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This paper aims to generalize the ‘‘radiosity method’’ when applied to specular reflection. Within the
field of thermics, the radiosity method is also called the ‘‘standard procedure.’’ The integral equation
for incident energy, which is usually derived for diffuse reflection, is replaced by a more appropriate
functional equation. The latter is used to solve some specific problems and it is shown that all the
classical features of specular reflection, for example, the existence of image sources, are embodied
within this equation. This equation can be solved with the ray-tracing technique, despite the
implemented mathematics being quite different. Several interesting features of the energy field are
presented. ©2002 Acoustical Society of America.@DOI: 10.1121/1.1504854#

PACS numbers: 43.20.Dk, 43.20.EI@ANN#
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LIST OF SYMBOLS

n position parameter at the boundary
u emission angle
w incidence angle
r receiver point
s source point
p point at the boundary

I. INTRODUCTION

The fact that waves propagate like rays is undoubte
the oldest idea in wave motion. Many ideas on this to
have already been developed in depth. Rays have lost
fundamental status and are now regarded as high-frequ
approximation of waves. The concept of ray is only valid f
short wavelengths. However, rays are still widely enco
tered in modern science for several reasons.

First, solving governing wave equations is practical on
for low frequencies due to computational limits of the finit
element method. At higher frequencies, ray methods are u
and are often the only feasible solution. For instance,
room acoustics, the finite-element method is rarely appl
The majority of the audio range may be investigated us
the ray-tracing technique1 or other simple formulas based o
the statistical properties of rays.2

Second, ray theories enable the ray paths and ma
tudes to be determined separately. In some fields, only
paths are of interest, for instance the image formation st
used for optical instrument design. Geometrical optics i
direct means of gaining access to targeted information w
out solving sophisticated equations.

Finally, beyond a mere approximation, ray theories m
be regarded as an original view of wave motion whose sp
is quite different from the classical one. Many vibration
phenomena can be translated into ray terms, resulting
particularly clear and intuitive representation.

For several years, a method based on energy cons

a!Electronic mail: alain.le-bot@ec-lyon.fr
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W energy density
I intensity vector
G direct field for energy density
H direct field for intensity
v circular frequency
c speed of sound
m attenuation factor
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ations has been investigated in room acoustics.3–5 This
method leads to an integral equation where the unknow
the incident energy at the boundary. The equation has b
applied to the calculation of time reverberation for room
with nondiffuse noise. This method, sometimes called
‘‘radiosity method,’’6 seems to stem from the ‘‘standard pr
cedure’’ in thermics.7 The problem of radiative heat ex
change betweenn diffusely reflecting surfaces is reduced
a set ofn-linear algebraic equations, coefficients of whic
are usually called view factors or angle factors. In Refs
and 9, this method has been extended to structural acous
The radiosity method is actually a true ray method,10 al-
though its numerical implementation is quite different fro
that of classical ray-tracing algorithms. However, the radi
ity method assumes ideally diffuse reflection at wal
whereas the ray-tracing technique is not limited to a parti
lar law of reflection. A generalization of the radiosity metho
for partially diffuse reflection has been proposed in Ref.
where both the integral equation and the image-source t
nique are jointly employed. The effect of specular reflecti
leads to additional sources distributed behind the bound
whereas the sources created by the diffuse reflection are
calized at the boundary. This paper aims to adapt the rad
ity method toperfectly specular reflectionwith somesources
localized on the boundary. The integral equation is replace
by a more appropriate functional equation. The modifi
equation remains a ray method, and a large part of the p
is devoted to verifying that solutions of this equation mat
the classical properties of rays.

The outline of the present paper is as follows. In Sec.
the vibration field is separated into elementary waves. Th
12(4)/1276/12/$19.00 © 2002 Acoustical Society of America
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waves are assumed to be totally uncorrelated and co
quently their energies are added to obtain the complete fi
Some basic properties are also reviewed. In Secs. IV an
a systematic application of the energy balance gives a se
equations for these energy variables. Section VI shows h
the classical image-source method may be applied to s
the energy equations. A second example is studied in
VII. Section VIII proposes an interpretation of in terms
rays. Finally, this theory is applied to a circular domain
Sec. IX.

II. MOTIVATION FOR THE STUDY

When using the radiosity method, it is assumed that
rays are ideally diffusely reflected. The cosine Lambert’s l
can be applied to fictitious sources of magnitudes, which
are distributed over the boundaryG. The reflected energy a
any pointr inside the domainV is written

E
G
s~n!cosu

dn

r
~1!

~two-dimensional case!, wheren is the curvilinear absciss
of the boundaryG, u the emission angle, andr 5ur2pu the
distance between the receiver pointr and the fictitious source
located atp of abscissan. The reflected energy is propo
tional to 1/r .

The purpose of this paper is to extend the radios
method to the case of pure specular reflection. However,
expected that the reflected energy may still result from so
fictitious sources distributed over the boundary as in Eq.~1!.
It is well-known that a source in front of a plane surfa
gives rise to a single image source, says. The reflected en-
ergy is thus 1/R, where R5us2r u is the source–receive
distance. The question now arising is whether the reflec
field 1/R can result from equivalent sources distributed o
the boundary

E
G
s~n,u!

dn
r 5

? 1
R , ~2!

for a well-chosen functions which is no longer restricted to
follow Lambert’s law. The answer is yes. To check this a
sertion, consider

s~n,u!5d~u2w!cosu/ l , ~3!

where l 5us2pu is the distance between the image-sourcs
and the fictitious sourcep of abscissan, andw is the inci-
dence angle@Fig. 1~a!#. With a change of variablen→c
5w2u

E
2`

`

d~u2w!
cosu

l

dn

r
5E d~c!

cosu

l

1

r

dn

dc
dc

5
cosu0

l 03r 0
Y dc

dnU
n5n0

, ~4!

wheren0 is the position where the emission angleu0 is equal
to the incidence anglew0 , i.e., c50. l 0 , r 0 are the corre-
sponding source–boundary and boundary–receiver dista
@Fig. 1~a!#. An infinitesimal displacementdn can be ex-
J. Acoust. Soc. Am., Vol. 112, No. 4, October 2002
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pressed asdn52rdu/cosu @Fig. 1~b!#. Likewise, variation
in dw results indn5 ldw/cosw, and thus

dc

dn
5

dw

dn
2

du

dn
5

cosw

l
1

cosu

r
. ~5!

