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This paper deals with a comparison of two room acoustic models. The first one is an integral
formulation stemming from power balance and the second is the ray-tracing technique with a
perfectly diffuse reflection law. The common assumptions to both models are the uncorrelated wave
hypothesis and the perfectly diffuse reflection law. The latter allows the use of these methods for
nondiffuse fields beyond the validity domain of Sabine’s formula. Comparisons of numerical
simulations performed with the softwareayoN and CeReS point out that these results are close

to each other and finally, a formal proof is proposed showing that both methods are actually
equivalent. ©2000 Acoustical Society of Amerid&0001-4966)0)02309-2

PACS numbers: 43.55.Ka, 43.55.Br, 43.50.JBQ]

INTRODUCTION exact geometry of systems is of no importance. Only a few
global parameters such as the areas and volumes of the sys-
The high-frequency range in acoustics and structural vitems matter.
brations is often considered with the help of two simplifying Nevertheless, many authors have emphasized that the
assumptions. The first consists of neglecting the effects ofiiffuse-field assumption is somewhat inadeqiateperfect
interference. As an immediate consequence, energies of trawiffuse field cannot exist in the presence of absorbing walls
eling waves can be added. This fact explains why energyecause the isotropy imposes that energy flow should vanish
quantities are more often used as the primary variables adverywhere, even in the vicinity of the walls. It is certainly
high-frequency models instead of kinetic variables. Justificathe simplest approximation, whose efficiency results in use-
tions for this assumption are numerous and have been largefy relationships. However, it is sometimes necessary to ac-
discussed in the literatufelet us recall that these descrip- count for anisotropy and inhomogeneous fields with an ap-
tions are well suited, especially when the modal density issropriate model. That case arises in the presence of highly
high. The second hypothesis usually introduced is theypsorbing walls, or rooms with one dimension much larger
diffuse-field assumption. Energy inside the system is unithan the others, such as long corriddrs.
formly and isotropically distributed. This crude simplifica- For these unusual enclosures, the image-source method
tion is surprisingly as much adapted to most current cases gimd the ray-tracing technigtienay be applied with effi-
their geometry is complex. In fact, the theoretical study ofciency. The diffuse-field assumption is no longer necessary,
conditions that lead to a diffuse field is done by the math-3d the sound pressure level may be calculated for each ob-
ematical theory of billiard$* This theory introduces the servation point. On the other hand, the amount of calculation
concept of mixing billiards for which two initially adjacent required is greater and, for instance, details of the geometry
rays are arbitrarily distant in phase space after a sufficien}e taken into account. Many variations of the ray-tracing
time* But it is well-known that the simplest billiards, such as technique may be found in the literature: cones or rays, with
rectangular or parallepipedic ones, are not mixing! The morey without phase, specular or diffuse reflectfont In this
the geometry of the system is complex, the more the mixingyork, we are concerned with the approach which adopts the
property is assured. Applied to room acoustics, the diffuseperfectly diffuse reflection law, namely Lambert’s law. This
field concept results in a very simple relationship for time-jay is valid for rough surfaces that cannot be described in a
reverberation: Sabine’s formula, the success and popularityeterministic way, or for plane surfaces when a great number
of which have not decreased for a century. More recently ang rays impinge on them from all directions. Interference

in structural vibration, the so-called Statistical Energysffects are neglected; that is to say, no phase is attached to
Analysis (SEA)* has given rise to increasing interest. The rays or source magnitudes.

