., by applying the power balance on the interface 1V1J1V2. This power
balance was proposed by Cho and Bernhard [11, 12] for an interface between beams. It
can be summarized as follows. At a point P on the common boundary 1V1J1V2, the
emitted energy toward V1 is the sum of the reflected energy coming from V1 and the
transmitted energy coming from V2. In the same way, the energy emitted toward V2 is the
sum of the transmitted energy coming from V1 and the reflected energy coming from V2.
So, upon introducing a reflection efficiency r and a transmission efficiency t which are
defined respectively as the ratio of the reflected power to the incident power and the
transmitted power to the incident power, the infinitesimal power balances take the forms

P1,emit = r{P1,dir +P1,dif}+ t{P2,dif +P2,dif}, (23)

P2,emit = t{P1,dir +P1,dif}+ r{P2,dir +P2,dif}, (24)

where the subscripts designate the domain into consideration. The ratios r and t depend
on the angles of incidence u1 and refraction u2. The angles ui are related by the
Snell–Descartes law of refraction

(1/c81) sin u1 = (1/c82) sin u2, (25)

where c8i is the phase velocity of the domain Vi . Figure 2 clarifies the notations.

Figure 2. Incident angle u1 and refracted angle u2.
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Figure 3. Power balance on the interface at point P. Two fictive sources are located on each face of the
infinitesimal surface dP and the incident powers come from both actual sources located at S and fictive sources
located at P'1 and P'2 .

A classical determination for plane waves in optics or acoustics leads to the relationships

r=0Z2 cos u1 −Z1 cos u2

Z2 cos u1 +Z1 cos u21
2

, t=
4Z1Z2 cos u1 cos u2

(Z2 cos u1 +Z1 cos u2)2 , (26, 27)

where Zi is the impedance of the system. For membranes one has Zi = ric8i where ri is
the surface mass density. For acoustics the same relationship applies with ri the volumetric
mass density. But for plates, evanescent waves modify the behavior in the vicinity of the
common boundary. By taking into account the continuity of displacement, slope, bending
moment and transverse force, some expressions different from equations (26, 27) can be
established. These are fully determined in reference [13].

One can now evaluate all the terms occuring in the power balances (23, 24). With
reference to Figure 3 for notations, the emitted powers are

Pi,emit = cgisi (P)f(uP'iP , ni,P ) dui dP, (28)

and the incident powers of the direct fields are

Pi,dir =gP'iP

r(S)Hi (S, P) . ni,PSPn−1 dS dui dP. (29)

Finally, the incident powers from the diffracted fields are

Pi,diff = si(P'i )f(uPP'i , ni,P'i )Hi (P'i , P) · ni,P dP'i dP. (30)

After integrating over all the incident angles, the following two coupling conditions are
obtained:

s1(P)=
1

gcg1 6gV1

rr(S)H1(S, P) dS+g1V1

rs1(P') f(uPP', n1,P')H1(P', P) dP'7 · n1,P

+6gV2

tr(S)H2(S, P) dS+g1V2

ts2(P') f(uPP', n2,P')H2(P', P) dP'7 · n2,P , (31)
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s2(P)=
1

gcg2 6gV1

tr(S)H1(S, P) dS+g1V1

ts1(P') f(uPP', n1P')H1(P', P) dP'7 · n1,P

+6gV2

rr(S)H2(S, P) dS+g1V2

rs2(P') f(uPP', n2,P')H2(P', P) dP'7 · n2,P . (32)

Equations (8), (9), (21), (31) and (32) are the basic relationships of the present model.
The features of such a formulation are really interesting. In what follows, a numerical
implementation is first developed and then two examples are considered.

3. NUMERICAL IMPLEMENTATION

The collocation procedure employed for solving the above system of Fredholm
equations is now developed. To solve the system of equations (8), (9), (21), (31) and (32),
the boundary 1V is divided into flat segments Si , i=1, n (see Figure 4) and the discrete
curve is assumed to be an accurate estimation of the actual boundary.

Pi denotes the middle of the segment Si , ni the outward normal vector at point Pi and
ai the absorption coefficient at Pi . It is assumed that the layer s is constant over Si , the
value of which is noted si . This is the simplest choice of discontinuous interpolation.
However, these discontinuous boundary elements have been commonly used in codes
based on the classical integral representation formula of Helmholtz and have demonstrated
their efficiency.