By substituting Eq.~5! into Eq. ~4!, the reflected energy is
found to be

cosu0

l 03r 0
Y S cosw0

l 0
1

cosu0

r 0
D5

1

l 01r 0
5

1

R
, ~6!

since u05w0 and R5 l 01r 0 . The expected result is thu
obtained.

The plan is now to exploit this result and extend it for
general representation of reflected energy. Indeed, the q
tion is how to determine the fictitious source distributions.
It is shown in Sec. IV that the distributions is determined by
a functional equation.

III. ENERGY REPRESENTATION OF WAVES

In the context oflinear acoustics with homogeneous an
isotropic fluid, two energy fields are referred to: the ener
density W5ruvu2/21p2/2rc2, where p is the acoustical
pressure,v the velocity,r the volumic mass of fluid, andc
the speed of sound, and the energy flow or intensityI5pv.
The circular frequency is denoted asv and the speed of the
flow of energy is denoted asc. Various kinds of damping
mechanisms are possible. The atmospheric absorption o
nates from several phenomena: dynamical viscosity of flu
molecular absorption, etc. A local relationship is adopted
tween the power density which is dissipatedpdiss and the
energy densityW, pdiss5mcW, wherem is the attenuation
factor. As the factorm is v-dependent, this expression do
not hold in the time domain. However, it remains an inte

FIG. 1. Description of an image-sources, which is behind the boundary, in
terms of the fictitious sources located on the boundary.
1277A. Le Bot: Specular reflection of rays
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esting approximation for some transient problems which
volve wave packets such as time reverberation in acous
or structural acoustics, time arrival of rays in ultrason
propagation, and so on. A simple proportional relations
holds between the energy flow and the energy density12 of
traveling waves,I 5cW, where I is the magnitude of the
energy flow vectorI . This relationship cannot be verifie
within the neighborhood of the excitation point, but it
applied under the assumption thatevanescent wave and th
near field are neglected.

Now, consider the direct field of a sources of unit
power. In steady-state condition,G(s,r ) denotes the energ
density at any pointr andH(s,r ) denotes the intensity. In th
case of a transient source, the notationG(s,t;r ,t) and
H(s,t;r ,t) is used for the direct fields generated by an i
pulse excitation ats at timet. The energy balance is then

divr •H1mcG1
]G

]t
5ds,t , ~7!

where the first term in the left-hand side is the net outgo
power per unit volume and the second term is the po
density which is dissipatedpdiss. The fieldsG andH depend
only on the distances5ur2su. With the conditionH5cG,
the fieldsG andH can readily be found8,9

G~s,r !5
1

g0c

e2ms

sn21 , ~8!

G~s,t;r ,t !5G~s,r !d~ t2t2s/c!, ~9!

whereg052p or 4p depending on the dimensionn. Further-
more,H5cGusr , whereusr5(r2s)/ur2su is the unit vector
from s to r .

Actual sources rarely have a uniform output. For t
nonuniform case, it is convenient to introduce the directio
emissive power densityr(s,u,t), which gives the power in-
jected along the directionu at time t and at points. Direc-
tionality is not usually time dependent and thusr(s,u,t)
5 f s(u)r(t), where f s(u) is the directional function of the
sources. The injected power densitypinj is obtained by inte-
grating the flux ofrH over an infinitesimal sphere whic
surrounds the points

pinj~s,t!5
1

g0
E

Sn21

r~s,u,t!dSu , ~10!

wheredS is the surface measure on the unit sphereSn21 .
For an isotropic source, this relationship reduces topinj5r.

Let us turn to the case where several sources simu
neously act in a bounded or unbounded smooth domaiV
with boundaryG. To ensure a meaning for all subseque
integrals, it is assumed that an outward normal exists alm
everywhere. It is also assumed thatall sources are uncorre-
lated in order that linear superposition principle may be a
plied to energy fields. This approximation leads to the
glect of all interference effects and, as a consequence, m
cannot be predicted. The fieldsW and I result from the su-
perposition of direct fields which emerge from prima
sourcesr and diffracted fields which emerge from seconda
sourcess distributed on the boundaryG. For anyrPV
1278 J. Acoust. Soc. Am., Vol. 112, No. 4, October 2002
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W~r ,t !5E
V

r~s,usr ,t2s/c!G~s,r !dVs

1E
G
s~p,upr ,t2r /c!G~p,r !dGp , ~11!

I ~r ,t !5E
V

r~s,usr ,t2s/c!H~s,r !dVs

1E
G
s~p,upr ,t2r /c!H~p,r !dGp , ~12!

wheres5ur2su andr 5ur2pu. dV is the Lebesgue measur
in V, whereasdG is the surface measure onG. The main
difference between Eqs.~11!, ~12!, and the corresponding
equations for the radiosity method appears in the nature
the variables, which here depends on the directionupr . The
radiosity method is thus embodied in Eqs.~11! and ~12! by
adopting Lambert’s laws(p,u,t)5s(p,t)cosu, whereu is
the emission angle between the outward normal of
boundaryn andu. The focus of this text is to show that b
adopting well-chosen distributionss, the diffracted field can
become a plane wave or a cylindrical wave, which emana
from a unique image source. This result is surprising sin
the functionG in Eq. ~11! is a cylindrical wave.

