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This paper deals with a comparison of two room acoustic models. The first one is an integral
formulation stemming from power balance and the second is the ray-tracing technique with a
perfectly diffuse reflection law. The common assumptions to both models are the uncorrelated wave
hypothesis and the perfectly diffuse reflection law. The latter allows the use of these methods for
nondiffuse fields beyond the validity domain of Sabine’s formula. Comparisons of numerical
simulations performed with the softwaresRAYON and CeReS point out that these results are close
to each other and finally, a formal proof is proposed showing that both methods are actually
equivalent. ©2000 Acoustical Society of America.@S0001-4966~00!02309-2#

PACS numbers: 43.55.Ka, 43.55.Br, 43.50.Jh@JDQ#
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INTRODUCTION

The high-frequency range in acoustics and structural
brations is often considered with the help of two simplifyin
assumptions. The first consists of neglecting the effects
interference. As an immediate consequence, energies of
eling waves can be added. This fact explains why ene
quantities are more often used as the primary variable
high-frequency models instead of kinetic variables. Justifi
tions for this assumption are numerous and have been lar
discussed in the literature.1 Let us recall that these descrip
tions are well suited, especially when the modal density
high. The second hypothesis usually introduced is
diffuse-field assumption. Energy inside the system is u
formly and isotropically distributed. This crude simplifica
tion is surprisingly as much adapted to most current case
their geometry is complex. In fact, the theoretical study
conditions that lead to a diffuse field is done by the ma
ematical theory of billiards.2,3 This theory introduces the
concept of mixing billiards for which two initially adjacen
rays are arbitrarily distant in phase space after a suffic
time.4 But it is well-known that the simplest billiards, such a
rectangular or parallepipedic ones, are not mixing! The m
the geometry of the system is complex, the more the mix
property is assured. Applied to room acoustics, the diffu
field concept results in a very simple relationship for tim
reverberation: Sabine’s formula, the success and popula
of which have not decreased for a century. More recently
in structural vibration, the so-called Statistical Ener
Analysis ~SEA!1 has given rise to increasing interest. T
diffuse-field assumption is constantly used and allows
evaluation of exchanged powers in terms of the vibratio
energy of adjacent sub-systems. Sabine’s formula and S
make use of energy balance, and take the form of sim
relationships for well-chosen variables; time-reverberat
for the former and energies of sub-systems for the latter.
diffuse-field assumption leads to a major simplification; t

a!Electronic mail: lebot@mecasola.ec-lyon.fr
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exact geometry of systems is of no importance. Only a f
global parameters such as the areas and volumes of the
tems matter.

Nevertheless, many authors have emphasized that
diffuse-field assumption is somewhat inadequate.5 A perfect
diffuse field cannot exist in the presence of absorbing w
because the isotropy imposes that energy flow should va
everywhere, even in the vicinity of the walls. It is certain
the simplest approximation, whose efficiency results in u
ful relationships. However, it is sometimes necessary to
count for anisotropy and inhomogeneous fields with an
propriate model. That case arises in the presence of hig
absorbing walls, or rooms with one dimension much larg
than the others, such as long corridors.6

For these unusual enclosures, the image-source met7

and the ray-tracing technique8 may be applied with effi-
ciency. The diffuse-field assumption is no longer necess
and the sound pressure level may be calculated for each
servation point. On the other hand, the amount of calcula
required is greater and, for instance, details of the geom
are taken into account. Many variations of the ray-trac
technique may be found in the literature: cones or rays, w
or without phase, specular or diffuse reflection.9–11 In this
work, we are concerned with the approach which adopts
perfectly diffuse reflection law, namely Lambert’s law. Th
law is valid for rough surfaces that cannot be described i
deterministic way, or for plane surfaces when a great num
of rays impinge on them from all directions. Interferen
effects are neglected; that is to say, no phase is attache
rays or source magnitudes.