diffuse-field assumption is constantly used and allows the ~ g this subject, one might also point out the method
evaluation of_ exchanged powers in terms of the vibrationabroposed by Kuttruff? Under similar physical assumptions,
energy of adjacent sub-systems. Sabine’s formula and SE4 power balance at the boundary leads to an integral equation
make use of energy balance, and take the form of simplgya; getermines the incident power. Carroll and Chien

relationships for well-chosen variables; time-reverberationyged this equation for spherical enclosures and showed
for the former and energies of sub-systems for the latter. Thg o sabine’s formula should be modified. In a similar way,

diffuse-field assumption leads to a major simplification; thepsijes4 was interested in applying this method to rectangular

enclosures and demonstrated that, after cutting-off the sound
dElectronic mail: lebot@mecasola.ec-lyon.fr sources, and after a short instability period, “the field will
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ultimately decay exponentially and at the same rate everytor 1/SM?; that is, a decrease of 6 dB per doubling of dis-
where in the enclosure but it will not be diffuse during de-tance.
cay.” This confirms the time-reverberation concept, as well  The second step in developing the method is to find the
as correcting Sabine’s model. On the other hand, this methocomplete fieldsV and| in a domainQ with boundaryd(}.
has been applied to structural vibrations in the steady state imdeed they can be separated into direct fields previously
Ref. 15. The coupling conditions between structural compodetermined, and reverberant fields caused by multiple reflec-
nents involve reflection and transmission efficiencies whos¢ions of energy impinging on the boundarpll of these
mean values are also used in the calculation of coupling lossaves are assumed to be uncorrelat®thny reasons enable
factors in SEA. All these studies emphasize the interest ofo use such an assumption. For instance, the boundary may
this method concerning both the theoretical view and thébe irregular so that the exact position of the reflection is
numerical purpose. unknown. The phase of the reflected wave may then be con-
The goal of this study is to compare results from geo-sidered as a random variable, and the results of the model are
metrical acoustics with those of the integral method. To thidnterpreted as the expected values of the actual variables. It
end, two softwares have been used. One is the ray-tracirghould be remarked that such imperfection of boundary is
softwareRAYON designed by EDF; the second is the softwaremost important, as the frequency increases, especially when
CeReS especially built for the solving of the integral equa-the wavelength is comparable to the size of the irregularities.
tion in vibroacoustic problems. Numerical simulations for Another point of view is to consider that the exact positions
some rooms are presented and predicted sound pressure legél the excitation and observation points are imperfectly
maps are compared. known. Furthermore, at high frequencies, a small displace-
ment of one of these points leads to a drastically different
response. Then a reasonable model should predict only the
I. INTEGRAL EQUATION ON ENERGY expected value of the response or, in other words, a local
space-average of the response. A straightforward conse-
) X ] ‘quence of this hypothesis is that the energies of all waves
sity W and the energy flow resulting from sources in a o 1he summed without difficulties. This is a common fact
domain{} with boundarya(2. To this purpose, the fields due i, 1,5 acoustics, and explains why the use of energy quan-
to dlrgct radiation have to be calculated first. They are, reyjties is so popular in high-frequency modeling. Referring to
spectlvel_y, den.oted. b%(S,M) for th'e energy density at the a classical integral representation, such as the Helmholtz—
observation poinM induced by a qnlt gxqtaﬂon |99ated$1t Kirchhoff formula, fields may be viewed as a superposition
andH(S,M) for the energy flow in similar conditions. We ¢ qhherical waves created by both actual sources located
introduce specific notationS andH for direct fields which inside the domaiif) and a source layer located on the bound-

will be frequently used in what follows, in order to avoid @ 51y s, A direct transposition on energy fields leads to the
confusion with complete fieldg/ and| which generally re- following representation formulas

sult from a superposition of many direct fields. Only steady-
state equations are considered, since numerical simulations
for transient-state problems have not been carried out. At
first one has to write the energy-balance relationship to be
verified,

divy - H(S,;M)+mcG(S,M)=5¢M), (1)

The aim of this method is to determine the energy den

W(M)=f9p(S)G(S,M)dS

+f a(P,0p)G(P,M)dP, (5)
a0

where the first term is the net outgoing power per volume,

the second term is the power density being dissipéteds H(M)= fQP(S)H(S’M)dS
the usual atmospheric absorption factor artle velocity of
sound and the right hand side is the injected power. As the
fields G andH propagate in an open space, they are related
by a simple proportionality relationship,