Therefore the Fredholm equation (21) with p point sources of magnitude Ak located at
Sk becomes

si =
1
gcg 6 s

p

k=1

AkH(Sk , Pi ).ni + s
n

j=1
j$ i

sj gSj

f(uPiQ , nj )H(Q, Pi ).ni dQ7 for i=1, n.

(33)

In the same way, upon assuming that pl is the number of point sources Sl,k located inside
Vl , the discrete versions of the coupling conditions (31) and (32) are

s1,i =
1

gcg1 6 s
p1

k=1

A1,kriH1(S1,k , Pi ).n1,i + s
n1

j=1

j$ i

s1,jgS1,j

rif(uPiQ , n1,j )H1(Q, Pi ).n1,i dQ

s
p2

k=1

A2,ktiH2(S2,k , Pi ).n2,i + s
n2

j=1

j$ i

s2,j gS2,j

tif(uPiQ , n2,j )H2(Q, Pi ).n2,i dQ7, (34)

Figure 4. Discrete boundary. The boundary 1V is divided into flat segments Si with centers at Pi .
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s2,i =
1

gcg2 6 s
p1

k=1

A1,ktiH1(S1,k , Pi ) . n1,i + s
n1

j=1

j$ i

s1,j gS1,j

tif(uPiQ , n1,j )H1(Q, Pi ).n1,i dQ

s
p2

k=1

A2,kriH2(S2,k , Pi ).n2,i + s
n2

j=1

j$ i

s2,jgS2,j

rif(uPiQ , n2,j )H2(Q, Pi ).n2,i dQ7. (35)

The n1 + n2 unknowns sl,i are determined by solving these equations. Then, the fields W
and I are calculated from

Wl (M)= s
pl

k=1

Al,kGl (Sl,k, M)+ s
nl

j=1

sl,j gSl ,j

f(uMQ , nQ )Gl (Q, M) dQ, (36)

Il (M)= s
pl

k=1

Al,kHl (Sl,k , M)+ s
nl

j=1

sl,j gSl ,j

f(uMQ , nQ )Hl (Q, M) dQ. (37)

These equations can be solved with an appropriate software.

4. NUMERICAL SIMULATION

The first example is concerned with an acoustical enclosure. The room under study is
30×30×5 m in size and the absorption coefficient of the walls is 0·5. A point source is
located at 10×10×0·8 m and has a power of 1 W. The atmospheric absorption is equal
to 0·00261 m−1 which is a classical value at 1000 Hz. Two calculations have been
performed. The first is realized with a ray tracing software called RAYON2.0 and
developed at the EDF company. The second is based on the above formulation (equations
33, 36 and 37). Figures 5(a) and 5(b) show the acoustical pressure in dB inside the reception
plane which is 1·5 m above the floor.

One can observe two regions of propagation. The first is the direct field with a high level
from 95 to 113 dB. The critical distance for such a room is 7 m. So, the region of the direct
field is a sphere with 7 m radius and the source point as centre. It is not surprising that
direct fields are the same for both calculations. In fact, equation (5) gives e−mr/r2 for the
direct field of the model: this is exactly the same analytic expression which is implemented
in the ray tracing software. What is more surprising is that the agreement between both
calculations remains in the region of the reverberant field. In this region, the effect of the
second integrals in equations (8) and (9) dominates the direct field. The irregularities in
the ray tracing results are due to the lack of rays in certain regions. However, the results
of both methods are similar and the plot (Figure 5(c)) along the line represented on the
pressure maps reveals that there is no more than a few dBs of difference.

The second example is concerned with a couple of square plates. A hysteretic damping
factor is introduced, the value of which is 5% for both plates, but there is no dissipation
at the boundaries (absorption coefficient a=0). The left and right boundaries are clamped,
the common edge is free and other edges are simply supported (see Figure 6).