The local power balance for the fieldsW and I is

div.I1mcW1
]W

]t
5pinj , ~13!

wherepinj has been given in Eq.~10!. This can be checked
by a direct substitution of Eqs.~11! and~12! on the left-hand
side and by using Eq.~7! ~Appendix A!. The global power
balance for the whole systemV is obtained by integrating
Eq. ~13! over V. It yields

Pout1mcWV1
]WV

]t
5Pinj , ~14!

whereWV5*VW dV denotes the energy of the domainV.
Pout5*GI.n dG is the outward energy flow.Pinj5*Vpinj dV
is the total power supplied by primary sources. This equa
shows that for isolated systems (Pout50) in a steady-state
condition with finite injected power (Pinj,`), the total en-
ergy WV is finite, i.e., the integral*VW dV must converge.
This result is not trivial for two reasons. First, the fieldW is
singular in general. Isolated source points or focus points
certain situations may lead to singularities ofW. Second, the
domainV may be bounded or unbounded. In the latter ca
the decrease ofW in the far field must be sufficiently stron
to ensure the convergence.

The relationships~11! and~12! give the fieldsW andI at
any point within the domainV. But, similar relationships for
the boundaryG have not yet been sought although they are
interest from a theoretical point of view. The fieldsW and I
for a regular pointpPG are
A. Le Bot: Specular reflection of rays
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W~p,t !5E
V

r~s,usp,t2s/c!G~s,p!dVs

1E
G

*
s~q,uqp ,t2r /c!G~q,p!dGq

1E
HS

s~p,u,t !

g0c cosu
dSu , ~15!

I ~p,t !5E
V

r~s,usp,t2s/c!H~s,p!dVs

1E
G

*
s~q,uqp ,t2r /c!H~q,p!dGq

1E
HS

s~p,u,t !

g0 cosu
u dSu . ~16!

The asterisk designates the principal value of Cauchy.HS is
the unit hemisphere of inward unit vectors, which is cente
at p. Equations~15! and ~16! are proved in Appendix A.

IV. SPECULAR REFLECTION AT BOUNDARY

This section is concerned with the derivation of an a
propriate equation for the unknowns on the basis ofspecu-
lar reflection. This equation is derived by applying the pow
balance at the boundary at any regular pointpPG. Consider
a solid angledS along an emission directionu. The incident
solid angle isdS8 alongu8. Specularity implies thatu8, u,
and n are coplanar, cosu5uu"nu5uu8"nu and dS85dS. Let
p8 designate the point at the boundary from which the in
dent directionu8 originates~Fig. 2!. This point may or may
not exist. It may or may not be unique. For simplicity, th
ensuing calculation is performed for the case in which ifp8
exists, it is unique. Other cases are discussed below.

The incident power atp arising from primary sourcess
situated within the incident cone is denotedPdir . The inci-
dent power due to secondary sources which are loc
within the regiondG8 of the boundary which intersects th
incident cone is denotedPdif . The infinitesimal power emit-
ted is denotedPemit. Introducing an absorption coefficienta
defined as the ratio of absorbed power over incident pow
the power balance is

FIG. 2. Energy balance forp at the boundary; incident power stems fro
both actual sourcess, which are located within the incident cone, and d
fraction sourcesp8, which are located on the partdG8 of the boundary.
J. Acoust. Soc. Am., Vol. 112, No. 4, October 2002
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Pemit5@12a#@Pdir1Pdif#. ~17!

The emitted powerPemit is the flux of the energy flow vecto
from the sourcep of magnitudes(p,u,t) through the region
of the sphere with a small radiuse which intersects the re
flected conedS. The area of this surface isen21 dS. Then

Pemit5 lim
e→0

S s~p,u,t2e/c!
e2me

g0en21 en21 dSD
5s~p,u,t !

dS

g0
. ~18!

The incident powerPdir stemming from the primary source
that are located inside the incident conedS8 is

Pdir5E
p8p

r~s,u8,t2s/c!H~s,p!"nsn21 ds dS8

5
1

g0
E

p8p
r~s,u8,t2s/c!e2msdscosu dS8, ~19!

wheres5up2su. sn21ds dS8 is the infinitesimal volume in
spherical coordinates. The integral is performed over the s
mentp8p. The incident powerPdif stemming from secondary
sources located ondG8 is

Pdif5s~p8,u8,t8!H~p8,p!"n dG8, ~20!

where t85t2r /c and r 5up2p8u. The infinitesimal surface
dG8 is related to the solid angledS8 by dG8
5r n21dS8/cosu8, whereu8 is the emission angle atp8

Pdif5
1

g0
s~p8,u8,t8!e2mr

cosu

cosu8
dS8. ~21!

By substituting Eqs.~18!, ~19!, ~21! into the power balance
~17!, the equation fors is obtained for any regular pointp
PG

s~p,u,t !

cosu
5~12a!Fs~p8,u8,t8!

cosu8
e2mr

1E
p8p

r~s,u8,t2s/c!e2msdsG . ~22!

Equation~22! relates the value ofs at (p,u,t) to the value of
s at (p8,u8,t8). It is thus a functional equation of the un
known s.

If the pointp8 does not exist, the corresponding incide
powerPdif must be removed from the previous calculatio
The first term of the right-hand side of Eq.~22! vanishes and
Eq. ~22! yields the direct solution ofs. In the case wherep8
is not unique, the contributions of all these points must
accounted for the calculation ofPdif . The complexity of the
resulting expression depends upon whether there are a fi
countable infinite or uncountable infinite number of poin
This case is not considered.

V. REFRACTION AT INTERFACE

The subscripti 51,2 is now introduced to denote bot
domains separated by an interface. Consider a poinp
PG1ùG2 located on the interface.ni i 51,2 denotes the out
ward unit normal atp (n152n2). Two diffraction sources
1279A. Le Bot: Specular reflection of rays
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s1 ands2 are present, one on each side of the interface.
incident power atp arising from the domainV1 for instance,
is partially reflected back towardsV1 and is also partially
transmitted intoV2 . If u18 is the incident unit vector,u1 the
reflected direction with emission angleu1 , and u2 the re-
fracted direction with emission angleu2 , then the vectors
n1 , n2 , u18 , u1 , andu2 are coplanar and Snell’s law state
that sinu1 /c185sinu2 /c28 whereci8 is the phase velocity in the
mediumi . The notations are summarized in Fig. 3.