+f a(P,0p)H(P,M)dP, (6)
a0

where p is the magnitude of the actual sources, obviously

H(S,M)=cG(S,M)ugy, (2)  known, and o denotes the magnitude of the secondary
whereugy, is the unit vector frontowardM. The solutions ~ Sources, yet to be determined. The directivity function of the
of Egs. (1), (2) aré”® secondary sources depends on the afiglbetween the out-

ward normal atP and the emanating direction. We assume

G(SM)= —— meM 3 thatthis directivity does not depend on the pointl® other
’ 4mc SM? words, and following Joyc this is a memoryless law,
—mSM since the reflected directions are independent of the incident
H(S,M)= 7= S Usws (4)  direction. A strong consequence of the second law of ther-

modynamics is that the only memoryless directivity function
where SM denotes the distance betweSmnd M. Thus the permitted is Lambert's law,
energy of_the dlre<_:t field decreases for two_reasons. I_:lrst, the (P, 0p) = o(P)COSOp. %)
exponential term is due to the atmospheric absorption and,
second, the geometric expansion imposes the attenuation fathis is the law of perfectly diffuse reflection.
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domain Q

$ boundary

Reception cell

FIG. 1. Energy balance on the boundafy. The reflected power & is the
incident power stemming from actual sour&sand other secondary sources
Q, times the reflection coefficient-1a.
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The third step is to develop an equation for secondary
sourcesy. This is achieved by applying the power balance atrg. 2. principle of the ray-tracing technique. Numerous rays are emitted
a pointP on the boundarysee Fig. 1 The boundary dissi- from the sourceS propagate in the room, are subjected to reflections on
pates a part of the incident energy; therefore, an absorptio‘ﬁa“s and, finally, arrive in the vicinity of the receiver poidt Energy at a

. . . i~ ~i_ pointis evaluated by summing energies of all rays which cross the reception
coefficiente, _defmed as th_e ratio _of r_eﬂected power to inci cell.
dent power, is then associated with it. The power balance is

then
The CeReS software is able to treat other systems, such as

Pren=(1—a)Pinc, €S) assembled plates, for which the equations are slightly differ-

where the left hand side is the reflected power at pejrind €Nt from Eq.(12) (see Ref. 15 It seems that no attempt has
Pinc is the incident power of both the actual and secondarypreviously been made to develop a software suitable for
sources. The latter is the sum of all normal components ofcoustical enclosures of arbitrary shape and size. The nu-

intensity vectors evaluated Bt Thus merical simulations presented in Refs. 14, 12 are limited to
parallepipedic enclosures.

Pre= f p(SH(S,P)dS In the CeReS software, the boundary is assumed to be

Q constructed with polyhedra of arbitrary shape and size, and

the domain may be convex or not. The boundary is dis-

+f 0(Q)cosgH(Q,P)dQ|-np, (99  cretized into a sufficient number of triangles, and a colloca-

a0 tion method with constant elements is implemented. Numeri-

wherenp is the outward normal vector at poift The re- cal integrals are evaluated with a standard Gaussian

flected power can now be related to the source magnitudguadrature. Note that these integrals are regular, unlike the
o(P). Consider a small hemisphetéS, of radius e sur- singular integrals involved in the classical boundary-element

rounding pointP. The power flow crossing this hemisphere method, allowing a fast and accurate computation. The sta-

is bility and the robustness of the algorithm depend on the ex-
. istence and uniqueness of solutions for EtR). This ques-
e a(P) tion is investigated in the following section. The theoretical
€ _ — —Mme '
Pre U(P)LSE 47e? cosp dQ= —;—e ™. 10 formalism introduced to this end will turn out to be very

ful f i ith th -traci thod.
The emitted power at poirR is deduced by taking the limit HSelul for comparison wi © ray-racing metho

for small e
o(P) Il. EXISTENCE AND UNIQUENESS OF SOLUTION
Pren= lm el 4 (11 In this section, we are interested in proving existence
and uniqueness of solution for E@.2) in the special case of
The power balance E8) can now be rewritten, a convex domair(). To this end, the boundary) is as-
a(P) sumed to be compact. Equatioh2) has no meaning if the
T=(1—a) L)p(S)H(S,P)dS outward normal does not exist. So, as a premise, we shall

assume that such a normal vector exists almost everywhere.
Now, let us write the integral operator involved in EG2):
+f (Q)costpH(Q,P)dQ|-np. (12
Q)