On this subject, one might also point out the meth
proposed by Kuttruff.12 Under similar physical assumptions
a power balance at the boundary leads to an integral equa
that determines the incident power. Carroll and Chie13

solved this equation for spherical enclosures and sho
how Sabine’s formula should be modified. In a similar wa
Miles14 was interested in applying this method to rectangu
enclosures and demonstrated that, after cutting-off the so
sources, and after a short instability period, ‘‘the field w
173208(4)/1732/9/$17.00 © 2000 Acoustical Society of America
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ultimately decay exponentially and at the same rate ev
where in the enclosure but it will not be diffuse during d
cay.’’ This confirms the time-reverberation concept, as w
as correcting Sabine’s model. On the other hand, this me
has been applied to structural vibrations in the steady sta
Ref. 15. The coupling conditions between structural com
nents involve reflection and transmission efficiencies wh
mean values are also used in the calculation of coupling
factors in SEA. All these studies emphasize the interes
this method concerning both the theoretical view and
numerical purpose.

The goal of this study is to compare results from ge
metrical acoustics with those of the integral method. To t
end, two softwares have been used. One is the ray-tra
softwareRAYON designed by EDF; the second is the softwa
CeReS especially built for the solving of the integral equ
tion in vibroacoustic problems. Numerical simulations f
some rooms are presented and predicted sound pressure
maps are compared.

I. INTEGRAL EQUATION ON ENERGY

The aim of this method is to determine the energy d
sity W and the energy flowI resulting from sources in a
domainV with boundary]V. To this purpose, the fields du
to direct radiation have to be calculated first. They are,
spectively, denoted byG(S,M ) for the energy density at th
observation pointM induced by a unit excitation located atS,
and H(S,M ) for the energy flow in similar conditions. W
introduce specific notationsG andH for direct fields which
will be frequently used in what follows, in order to avoid
confusion with complete fieldsW and I which generally re-
sult from a superposition of many direct fields. Only stead
state equations are considered, since numerical simula
for transient-state problems have not been carried out
first one has to write the energy-balance relationship to
verified,

divM•H~S,M !1mcG~S,M !5dS~M !, ~1!

where the first term is the net outgoing power per volum
the second term is the power density being dissipated~m is
the usual atmospheric absorption factor andc the velocity of
sound! and the right hand side is the injected power. As
fields G andH propagate in an open space, they are rela
by a simple proportionality relationship,

H~S,M !5cG~S,M !uSM , ~2!

whereuSM is the unit vector fromS towardM. The solutions
of Eqs.~1!, ~2! are15

G~S,M !5
1

4pc

e2mSM

SM2 , ~3!

H~S,M !5
1

4p

e2mSM

SM2 uSM , ~4!

whereSM denotes the distance betweenS and M. Thus the
energy of the direct field decreases for two reasons. First
exponential term is due to the atmospheric absorption a
second, the geometric expansion imposes the attenuation
1733 J. Acoust. Soc. Am., Vol. 108, No. 4, October 2000
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tor 1/SM2; that is, a decrease of 6 dB per doubling of d
tance.

The second step in developing the method is to find
complete fieldsW and I in a domainV with boundary]V.
Indeed they can be separated into direct fields previou
determined, and reverberant fields caused by multiple refl
tions of energy impinging on the boundary.All of these
waves are assumed to be uncorrelated. Many reasons enable
to use such an assumption. For instance, the boundary
be irregular so that the exact position of the reflection
unknown. The phase of the reflected wave may then be c
sidered as a random variable, and the results of the mode
interpreted as the expected values of the actual variable
should be remarked that such imperfection of boundary
most important, as the frequency increases, especially w
the wavelength is comparable to the size of the irregularit
Another point of view is to consider that the exact positio
of the excitation and observation points are imperfec
known. Furthermore, at high frequencies, a small displa
ment of one of these points leads to a drastically differ
response. Then a reasonable model should predict only
expected value of the response or, in other words, a lo
space-average of the response. A straightforward co
quence of this hypothesis is that the energies of all wa
may be summed without difficulties. This is a common fa
in room acoustics, and explains why the use of energy qu
tities is so popular in high-frequency modeling. Referring
a classical integral representation, such as the Helmho
Kirchhoff formula, fields may be viewed as a superpositi
of spherical waves created by both actual sources loc
inside the domainV and a source layer located on the boun
ary ]V. A direct transposition on energy fields leads to t
following representation formulas,

W~M !5E
V

r~S!G~S,M !dS

1E
]V

s~P,uP!G~P,M !dP, ~5!