The efficiencyt i j is defined as the ratio of inciden
power coming fromV i to the power re-emitted towardsV j .
This efficiency depends on the positionp and the incident
direction. When using a ray model, reflection and refract
phenomena follow theprinciple of locality. This allows the
calculation of closed-form relationships. Deriving these e
ciencies is a classical problem which is solved for ma
wave configuration in the literature.13,14 It should be added
that when the ‘‘plane wave–plane surface’’ approximation
applied to a general wave which impinges upon a curvilin
surface, the order of approximation is zero.15 The efficiencies
t i j must verify several constraints. The efficiencies are n
negative factors less than unity

0<t i j <1. ~23!

If the interface is nondissipative, conservation of energy
sures that( jt i j 51. When absorption occurs, this sum is le
than 1,( jt i j ,1. By introducing the absorption coefficienta
of the interface16

(
j

t i j 1a51. ~24!

According to thereciprocity principle17

t i j 5t j i . ~25!

This equality is only true along directions which are relat
to each other through Snell’s law. However, the reciproc

FIG. 3. Energy balance forp at the interface; power emitted towardu1

stems from the actual and the diffraction sources withinV1 andV2 .
1280 J. Acoust. Soc. Am., Vol. 112, No. 4, October 2002
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principle does not hold for all systems. Counter examples
exist.18

Let us turn to the derivation of the functional equatio
for the secondary sourcess1 and s2 . The power emitted
towardsV1 , for instance, is the reflected part of the incide
power stemming from the sources inV1 plus the refracted
part of the incident power stemming from the sources inV2

~Fig. 3!

P1,emit5t11@P1,dir1P1,dif#1t21@P2,dir1P2,dif#, ~26!

P2,emit5t12@P1,dir1P1,dif#1t22@P2,dir1P2,dif#. ~27!

The emitted powers were calculated in Eq.~18!

Pi ,emit5s i~p,ui ,t !
dSi

g0
. ~28!

Similarly, Eqs.~19! and ~21! are still valid

Pi ,dir5
1

g0
E

pi8p
r i~s,ui8 ,t2s/ci !e

2misdscosu i dSi8 ,

~29!

for the incident power from the direct field and

Pi ,dif5
1

g0
s i~pi8 ,ui8 ,t i8!e2mir i

cosu i

cosu i8
dSi8 , ~30!

for the incident power from the diffracted field wheret i85t
2r i /ci , r i5upi82pu, ands5up2su.

The specular reflection law implies thatdSi85dSi for i
51, 2. By differentiating Snell’s law, it follows tha
cosu1 du1 /c185cosu2 du2 /c28 . For two-dimensional systems
the solid anglesdSi match with the emission anglesdu i and
so cosu1 dS1 /c185cosu2 dS2 /c28 . For three-dimensional sys
tems, a direction in space is fully determined by two angl
u the polar angle andb the angle lying in the interface plane
The infinitesimal solid angle isdS5sinu du db. Multiplying
the Snell’s law and its derivative gives cosu1 dS1 /c18

2

5cosu2 dS2 /c28
2. In any dimensionn51, 2, or 3, the relation-

ship between the solid angles is cosu1 dS1 /c18
n21

5cosu2 dS2 /c28
n21. Introducing the above Eqs.~28!, ~29!,

~30! into ~26!, ~27!

s1~p,u1 ,t !

cosu1
5t11Fs1~p18 ,u18 ,t18!

cosu18
e2m1r 1

1E
p18p

r1~s,u18 ,t2s/c1!e2m1s dsG
1S c28

c18
D n21

t21Fs2~p28 ,u28 ,t28!

cosu28
e2m2r 2

1E
p28p

r2~s,u28 ,t2s/c2!e2m2s dsG , ~31!
A. Le Bot: Specular reflection of rays
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s2~p,u2 ,t !

cosu2
5S c18

c28
D n21

t12Fs1~p18 ,u18 ,t18!

cosu18
e2m1r 1

1E
p18p

r1~s,u18 ,t2s/c1!e2m1s dsG
1t22Fs2~p28 ,u28 ,t28!

cosu28
e2m2r 2

1E
p28p

r2~s,u28 ,t2s/c2!e2m2s dsG . ~32!

Thus, two functional equations are obtained for the unkno
variabless1 ands2 .

VI. IMAGE-SOURCE SOLUTION

The solution of Eq.~22! via the image-source techniqu
is now presented. The calculations are based on the exp
sion of the delta Dirac function in a polar coordinate syste
Consider a half-plane where a single sources0(0,h) acts as
shown in Fig. 4. The source generates a time-varying
jected powerPinj(t). The boundaryG, defined byy50, has a
uniform reflectivityt512a. Let p(n,0) be any point on the
boundary andu any emission angle. Accounting for the no
existence of the pointp8, Eq. ~22! gives

s~n,u,t !

cosu
5t È

p
ds0

~s!Pinj~ t2s/c!e2msds, ~33!

where`p is the semi-infinite incident line of direction2u,
with an end pointp. As usual,s5up2su. For the polar co-
ordinate system centered atp, the delta Dirac function can b
written as

ds0
~s,u!5

d~s2 l !

s
d~u2w!, ~34!

where l 5up2s0u5(n21h2)1/2 and w is the incidence angle
at p from s0 . Then,

s~n,u,t !5tPinj~ t2 l /c!cosu
e2ml

l
d~u2w!. ~35!