T:UHJ o(Q)K(Q,P)dQ, (13
o)

This is a Fredholm integral equation of the second kind on

the layero. . _ whereK(Q,P) is the kernel expressed as follows:
The software CeReS has been especially written to solve

. . . . . . . -mPQ
this equation in various circumstances. In this téxtis an Cra " -
acoustical enclosure bounded by a surrounding surféce KQP)=[1-a] 7P Q2 €0S0q c0S6p=0 (14)
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FIG. 3. View of the L-shaped room: the length ratio
A=L/l may vary. The source—receiver distance is
taken along the thick line.
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which is nonnegative by virtue of the convex assumptionlil. A REVIEW OF THE RAY-TRACING TECHNIQUE

Equation(12) can now be rewritten:

(ld=T)o=g, (15)
where
e—mSP
g(P):[l—a]Lﬂp(S)Woosepds (16)

In practice, we are concerned with functignsS) which are

The ray-tracing technique is of considerable interest for
room-acoustic studies. Numerous softwares are available
which attest to the industrial efficiency of such an approach.
There are several approaches for the ray-tracing technique
but, for the sake of brievety, we just describe the one adopted
in the softwarerayoN2.1 of EDF (Francé'*'!’ that we used
for the numerical simulations presented in this paper.

The basis of the method is as followsee Fig. 2 A

finite sums of Dirac functions representing point sources ingreat numbe of rays start from each sound source with

side the domairinot on the boundaly For these functiong,

power magnitudep in any direction. For instance, when

g is bounded over(). In the general case, we shall assumesources are isotropic, the number of rays in a specific direc-

that functiong is essentially boundedje L”(9€)). A direct
calculation gives

dQ=1 for almost all P 9.
17

So the partial functio@Q—K(P,Q) e L(9Q) is integrable
over &; its resulting integral P—[,oK(P,Q)dQ=<1

e L”(9Q); the operatoil maps the sett*(4€2) of all essen-
tially bounded functions into itself. And the following in-
equality:

f Cosfp COShq
Q0 WPQZ

(18)

irof.=<| [ Ko
0]

ol
oo
shows thafT is a continuous operator whose norm is

mi=| [ Kag

For equality, check witlr=1. Whenever inf,a>0, i.e., all

ssupl—a).
o 00

(19

tion depends only on the solid angle, all rays having the
same initial energy(0)=p/cN. Rays propagate in straight
lines and lose energy because of the sound absorption. After
a distancex, the energy of the rays is(x)=pe ™cN.
Rays reflect from surfaces they encounter. At each reflection,
they lose a partr of the incident energy so that, after
reflections and a total distance the residual energy is:
€(x)=pe ™II{_,(1—«;)/cN. In RAYON, reflections may
be specular or diffuseln the first case, reflected angle is
equal to incident angle whereas, in the second case, reflected
direction is a probabilistic variable following the cosine law
of Lambert. For the sake of consistency with the integral
method of Sec. |, all numerical tests done withyON2.1 in
the next section adopt Lambert’s law of diffuse reflection.
One can finally calculate the energy at any observation
point M inside the domain. Interference effects are not taken
into account in the ray-tracing technique since multiple re-
flections of rays tend to uncorrelate the acoustic field. Thus
energy at any spatial position is merely obtained by summing
the energies of all rays reaching this location. Indeed, the
probability for a ray to encounter the point is null. This dif-

the boundary is absorbing, the norm of the operator is lesgculty is avoided inRAYON by introducing the notion of

than one |[T||<1) and, following a well-known result valid

reception cells. These are spheres surrounding observation

for all Banach algebra, and, in particular, the Banach algebrpoints. Energy density at any observation point is the energy