I ~M !5E
V

r~S!H~S,M !dS

1E
]V

s~P,uP!H~P,M !dP, ~6!

where r is the magnitude of the actual sources, obviou
known, and s denotes the magnitude of the seconda
sources, yet to be determined. The directivity function of
secondary sources depends on the angleuP between the out-
ward normal atP and the emanating direction. We assum
that this directivity does not depend on the point P. In other
words, and following Joyce,16 this is a memoryless law
since the reflected directions are independent of the incid
direction. A strong consequence of the second law of th
modynamics is that the only memoryless directivity functi
permitted is Lambert’s law,

s~P,uP!5s~P!cosuP . ~7!

This is the law of perfectly diffuse reflection.
1733A. Le Bot and A. Bocquillet: Predicting sound energy in rooms
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The third step is to develop an equation for second
sourcess. This is achieved by applying the power balance
a pointP on the boundary~see Fig. 1!. The boundary dissi-
pates a part of the incident energy; therefore, an absorp
coefficienta, defined as the ratio of reflected power to inc
dent power, is then associated with it. The power balanc
then

Prefl5~12a!Pinc , ~8!

where the left hand side is the reflected power at pointP, and
Pinc is the incident power of both the actual and second
sources. The latter is the sum of all normal components
intensity vectors evaluated atP. Thus

Pinc5F E
V

r~S!H~S,P!dS

1E
]V

s~Q!cosuQH~Q,P!dQG•nP , ~9!

wherenP is the outward normal vector at pointP. The re-
flected power can now be related to the source magnit
s(P). Consider a small hemisphereHSe of radius e sur-
rounding pointP. The power flow crossing this hemisphe
is

Prefl
e 5s~P!E

HSe

e2me

4pe2 cosuP dQ5
s~P!

4
e2me. ~10!

The emitted power at pointP is deduced by taking the limi
for small e:

Prefl5 lim
e→0

Prefl
e 5

s~P!

4
. ~11!

The power balance Eq.~8! can now be rewritten,

s~P!

4
5~12a!F E

V
r~S!H~S,P!dS

1E
]V

s~Q!cosuQH~Q,P!dQG•nP . ~12!

This is a Fredholm integral equation of the second kind
the layers.

The software CeReS has been especially written to s
this equation in various circumstances. In this text,V is an
acoustical enclosure bounded by a surrounding surface]V.

FIG. 1. Energy balance on the boundary]V. The reflected power atP is the
incident power stemming from actual sourcesSand other secondary source
Q, times the reflection coefficient 12a.
1734 J. Acoust. Soc. Am., Vol. 108, No. 4, October 2000
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The CeReS software is able to treat other systems, suc
assembled plates, for which the equations are slightly dif
ent from Eq.~12! ~see Ref. 15!. It seems that no attempt ha
previously been made to develop a software suitable
acoustical enclosures of arbitrary shape and size. The
merical simulations presented in Refs. 14, 12 are limited
parallepipedic enclosures.

In the CeReS software, the boundary is assumed to
constructed with polyhedra of arbitrary shape and size,
the domain may be convex or not. The boundary is d
cretized into a sufficient number of triangles, and a collo
tion method with constant elements is implemented. Num
cal integrals are evaluated with a standard Gauss
quadrature. Note that these integrals are regular, unlike
singular integrals involved in the classical boundary-elem
method, allowing a fast and accurate computation. The
bility and the robustness of the algorithm depend on the
istence and uniqueness of solutions for Eq.~12!. This ques-
tion is investigated in the following section. The theoretic
formalism introduced to this end will turn out to be ve
useful for comparison with the ray-tracing method.

II. EXISTENCE AND UNIQUENESS OF SOLUTION

In this section, we are interested in proving existen
and uniqueness of solution for Eq.~12! in the special case o
a convex domainV. To this end, the boundary]V is as-
sumed to be compact. Equation~12! has no meaning if the
outward normal does not exist. So, as a premise, we s
assume that such a normal vector exists almost everywh
Now, let us write the integral operator involved in Eq.~12!:

T:s°E
]V

s~Q!K~Q,P!dQ, ~13!

whereK(Q,P) is the kernel expressed as follows:

K~Q,P!5@12a#
e2mPQ

pPQ2 cosuQ cosuP>0 ~14!