The above equality fully determines the variables.
Let r (x,y) be any point within the domainV (y.0) as

shown in Fig. 4. Substituting into Eq.~35!, Eq. ~11! yields

FIG. 4. A point source in a semi-infinite plane with a uniform reflectivit
J. Acoust. Soc. Am., Vol. 112, No. 4, October 2002
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W~r ,t !5PinjS t2
s0

c D e2ms0

g0cs0
1tE

2`

`

PinjS t2
l 1r

c D
3cosu

e2ml

l
d~u2w!

e2mr

2pcr
dn,

wheres05ur2s0u, r 5ur2pu.
It should be noted that

E
a

b

g~x!d@ f ~x!#dx5E
f (a)

f (b)

g
d@ f #

d f /dx
d f

5(
i

g@xi #

ud f /dx@xi #u
, ~36!

where the sum is running over all zerosxi of f for the inter-
val @a,b#. The absolute value stems fromf (b)<0< f (a)
whend f /dx<0.

Let c(n)5u2w. The equationc(n)50 has a unique
solutionn0 as shown in Fig. 4,u05w0 . Let r 05up02r u and
l 05up02s0u. From Fig. 4, an explicit value ofc can be
found

c5arctan
n2x

y
1arctan

n

h
. ~37!

Hence,

dc

dn
5

1/y

11S n2x

y D 2 1
1/h

11S n

hD 2 5
cosu

r
1

cosw

l
~38!

and

W~r ,t !5PinjS t2
s0

c D e2ms0

g0cs0
1tPinjS t2

l 01r 0

c D
3

e2ml0

l 0

e2mr0

2pcr0

cosu0

cosu0

r 0
1

cosw0

l 0

. ~39!

After simplification

W~r ,t !5PinjS t2
s0

c D e2ms0

2pcs0
1tPinjS t2

s1

c D e2ms1

2pcs1
,

~40!

wheres15 l 01r 0 . In a similar way, it can be found that

I ~r ,t !5PinjS t2
s0

c D e2ms0

2ps0
us0r

1tPinjS t2
s1

c D e2ms1

2ps1
up0r . ~41!

The fieldsW and I are the sum of a direct field emergin
from the sources0(0,h) and a diffracted field emerging from
a virtual sources1(0,2h). This result is also valid for one
dimensional and three-dimensional systems. The total co
bution of the diffraction sources, the second integral in E
~11! and ~12!, collapses to a single spherical wave, i.e., t
second term in the right-hand side of Eqs.~40! and ~41!.

This example suggests that Eqs.~11!, ~12!, and~22! can
be solved with the image-source technique. This techniqu
1281A. Le Bot: Specular reflection of rays
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efficient when the domainV has a simple form such as pa
allelepipeds or arbitrary polyhedra.19 For convex domains
the image-sourcessi i 51,2,..., areconstructed by applying
successive symmetries to the other sources with respe
the faces of the boundary. The number of symmetrieski is
referred to as the order of the image source. The fields wi
the domainV are constructed via the linear superposition
the fields created by actual and image sources

W~r ,t !5(
i 50

`

Pinj~ t2si /c!tkiG~si ,r !, ~42!

I ~r ,t !5(
i 50

`

Pinj~ t2si /c!tkiH~si ,r !, ~43!

wheresi5ur2si u. The number of image sources may be
nite or infinite. The solution of Eq.~22! is

s~p,u,t !52g0(
i 51

`

Pinj~ t2si /c!tkiH~si ,p!"nd~u2u i !,

~44!

with si5up2si u, cosui5un"usip
u. Only image sources locate

behind pointp contribute to an inward direction fors. This
solution provides an interpretation for the potentials. The
potentials intercepts the power from all the image sourc
si , re-emiting it regardless of the boundary.

VII. IRREVERSIBILITY AT THE INTERFACE

Consider an incident steady-state plane wave of ma
tude A and directionu18 hitting the interface between tw
semi-infinite undamped media with an angle of inciden
w1 , as shown in Fig. 5. The refracted angle isw2 . For such
a system, the diffraction source distributionss1 , s2 do not
depend upon the position and Eqs.~31!, ~32! take the form

s1~u1!5At11cosu1d~u12w1!, ~45!

s2~u2!5A
c18

c28
t12cosu2d~u12w1!, ~46!

whereu1 andu2 are related. Equation~11! leads to

FIG. 5. Plane wave hitting an interface with uniform reflectivity.
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in
f

s

i-

e

W1~r !5E
2 p/2

p/2 A

2pc1
d~u12w1!du1

1E
2`

`

t11

A

2pc1r
cosu1d~u12w1!dn, ~47!

W2~r !5E
2`

`

t12

A

2pc2r

c18

c28
cosu2d~u12w1!dn, ~48!

where r 5ur2pu. With the changes of variabledn
5r du1 /cosu1 for the first equality anddn5r du2 /cosu2

anddu25c28 cosu1 du1 /c18 cosu2 for the second equality

W1~r !5
A

2pc1
1

A

2pc1
E

2p/2

p/2

t11

cosu1

r

3d~u12w1!
r

cosu1
du1

5
A

2pc1
@11t11#, ~49!

W2~r !5
A

2pc2
E

2 p/2

p/2

t12

c18

c28
d~u12w1!du2

5
A

2pc2
E t12

cosu1

cosu2
d~u12w1!du1

5
A

2pc2
t12

cosw1

cosw2
. ~50!

Corresponding results for energy flow vectors are

I1~r !5
A

2p
@u181t11u1#, ~51!

I2~r !5
A

2p
t12

cosw1

cosw2
u2 . ~52!

The fields in domainV1 are the sum of an incident plan
wave of magnitudeA and a reflected plane wave of magn
tudeAt11. The fields in domainV2 are a transmitted plane
wave of magnitudeAt12cosw1 /cosw2. Figure 6~a! provides

FIG. 6. Plane wave hitting an interface:~a! t-positive evolution, ~b!
t-negative evolution.
A. Le Bot: Specular reflection of rays
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a summary for the caseA51.
Now, suppose that time evolution is inverted, leading

the situation shown in Fig. 6~b!. Consider two plane wave
simultaneously hit the interface with magnitudest11 and
t12cosw1 /cosw2. They both contribute to the reflective wav
of unit magnitude and also to the nonexistent reflective w
which enters the domainV2 . The former is the sum of the
reflective partt11

2 of the incident wavet11 plus the transmit-
ted partt21cosw2 /cosw13t12cosw1 /cosw2. Hence

t11
2 1t12t2151. ~53!