L(L*(4Q)) of all continuous linear maps from”(4€)) into

itself, the operatotd — T is invertible, so that Eq.12) has a
unique solution which can be writter=(ld—T) 1g

eL™(0Q).
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contained in the reception cell—that is, the sum of energies

of rays crossing the cell—divided by the sphere volume.
Rays are stopped when their energies become negligible

or after a specified number of reflections. In both cases, re-
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sidual energy is considered to be diffuse and is equally dis-
tributed over the whole domain.

IV. NUMERICAL SIMULATIONS

We have systematically compared both codes for numer-
ous examples. Two different rooms with diffuse reflection
are presented in this section. The first example is intended to
examine the effect of varying shape, from a parallepiped to a
long corridor, and varying absorbing factors, from perfectly
reflecting walls to totally absorbing walls. The second ex-
ample is intended to demonstrate the applicability of the col-
location method to more realistic rooms with complex shape
and obstacles and floors contained inside. Our purpose is
limited to the comparison of the two methods, and thus no
experimental results are presented.

The first example is an L-shaped room with absorbing
walls. Width and height are equal te=2.5m, whereas the
length L may vary. The nondimensional paramelet L/
characterizes the shape of the enclosure. Its value starts from
1 for a parallepipedic room and increases to 16 for a long
corridor. The source is located in the corner of the room at
positionx=1.25m,y=1.25m,z=1.7 m (see Fig. 3 The
response is evaluated along a horizontal line centered inside
the room. All of these features are shown in Fig. 3. The
atmospheric absorption i@=0.0007 m* which is a typical
value at 1000 Hz. The calculation with tiRayoN software
was performed with 64 000 rays, which may be reflected up
to 100 times. Their residual energy is 0.01% of the initial
energy. The calculation with CeReS software was performed
with a mesh of triangles with areas of 0.4.rResults of the
comparison are shown in Fig. 4. The top graph compares the
sound pressure levelp, for different values of the ratia,
with a uniform absorption factost=0.1. The second graph
compares the sound pressure levgd, for different absorp-
tion factors, withx = 4. In the case of totally absorbing walls,
a=1, the acoustical energy cannot reach any point in the
right part of the room since it vanishes at the first reflection.

FIG. 4. Sound pressure level in a L-shaped room: comparison of sound\ll these comparisons show a good agreement between the

pressure levelLp-dB) from the ray-tracing techniqué -) and from the
collocation method——) as a function of the source—receiver distance
along the thick line crossing the roofsee Fig. 3. (a) SPL for different
values of\ with a uniform absorption factor=0.1. (b) SPL for different

values ofa for A =4.

254

20

z-axis (m)

y-axis (m)

x-axis (m)
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ray-tracing technique and the integral method.

The second example is a hypothetical factory with
sound-absorbing walls, floors and obstacles. The geometry is
shown in Fig. 5. This is a nonconvex room with volude

FIG. 5. View of the factory: ground, first floor and
obstacles are located inside.

A. Le Bot and A. Bocquillet: Predicting sound energy in rooms 1736



TABLE I. Absorption factors for the factory. Obstacles are numbered 1 to 3_55:319 ne.

from left to right in Fig. 5.

Surface Absorption factow Area (nf)
ground floor 0.05 627.4
first floor (both sidey 0.1 448
ceiling 0.05 972
front and back wallsx=0 m, x=40 m 0.02 400
lateral wallsy=0 m, y=20m 0.02 460
surfaces of obstacle 1 0.2 169.1
surfaces of obstacle 2 0.3 176.8
surfaces of obstacle 3 0.25 204.3