FIG. 2. Principle of the ray-tracing technique. Numerous rays are emi
from the sourceS, propagate in the room, are subjected to reflections
walls and, finally, arrive in the vicinity of the receiver pointM. Energy at a
point is evaluated by summing energies of all rays which cross the recep
cell.
1734A. Le Bot and A. Bocquillet: Predicting sound energy in rooms
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FIG. 3. View of the L-shaped room: the length rati
l5L/ l may vary. The source–receiver distance
taken along the thick line.
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which is nonnegative by virtue of the convex assumpti
Equation~12! can now be rewritten:

~ Id2T!s5g, ~15!

where

g~P!5@12a#E
]V

r~S!
e2mSP

pSP2 cosuP dS. ~16!

In practice, we are concerned with functionsr(S) which are
finite sums of Dirac functions representing point sources
side the domain~not on the boundary!. For these functionsr,
g is bounded over]V. In the general case, we shall assum
that functiong is essentially bounded:gPL`(]V). A direct
calculation gives

E
]V

cosuP cosuQ

pPQ2 dQ51 for almost all PP]V.

~17!

So the partial functionQ°K(P,Q)PL1(]V) is integrable
over ]V; its resulting integral P°*]VK(P,Q)dQ<1
PL`(]V); the operatorT maps the setL`(]V) of all essen-
tially bounded functions into itself. And the following in
equality:

iTsi`< I E
]V

K dQI
`

isi` ~18!

shows thatT is a continuous operator whose norm is

iTi5 I E
]V

K dQI
`

<sup
]V

~12a!. ~19!

For equality, check withs51. Whenever inf]Va.0, i.e., all
the boundary is absorbing, the norm of the operator is
than one (iTi,1) and, following a well-known result valid
for all Banach algebra, and, in particular, the Banach alge
L(L`(]V)) of all continuous linear maps fromL`(]V) into
itself, the operatorId2T is invertible, so that Eq.~12! has a
unique solution which can be writtens5(Id2T)21g
PL`(]V).
1735 J. Acoust. Soc. Am., Vol. 108, No. 4, October 2000
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III. A REVIEW OF THE RAY-TRACING TECHNIQUE

The ray-tracing technique is of considerable interest
room-acoustic studies. Numerous softwares are availa
which attest to the industrial efficiency of such an approa
There are several approaches for the ray-tracing techn
but, for the sake of brievety, we just describe the one adop
in the softwareRAYON2.1 of EDF ~France!11,17 that we used
for the numerical simulations presented in this paper.

The basis of the method is as follows~see Fig. 2!: A
great numberN of rays start from each sound source wi
power magnituder in any direction. For instance, whe
sources are isotropic, the number of rays in a specific dir
tion depends only on the solid angle, all rays having
same initial energye(0)5r/cN. Rays propagate in straigh
lines and lose energy because of the sound absorption. A
a distancex, the energy of the rays ise(x)5re2mx/cN.
Rays reflect from surfaces they encounter. At each reflect
they lose a parta of the incident energy so that, aftern
reflections and a total distancex, the residual energy is
e(x)5re2mxP i 51

n (12a i)/cN. In RAYON, reflections may
be specular or diffuse. In the first case, reflected angle
equal to incident angle whereas, in the second case, refle
direction is a probabilistic variable following the cosine la
of Lambert. For the sake of consistency with the integ
method of Sec. I, all numerical tests done withRAYON2.1 in
the next section adopt Lambert’s law of diffuse reflection

One can finally calculate the energy at any observat
point M inside the domain. Interference effects are not tak
into account in the ray-tracing technique since multiple
flections of rays tend to uncorrelate the acoustic field. Th
energy at any spatial position is merely obtained by summ
the energies of all rays reaching this location. Indeed,
probability for a ray to encounter the point is null. This di
ficulty is avoided inRAYON by introducing the notion of
reception cells. These are spheres surrounding observa
points. Energy density at any observation point is the ene
contained in the reception cell—that is, the sum of energ
of rays crossing the cell—divided by the sphere volume.

Rays are stopped when their energies become neglig
or after a specified number of reflections. In both cases,
1735A. Le Bot and A. Bocquillet: Predicting sound energy in rooms



dis-

er-
on
d to
o a
tly
x-
ol-
pe
e is
no

ing

from
ng
at

side
he

up
ial
ed

the

,
the
n.
the

ith
ry is

u

ce
FIG. 4. Sound pressure level in a L-shaped room: comparison of so
pressure level~Lp-dB! from the ray-tracing technique~- -! and from the
collocation method~ ! as a function of the source–receiver distan
along the thick line crossing the room~see Fig. 3!. ~a! SPL for different
values ofl with a uniform absorption factora50.1. ~b! SPL for different
values ofa for l54.
1736 J. Acoust. Soc. Am., Vol. 108, No. 4, October 2000
sidual energy is considered to be diffuse and is equally
tributed over the whole domain.