Similarly

~t111t22!t1250. ~54!

As efficiencies are non-negative factors less than unity,
two conditions~53!, ~54! are only true for two trivial cases

t1250 and t115t2251, ~55!

t115t2250 and t125t2151. ~56!

The first case defines an impermeable interface. The se
case implies that the interface is nonexistent. For all ot
cases, Eqs.~53! and~54! cannot be verified. Hence, the situ
ation obtained by time reversing leads to self-contradicti
This lack of invariance under time reversal shows that
present theory is fundamentally irreversible. This irreve
ibility cannot be attributed to dissipative phenomena as
previous argument was applied to nondissipative media s
rated by a conservative interface. Hence, this irreversibilit
distinguishable from the thermodynamic irreversibili
which stems from the conversion of mechanical energy i
heat. Appendix C shows, via an example, that the irreve
ibility under discussion originates from the uncorrelation
sumption, which is not symmetric under time reversal. N
glecting the interference of ingoing waves is not equival
to neglecting the interference of outgoing waves.

VIII. RAY-TRACING SOLUTION

Equation~22! may be solved in a general fashion, lea
ing to an interpretation by means of a ray path. Letp0 be any
regular point on the boundary. Equation~22! introduces a
point p8, also noted asp1 in this section, from which the
incident energy originates. Writing Eq.~22! for point p1

leads to the definition of pointp2 . Notingp1 , p2 , p3 , and so
on, the successive points from which the energy is reflec
and t1 ,t2 ,..., thesuccessive times for the reflection whe
tk5tk212r k /c and r k5upk2pk21u, Eq. ~22! gives the fol-
lowing recursive relationship:

sk

cosuk
5tkF sk11

cosuk11
e2mrk11

1E
pk11pk

r~s,uk11 ,tk2s/c!e2msdsG , ~57!

wheres5us2pku. The subscriptk50,1,..., defines the loca-
tions of pointpk andsk5s(pk ,uk ,tk). Successive substitu
tion of each equation into the previous leads to
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e

e

nd
r

.
e
-
e
a-
s

o
s-
-
-
t

-

d,

s0

cosu0
5 (

k50

n21 S )
i 50

k

t i D E
pk11pk

r~s,uk11 ,t2L~s!/c!

3e2mL(s) dS1Rn , ~58!

whereL(s)5s1r k1¯1r 1 is the total length froms to p0

and Rn5() i 50
n21t i)sne2mL(pn)/cosun and L(pn) is the dis-

tance frompn to p0 along the ray path. Assuming that th
remaining termRn tends to zero asn tends to infinite

s~p0 ,u0 ,t !

cosu0
5 (

k50

` S )
i 50

k

t i D E
pk11pk

r~s,uk11 ,t

2L~s!/c!e2mL(s) ds. ~59!

Equation ~59! may be considered the solution of Eq.~22!
since it gives the diffraction sourcess solely in terms of the
actual sourcesr.

The diffraction sources at a pointp0 in a directionu0

stems from the actual sourcesr located along the path
p0,p1 ,...,pk ... . Consider a sources located in the segmen
pk11pk . This source contributes to the pointp via the term
() i 50

k t i)r(s,uk11 ,t2L(s)/c)e2mL(s). The reduction of the
magnitude stems from the successive absorption phenom
due to the ray hitting the boundary () i 50

k t i), and also the
attenuation due to the propagation (e2mL(s)).

This section highlights the analogy between the fun
tional equations and the ray-tracing technique. More p
cisely, the exact solution of the functional equation may
found by determining the ray paths. In Appendix B, a simp
example illustrates the difference between the ray-trac
technique and the functional equation method. Despite d
tically different implementation, both methods produce sim
lar results.

IX. CIRCULAR DOMAIN

The third example for which Eq.~22! is solved is a
circular system of radiusR. It is assumed that energy i
supplied from a point load at the centero. The reflectivityt
of the boundary is uniform.

Consider a pointp located at the boundary with an emi
sion angleu. As a result of polar symmetry aroundo, a field
depends solely on the distancer from the center and not on
the angular position. Hence, the potentials(p,u) reduces to
s(u). Figure 7 shows the configuration of pointsp, p8, and
o. The trianglepop8 is isosceles and hence angleu8 equals
angleu. In addition,up2p8u52R cosu. Equation~22! yields

FIG. 7. Circular domain loaded at its center.
1283A. Le Bot: Specular reflection of rays
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s~u!

cosu
5t

s~u!

cosu
e22mRcosu1tE

pp8
Ado~s!e2msds, ~60!

with s5us2pu. Developing the delta Dirac function in th
polar coordinates centered atp, leads to

s~u!5
t cosu

12te22mRcosu

3E
0

2R cosu

Ad~u!
d~s2R!

s
e2msds. ~61!

And

s~u!5A
e2mR

R

t

12te22mRd~u!. ~62!

Consider a pointr within domainV at a distancer from
the centero. The energy density is

W~r !5A
e2mr

2pcr

1E
0

2p

A
te2mR

R~12te22mR!
d~u!

e2mr8

2pcr8
R dn, ~63!

wherer 85up2r u.
The first term on the right-hand side of Eq.~63! is the

direct field, while the integral represents the diffracted fie
As in Sec. VI,u(n)50 must be solved. From Fig. 7, it i
clear thatu(n) vanishes whenn50 andn5p. In addition,
the trianglerop shows thatr sinn5r8 sinu. By differentiat-
ing with respect ton

r cosn5
dr8

dn
sinu1r 8 cosu

du

dn
. ~64!