=8509 nt and total surface are®= 2305 nf. The absorption

The atmospheric absorption ism
=0.0007m?'. The critical radius is r.=(R/16m)Y?
=2.5m; that gives an indication of how far from the source
the direct field is predominant. Three sources are located in
the factory. Their positions arg=5m, y=5m, z=1 m for
source 1;x=20m, y=5m, z=1m for source 2; andk
=35m,y=15m, z=1 m for source 3. The power levels of
these sources are 120 dBW). The calculation witrRAYON

is performed with 64 000 rays which may be reflected up to
100 times. Their residual energy is 1% of the initial energy.
The calculation with CeReS is performed with a mesh of 586
triangles for boundary elements. Results are shown in Figs.
6, 7 and 8 with, respectively, one, two and three sources

factors are summarized in Table I. Floors, ceiling and wallsactive. In each case, the top map is the sound pressure level
are highly reflective; the absorption is essentially due to ob{Lp-dB) computed withRAYON on a plare 2 m above the
stacles inside the factory. The area-averaged absorption cground floor, and the bottom map is computed with CeReS

efficient is «=0.12. Thus the room constant B=aS/(1

on the same plane. The additional graphs on the right com-

(@)
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B
»n 10
x
?
>
5
15 20 25 30 35
x-axis (m)
(b)
Lp (dB)
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100 . . . .
FIG. 6. Noise in a factory: comparison
of sound pressure levélp) by (a) the
ray-tracing technique, and bip) the
integral formulation on a horizontal
; ¥, receiver plane 2 m above the flogc)
10 B 20 25 30 p I?ll_rekc:. comc;oarlson of _SPL glong the
x~axis (m) thick line. One source is active.
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pare directly the SPL along the axis of the thick line visible However, the fact thafT||<1 leads to an additional result.

on the maps. The operator d—T) ! can be developed into a Neumann
Results of these examples highlight an excellent agreeseries:

ment between the two algorithms. Although the numerical

schemes are quite different—Monte Carlo fkyoN and . ) N

collocation method for CeReS—the physical assumptions (1d=T) "=1d+T+T+- -+ T4

are similar: interference effects neglected and diffuse reflec-

: . . . eL(L"(90))). (20)
tion on walls. These numerical simulations suggest that the
two methods are equivalent. The next section proposes a
formal proof for this equivalence. Thus
V. EQUIVALENCE OF THE METHODS
o=g+Tg+T%g+---+T"g+---eL™(9Q). (22)

To prove that the ray-tracing technique is close to the
integral method, consider the operafdefined in Sec. II.
We saw that its norm is less than ofie the mathematical At each pointP, o is the reflected power. It is the sum of the
meaning of norm of bounded linear mappings of Banacheflected part of the incident power of the direct figlédind
spaces; see for instance Ref. 18, Chapjeartl we deduced those of the powers after one reflection, two reflections, and
the existence and the uniqueness of the solution fofE2).  so on. Finally, the energy inside the domain\vais
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VI. CONCLUSION
W(M)zf p(S)G(S,M)dS+f g cosbpG(P,M)dP
o @ In this study, we have compared results of two methods
for calculating acoustic pressure fields in rooms. The first is
the well-known ray-tracing technique; the second is based on
an integral equation obtained by balancing powers at any
points of the boundary.

The methods were implemented into softwares called
RAYON and CeReS that can solve all cases of acoustic enclo-
sures limited by arbitrary polyhedra. The numerical ex-
and we find that the energy Bt is the sum of the energy of amples that we treated show that the two methods give iden-
the direct field and the energies carried by rays which havéical results. Actually, both methods are based on the same
been reflected once, twice, and so on. It is clear from thiphysical assumptions, which are energy superposition and
development how the ray algorithm is hidden in the integraldiffuse reflection.
equation(12). The ray-tracing technique is seen to be a nu-  The formal proof of the equivalence of the two methods
merical evaluation by the Monte Carlo method of the abovestems from the Neumann development of the integral opera-
integrals Eq(22). tor. This has been possible because the norm of the operator

+f TgcostpG(P,M)dP+---
Q

+f T"g cosfpG(P,M)dP+---, (22
Q
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