IV. NUMERICAL SIMULATIONS

We have systematically compared both codes for num
ous examples. Two different rooms with diffuse reflecti
are presented in this section. The first example is intende
examine the effect of varying shape, from a parallepiped t
long corridor, and varying absorbing factors, from perfec
reflecting walls to totally absorbing walls. The second e
ample is intended to demonstrate the applicability of the c
location method to more realistic rooms with complex sha
and obstacles and floors contained inside. Our purpos
limited to the comparison of the two methods, and thus
experimental results are presented.

The first example is an L-shaped room with absorb
walls. Width and height are equal tol 52.5 m, whereas the
length L may vary. The nondimensional parameterl5L/ l
characterizes the shape of the enclosure. Its value starts
1 for a parallepipedic room and increases to 16 for a lo
corridor. The source is located in the corner of the room
position x51.25 m, y51.25 m, z51.7 m ~see Fig. 3!. The
response is evaluated along a horizontal line centered in
the room. All of these features are shown in Fig. 3. T
atmospheric absorption ism50.0007 m21 which is a typical
value at 1000 Hz. The calculation with theRAYON software
was performed with 64 000 rays, which may be reflected
to 100 times. Their residual energy is 0.01% of the init
energy. The calculation with CeReS software was perform
with a mesh of triangles with areas of 0.4 m2. Results of the
comparison are shown in Fig. 4. The top graph compares
sound pressure level,Lp, for different values of the ratiol,
with a uniform absorption factora50.1. The second graph
compares the sound pressure level,Lp, for different absorp-
tion factors, withl54. In the case of totally absorbing walls
a51, the acoustical energy cannot reach any point in
right part of the room since it vanishes at the first reflectio
All these comparisons show a good agreement between
ray-tracing technique and the integral method.

The second example is a hypothetical factory w
sound-absorbing walls, floors and obstacles. The geomet
shown in Fig. 5. This is a nonconvex room with volumeV

nd
FIG. 5. View of the factory: ground, first floor and
obstacles are located inside.
1736A. Le Bot and A. Bocquillet: Predicting sound energy in rooms
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58509 m3 and total surface areaS52305 m2. The absorption
factors are summarized in Table I. Floors, ceiling and wa
are highly reflective; the absorption is essentially due to
stacles inside the factory. The area-averaged absorption
efficient is ā50.12. Thus the room constant isR5āS/(1

TABLE I. Absorption factors for the factory. Obstacles are numbered 1
from left to right in Fig. 5.

Surface Absorption factora Area (m2)

ground floor 0.05 627.4
first floor ~both sides! 0.1 448
ceiling 0.05 972
front and back wallsx50 m, x540 m 0.02 400
lateral wallsy50 m, y520 m 0.02 460
surfaces of obstacle 1 0.2 169.1
surfaces of obstacle 2 0.3 176.8
surfaces of obstacle 3 0.25 204.3
1737 J. Acoust. Soc. Am., Vol. 108, No. 4, October 2000
s
-
o-

2ā)5319 m2. The atmospheric absorption ism
50.0007 m21. The critical radius is r c5(R/16p)1/2

52.5 m; that gives an indication of how far from the sour
the direct field is predominant. Three sources are locate
the factory. Their positions are:x55 m, y55 m, z51 m for
source 1;x520 m, y55 m, z51 m for source 2; andx
535 m, y515 m, z51 m for source 3. The power levels o
these sources are 120 dB~1 W!. The calculation withRAYON

is performed with 64 000 rays which may be reflected up
100 times. Their residual energy is 1% of the initial energ
The calculation with CeReS is performed with a mesh of 5
triangles for boundary elements. Results are shown in F
6, 7 and 8 with, respectively, one, two and three sour
active. In each case, the top map is the sound pressure
(Lp-dB! computed withRAYON on a plane 2 m above the
ground floor, and the bottom map is computed with CeR
on the same plane. The additional graphs on the right c

3

l

FIG. 6. Noise in a factory: comparison
of sound pressure level~Lp! by ~a! the
ray-tracing technique, and by~b! the
integral formulation on a horizonta
receiver plane 2 m above the floor.~c!
Direct comparison of SPL along the
thick line. One source is active.
1737A. Le Bot and A. Bocquillet: Predicting sound energy in rooms
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FIG. 7. Noise in a factory: same con
ditions as Fig. 6 with two sources ac
tive.
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pare directly the SPL along the axis of the thick line visib
on the maps.