The characteristics of the plates are as follows: size 2×2 m, Poisson’s ratio n=0·3,
thickness h=1 mm, mass density r=7800 kg/m3, all for both plates. The Young’s
modulus is 2·1×1011 N/m2 for plate 1 and 2·1×107 N/m2 for plate 2. Two local frames
are defined as shown in Figure 6. The driving point is located at x=0·3 m and y=0·3 m
on plate 1 and has a magnitude 1 N constant over the frequency band 10 Hz–10 kHz. The
reception points are located at x=1 m and y=1 m on each plate.
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Figure 5. Sound pressure map in a parallelepiped room excited by a point source at f=1000 Hz calculated
by two numerical methods. (a) Results obtained by solving the integral equation (21); (b) results obtained by
using the ray tracing software RAYON2.0; (c) comparison of both methods along the representative line with
an arrow; ------, ray tracing method; —— , integral equation.

A reference calculation is based on a semi-modal development of the solution of the
Love plate equation. Energy density and energy flow are then evaluated from the obtained
deflection. On the other hand, the above formulation (equations (33)–(37)) is implemented
for the second calculation with u · n as the directivity diagram. The power of the source
is calculated with Pinj =F2/16zDrh where D is the rigidity of plate 1. This relationship
is the power injected by a force F inside an infinite plate. The magnitude A occurring in
equations (31)–(35) obeys A=Pinj /2pcgi . Results of both calculations are compared in the
two parts of Figure 7.
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Figure 6. A pair of plates with two different flexural rigidities; plate 1 is excited at a driving point. Left and
right edges are clamped, the common boundary is free and other edges are simply supported.

The level of energy is very different from plate 1 to plate 2. This is due to the ratio of
group velocities which equals 10. Also, the behavior of this pair of plates differs highly
from the behavior of a single plate: features of the coupling edge are not trivial. critical
angle at the edge has a small value. Hence, most of the energy propagates from plate 1
to plate 2 but the inverse process is rare. Plate 2 dissipates almost all the energy received
from plate 1.

The response calculated with the model is the frequency average of the reference
response obtained with a semi-modal decomposition. Indeed, in the energetic model, the
modal behavior of the structure is not taken into account because inteferences are
neglected. Hence, fluctuations of the reference calculation, due to eigenfrequencies, cannot
appear with the model.

5. CONCLUSIONS

This paper has presented an energy formulation for vibrations in structures or acoustical
enclosures. By neglecting interferences between propagative waves and using several other
minor assumptions, this energy formulation is well suited for the medium and high
frequency domains where the modal overlap is high. A smooth response is predicted which
can be interpreted as the frequency average of the classical response. Thus, calculations
have to be performed in a broad-band [v−Dv/2, v+Dv/2] which contains at least
several eigenfrequencies. Moreover, due to the smooth behavior of such responses, few

Figure 7. Comparison between two results: smooth curve, integral equation (21); oscillating curve, reference
calculation based on a semi-modal development of the solution of the equation of motion. Energy densities; (a)
at point 1 on plate 1; (b) at point 2 on plate 2.
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degrees of freedom are necessary to solve equations (21), (31) and (32). Hence, this method
allows calculations up to high frequencies where the classical methods are usually inefficient.
The numerical results obtained indicate that this method is closely similar to the ray tracing
technique in acoustics.

ACKNOWLEDGMENTS

The author gratefully acknowledges Mr L. Ricol (DER-EDF département AMV,
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APPENDIX A: VERIFICATION OF EQUALITY (3)

The following discussion is developed in various manners in references [4, 10, 14]. So,
this Appendix collects scattered arguments and just retains the main steps of the
calculation, with reference to previous papers for more details in order to highlight how
assumptions (H1)–(H3) are necessary for developments occurring in section 2.1.

Here, one is interested in verifying two points. First, for a time-harmonic travelling
cylindrical wave in a plate, the kinetic energy density is equal to the potential energy
density. Second, for such a wave, energy flow is equal to the energy density times the group
velocity.

Consider an infinite thin plate loaded by a transverse time-harmonic point force. The
deflection w is a sum of two Hankel functions of the second kind of order zero

w= a{H(2)
0 (kr)−H(2)

0 (−ikr)}, (A1)
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where k= k0(1− ih/4) is the complex wavenumber and r is the distance between the source
point and the point at hand. The first term is an oscillating function whereas the second
term rapidly decreases in the farfield. This evanescent wave can be neglected by virtue of
the first part of assumption (H3). Moreover the second part of (H3) states that a large
argument =kr=�1 development can be retained. It yields

w= a e−i(kr− p/4)/z2pkr. (A2)

with account taken of the axisymmetry of the problem, the kinetic energy density, potential
energy density and energy flow are respectively related to the deflection by