For n50 andn5p

n50 up02r u5R2r
du

dn /n50
5

r

R2r
, ~65!

n5p up02r u5R1r
du

dn /n5p
5

2r

R1r
. ~66!

Applying the equality~36!

W~r !5
A

2pc

e2mr

r
1

A

2pc

te2mR

12te22mR

3F e2m(R2r )

~R2r !
r

R2r

1
e2m(R1r )

~R1r !
r

R1r
G . ~67!

And finally

W~r !5
A

2pc

1

12te22mR

e2mr

r
1

A

2pc

te22mR

12te22mR

emr

r
.

~68!

Similarly

I ~r !5
A

2p

1

12te22mR

e2mr

r
2

A

2p

te22mR

12te22mR

emr

r
,

~69!
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.

for the radial component of the energy flow. The orthorad
component vanishes.

The energy field is found to be the sum of a field eme
ing from the center together with a field directed towards
center. This result agrees with those obtained in Ref.
where a more direct approach was employed. The first fi
is a propagating wave, whereas the second is aretropropa-
gating wave.

X. CONCLUSION

A mathematical formalism which extends the ‘‘standa
procedure’’ or ‘‘radiosity method’’ when applied to specul
reflection is proposed in this paper. Energy fields are c
structed by a superposition of uncorrelated element
waves.

The study of this formalism identifies several importa
features. First, the underlying equations may be solved
the image-source method and may be interpreted in term
rays. The resulting solutions are similar to those of geome
cal optics or acoustics when the phase of the ray is not c
sidered. Second, this formalism is well-suited to the study
two media separated by an interface. Incident waves refl
according to the standard laws of reflection and refract
and the energy ratios are determined by the efficiencies.
situation is irreversible. The irreversibility is not due to di
sipative phenomena, but is caused by the neglection of
interference between inward waves, which are asymme
under time reversal. This is a typical example of where
approximation of a fundamentally reversible phenomen
leads to an apparent irreversibility.

The next stage of this study is the development of so
ware, which is capable of solving of Eq.~22! for more com-
plicated situations. This would provide an alternative to t
standard ray-tracing softwares.

APPENDIX A

This Appendix determines whether the local power b
ance equation~13! holds for complete fields~11! and ~12!
and also gives the proof of Eqs.~15! and ~16!.

The left-hand side of Eq.~13! must be evaluated. Re
versing the order of the derivative and integral

div•I1mcW1
]W

]t
5E

V
gradrr.H1

]r

]t
GdVs

1E
V

r@divr •H1mcG#dVs

1E
G

gradrs•H1
]s

]t
GdGp

1E
G
s@divr •H1mcG#dGp .

~A1!

The similarity of the first and third integrals on the righ
hand side of Eq.~A1! should be noted. The expression
A. Le Bot: Specular reflection of rays
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gradrr~s,usr ,t2s/c!•H~s,r !1
]

]t
r~s,usr ,t

2s/c!G~s,r !, ~A2!

with s5us2r u, must be evaluated. Consider polar coor
nates centered ats. The first term of Eq.~A2! is the radial
component of the gradient. The above expression there
becomes

]

]s
r~s,usr ,t2s/c!cG1

]

]t
r~s,usr ,t2s/c!G50. ~A3!

The first and third integrals in Eq.~A1! vanish. Using the
local power balance for steady-state elementary waves8

divr •H1mcG5ds, ~A4!

it yields

div•I1mcW1
]W

]t
5E

V
rds~r !dVs1E

G
sdp~r !dGp .

~A5!

The second integral vanishes as the pointr is insideV. In
order to evaluate the first integral, the Dirac function is us
with polar coordinates centered atr

d r~s!5
1

g0

d~s!

s
. ~A6!

Expanding the integral

E
V

rd r~s!dVs5E
0

`E
Sn21

r
d~s!

g0s
s dS ds. ~A7!

Thus

div•I1mcW1
]W

]t
5pinj , ~A8!

with

pinj5E
Sn21

r~r ,u,t !dSu , ~A9!

which is the expected result.
For the proof of Eqs.~15! and ~16! for the fields at the

boundaryG, consider a regular pointpPG and the hemi-
sphereHSe , which is centered atp, with radius e and is
outsideV ~Fig. 8!. Ge denotes the segment ofG which is
outside the hemisphereHSe . Ve denotesV plus the hemi-
sphereHSe . Whene→0 the boundary layers of the warped
boundary must tend to a regular boundary. Consider the
diative intensityI (p,u,t) of the surfacedG in the direction
u, which is defined as the power per unit solid angle divid
by the surface normal to the raydGn5dG cosu @Fig. 8~a!#.
According to this definition, the sources dG radiates the
intensity I 5s(p,u,t)/g0 cosu in the direction u. On the
other hand, the sources dGq , located at a distancee, ema-
nates the intensityI e5s(q,u,t2e/c)e2me/g0 @Fig. 8~b!#.
Both boundaries are equivalent, i.e., radiate the same in
sity, under the condition that lime→0s(q,u,t2e/c)e2me

5s(p,u,t)/cosu.
Evaluating the expressions~11! and~12! for the fieldsW

and I , at pointp in the domainGeøHSe
J. Acoust. Soc. Am., Vol. 112, No. 4, October 2002
-

re

d

a-

d

n-

W~p,t !5E
Ve

r~s,usp,t2s/c!G~s,p!dVs

1E
GeøHSe

s~q,uqp ,t2e/c!G~q,p!dGq ,

~A10!

I ~p,t !5E
Ve

r~s,usp,t2s/c!H~s,p!dVs

1E
GeøHSe

s~q,uqp ,t2e/c!H~q,p!dGq , ~A11!

wheres5us2r u. Whene→0, the first integral is regular and
becomes lime→0*Ve

rG dV5*VrG dV. Separate the sec
ond integral in two terms gives*Ge

sG dG1*HSe
sG dG.