Results of these examples highlight an excellent ag
ment between the two algorithms. Although the numeri
schemes are quite different—Monte Carlo forRAYON and
collocation method for CeReS—the physical assumpti
are similar: interference effects neglected and diffuse refl
tion on walls. These numerical simulations suggest that
two methods are equivalent. The next section propose
formal proof for this equivalence.

V. EQUIVALENCE OF THE METHODS

To prove that the ray-tracing technique is close to
integral method, consider the operatorT defined in Sec. II.
We saw that its norm is less than one~in the mathematica
meaning of norm of bounded linear mappings of Bana
spaces; see for instance Ref. 18, Chapter 4! and we deduced
the existence and the uniqueness of the solution for Eq.~12!.
1738 J. Acoust. Soc. Am., Vol. 108, No. 4, October 2000
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However, the fact thatiTi,1 leads to an additional resul
The operator (Id2T)21 can be developed into a Neuman
series:

~ Id2T!215Id1T1T21¯1Tn1¯

PL~L`~]V!!. ~20!

Thus

s5g1Tg1T2g1¯1Tng1¯PL`~]V!. ~21!

At each pointP, s is the reflected power. It is the sum of th
reflected part of the incident power of the direct fieldg and
those of the powers after one reflection, two reflections,
so on. Finally, the energy inside the domain atM is
1738A. Le Bot and A. Bocquillet: Predicting sound energy in rooms
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FIG. 8. Noise in a factory: same con
ditions as Fig. 6 with three sources ac
tive.
f
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and

ds
era-
rator
W~M !5E
V

r~S!G~S,M !dS1E
V

g cosuPG~P,M !dP

1E
V

Tg cosuPG~P,M !dP1¯

1E
V

Tng cosuPG~P,M !dP1¯ , ~22!

and we find that the energy atM is the sum of the energy o
the direct field and the energies carried by rays which h
been reflected once, twice, and so on. It is clear from
development how the ray algorithm is hidden in the integ
equation~12!. The ray-tracing technique is seen to be a n
merical evaluation by the Monte Carlo method of the abo
integrals Eq.~22!.
1739 J. Acoust. Soc. Am., Vol. 108, No. 4, October 2000
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VI. CONCLUSION

In this study, we have compared results of two metho
for calculating acoustic pressure fields in rooms. The firs
the well-known ray-tracing technique; the second is based
an integral equation obtained by balancing powers at
points of the boundary.

The methods were implemented into softwares cal
RAYON and CeReS that can solve all cases of acoustic en
sures limited by arbitrary polyhedra. The numerical e
amples that we treated show that the two methods give id
tical results. Actually, both methods are based on the sa
physical assumptions, which are energy superposition
diffuse reflection.

The formal proof of the equivalence of the two metho
stems from the Neumann development of the integral op
tor. This has been possible because the norm of the ope
1739A. Le Bot and A. Bocquillet: Predicting sound energy in rooms
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is less than one. The ray-tracing technique is seen be a
merical method for the computation of the integrals Eq.~22!
by the Monte Carlo procedure, whereas the CeReS softw
uses a collocation method for the evaluation of the sa
integrals.

It is not clear whether the numerical method has adv
tages over the other method. Computing times for theRAYON

and CeReS softwares are similar. The ray-tracing techn
is simpler to implement. In any case, this method is w
established, and highly optimized algorithms are availab

The advantages of the integral method are rather th
retical. The formulation is continuous, in contrast to the d
crete description of the ray-tracing method. In addition, w
the integral equation, we have the use of an equation tha
a closed-form solution in contrast to the ray-tracing te
nique that only leads to numerical solutions. For instance
Ref. 13, Caroll and Chien give a closed-form solution for t
energy field inside a spherical enclosure. It would be v
difficult to obtain such a result with the ray-tracing tec
nique.
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