T=
1
4

rv2=w=2, V=
1
4

D6bd2w
dr2 b

2

+
2n

r
Re0d2w

dr2

dw*
dr 1+

1
r2 bdw

dr b
2

7,

I=
1
2

Re6−ivD(1+ ih)$ d
dr 0d2w

dr2 +
1
r

dw
dr1w*−0d2w

dr2 +
n

r
dw
dr1 dw*

dr %7, (A3)

where r is the surface mass density, D is the flexural rigidity and n is the Poisson’s ratio.
Substituting equation (A2) into equations (A3) and retaining just the lower powers of 1/kr,
one obtains

T=
rv2=a=2
8p=k=

e−hk0r/2

r
, V=

D=k=3=a=2
8p

e−hk0r/2

r
,

I=
vD=a=2
4p=k= Re{(1+ ih)(k3 + k2k*)7 e−hk0r/2

r
. (A4)

Upon remarking that k4
0 = rv2/D and doing a first order development in h as authorized

by (H2), the equality between kinetic energy and potantial energy is established: T=V.
Moreover, introducing the group velocity of the plate, cg =2v/k0, yields the power flow
I as I= cgW, where the energy density W is defined as the sum of the kinetic energy and
the potential energy. Finally, the energy W is found to be proportional to the function
G deduced from the power balance. This result highlights that the simplifications (H2) and
(H3) are compatible with the power balance.

APPENDIX B: PROOF OF EQUALITY (6)

As the functions G and H are locally integrable in Rn, they define two distributions also
denoted by G and H. Thus, the distribution div . H+mcgG vanishes in Rn − {S}, i.e.,
everywhere except S. By virtue of a well-known theorem, this distribution is a finite linear
combination of the derivatives of the Dirac distribution.

Now one can evaluate the order of this distribution. Denote by 8 a test function with
a compact support K. The value of the distribution D at 8 is denoted as �D,8� with
brackets. Then, the value of the distribution div . H+mcgG at 8 is

�div . H+mcgG,8�= − �H,grad8�+mcg�G,8�

= −gK

H . grad8 dM+mcggK

G8 dM. (B1)
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So,

=�div . H+mcgG,8�= RgK

=H= dM×sup
K

=grad8 = +mcggK

=G = dM×sup
K

=8 =. (B2)

Then the order of the distribution div . H+mcgG is at most equal to one:

div . H+mcgG = adS + s
n

i=1

bi
1dS

1xi
. (B3)

in order to determine the constants a and bi , one chooses test functions of the form 8(r)
where r=SM. Then

�div . H+mcgG,8�=−g0 g
A

0

H(r)
d8

dr
rn−1 dr+mcgg0 g

A

0

G(r)8(r)rn−1 dr, (B4)

where A is the diameter of the compact K and g0 is the solid angle of the space. g0 =2 for
n=1, g0 =2p for n=2 and g0 =4p for n=3. Here

�div . H+mcgG,8�= − g0cg g
A

0

e−mr d8

dr
dr+mcgg0 g

A

0

e−mr8(r) dr

= − g0cg [e−mr8(r)]A0 = g0cg8(0). (B5)

The coefficients a and bi are now identified with the help of n+1 functions 8 which are
linearly independent one obtains, in more physical notations,

divM . H(S,M)+mcgG(S,M)= g0cgdS(M). (B6)

This is the local version of the power balance for propagative waves.

APPENDIX C: NOTATION

W energy density (scalar field)
I energy flow (vector field)
pdiss power density being dissipated
pinj injected power density
h hysteretic damping factor
cg group velocity
c8 phase velocity
m acoustic attenuation coefficient
v circular frequency
G, H defined by equation (5): energy density and energy flow associated to a travelling wave
dS delta Dirac function at point S
V, 1V space under consideration and its boundary
n dimension of the system V, n=1, 2 or 3
uSM unit vector from S to M
nP outward unit vector at point P
r actual sources located inside V
s fictive sources located on 1V
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f directivity function of fictive sources s
g0 solid angle of space V
g defined by equation (22): a dimensional quantity associated to the directivity f
r reflection efficiency of the interface
t transmission efficiency of the interface
k complex wavenumber
k0 real wavenumber (undamped system)
Re real part of a complex number
* conjugate of a complex number