The first term tends to the principal value of Cauc
lime→0*Ge

sG dG5*G* sG dG. For the second term, a
change of variable is employeddGq5en21 dS

E
HSe

sG dG5E
HS

s~q,u,t2e/c!
e2me

g0cen21 en21 dSu .

~A12!

Therefore, by virtue of the previous equivalence conditio

lim
e→0

E
HSe

sGdG5E
HS

s~p,u,t !

g0c cosu
dSu . ~A13!

Equations~15!, ~16! for the fields on the boundary are hen
proved.

FIG. 8. Determination of the fields at the boundary: radiative intensity of
~a! regular boundary,~b! warped boundary.
1285A. Le Bot: Specular reflection of rays
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APPENDIX B

This Appendix is concerned with an example of a on
dimensional system, which illustrates the difference betw
the ray-tracing technique and the solving of the functio
equations studied in this text.

Consider the one-dimensional system comprising t
nondissipative media, one semi-infinite~on left!, and the
other finite~on right!. For simplicity the interface is assume
to be reciprocal and the efficiencies are denotedt r andt t . a
is the absorption factor of the right end. A right-traveling r
impinges on the interface.

The classical solution to this problem uses the r
tracing technique.13 When an incident ray of unit magnitud
impinges upon the interface, it is separated into a reflec
left-traveling ray in medium 1 of magnitudet r and a trans-
mitted right-traveling ray in medium 2 of magnitudet t . The
transmitted ray is partially reflected at the right end of t
medium. The resulting reflected ray has the magnitude
2a)t t . A new interface separation process occurs, giv
two rays of magnitudes (12a)t t

2 and (12a)t rt t . The lat-
ter is again reflected at the right end to produce a ray
magnitude (12a)2t rt t , and so on. The ray paths and ma
nitudes are summarized in Fig. 9~a!. The energies are ob
tained by summing the magnitudes of rays. The intensi
are calculated by summing the algebraic magnitudes, ta
into account the direction of propagation. Thus, the energ
are

W1511t r1~12a!t t
2(

n50

`

@~12a!t r #
n

511t r1
~12a!t t

2

12~12a!t r
, ~B1!

FIG. 9. Ray of unit magnitude hitting an interface:~a! ray-tracing solution;
~b! solution via the use of Eqs.~22!, ~31!, ~32!.
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n
l

o

-

d

1
g

f

s
g
s

W25t t@11~12a!# (
n50

`

@~12a!t r #
n5

t t~22a!

12~12a!t r
.

~B2!

And the intensities

I 15c1F12t r2~12a!t t
2(

n50

`

@~12a!t r #
nG

5c1F12t r2
~12a!t t

2

12~12a!t r
G , ~B3!

I 25c2Fat t (
n50

`

@~12a!t r #
nG5c2F t ta

12~12a!t r
G . ~B4!

An alternative means solving this problem is based
the formalism developed in this paper. The three bound
unknownss1 , s2

1 , ands2
2 @see Fig. 9~b!# are determined

respectively by applying Eqs.~31!, ~32!, and Eq.~22!

5
s15t r1t ts2

2

s2
15t t1t rs2

2

s2
25~12a!s2

1

then, 5
s15t r1

~12a!t t
2

12~12a!t r

s2
15

t t

12~12a!t r

s2
25

t t~12a!

12~12a!t r
.

~B5!

The fields within the domains are given by Eqs.~11! and~12!

W1511s1511t r1
~12a!t t

2

12~12a!t r
, ~B6!

W25s2
11s2

25
t t~22a!

12~12a!t r
, ~B7!

I 15c1@12s1#5c1F12t r2
~12a!t t

2

12~12a!t r
G , ~B8!

I 25c2@s2
12s2

2#5c2F t ta

12~12a!t r
G . ~B9!

These results agree with those previously obtained.
Hence, the ray-tracing technique and the equations p

posed in this paper may be considered as two alterna
points of view for the same theory. The former is of a ge
metrical nature, whereas the latter is functional. The ma
ematical implementations are also quite different. The fi
method requires the calculation of a series, whereas the
ond method leads to a set of linear equations.

APPENDIX C

The noninvariance under time reversal means that
glecting the interference between waves entering to an in
face is not equivalent to neglecting the interference betw
exiting waves. To check this assertion, consider two o
dimensional acoustical media with different velocitiesci and
impedancesZi ( i 51,2) jointed atx50 as shown in Fig. 10.

In each medium the sound pressure may be viewed
the sum of a right-traveling wavepi

1(x)5ai
1ej v(2x/ci1t)
A. Le Bot: Specular reflection of rays
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and a left-traveling wavepi
2(x)5ai

2ej v(x/ci1t). At the inter-
face, the conditions which ensure continuity of pressure
velocity are

a1
11a1

25a2
11a2

2

~C1!
~a1

12a1
2!/Z15~a2

12a2
2!/Z2.

Rearranging, to obtain the outgoing magnitudes in terms
entering magnitudes and conversely

H a1
252

Z12Z2

Z11Z2
a1

11
2Z1

Z11Z2
a2

2

a2
15

2Z2

Z11Z2
a1

11
Z12Z2

Z11Z2
a2

2

or ~C2!

H a1
152
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The time-averaged energy flow supported by a plane wav
Pi

65uai
6u2/2Zi . When the above systems are squared,

four powers Pi
6 appear with cross-product termsuaiaj u

which do not reduce to powersPi
6 . These terms are due t

interference. As the waves are uncorrelated, these terms
be removed. Thus
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,

with t r5(Z12Z2)2/(Z11Z2)2, t t54Z1Z2 /(Z11Z2)2,
where the subscriptsi ando denote, respectively, that ingo

FIG. 10. Ingoing and outgoing waves hitting an interface between
acoustical one-dimensional media.
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ing and outgoing interferences have been neglected. T
the systems are shown not to be equivalent as the efficie
matrix is not unitary. As ingoing waves become outgoi
waves, and vice versa when time evolution is reversed,
uncorrelation assumption is not invariant under time rev
sal.
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