Energy flow analysis for curved beams
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This paper presents an energy model for the medium- and high-frequency analysis of Love—
Kirchhoff curved beams. This model introduced by Nefske and $Gtafistical Energy Analysis

NCA 3, 47-54(1987] for straight beams and investigated further by other authors, is developed for
curved rodgtangential or longitudinal wavésand then for curved beanfsdial or flexural waves

The exact-energy solution for curved rods or beams is shown to consist of a smooth spatial
variation, which the energy model represents, and a spatially oscillating solution, which can be
represented by an energy envelope. Finally, a complete energy model is proposed for curved
components including both longitudinal and flexural waves. Boundary conditions are also given in
this paper. It is shown that this method, which is numerically attractive in the mid- and
high-frequency range, predicts the arithmetic mean value of the energy variable$99®
Acoustical Society of AmericfS0001-496€27)05807-4

PACS numbers: 43.40.C{{CBB]

LIST OF SYMBOLS u tangential displacement

® circular frequency v radial displacement

Eq Young’s modulus 0 rotation of section

E complex modulus w energy density

n damping ratio P active energy flow

S curvilinear coordinate Pdiss power density being dissipated

R radius of curvature o; exchanged power density from longitudinal
S area of section to flexural form

I inertia k complex wave number of curved system
p mass density K. complex wave number of straight system
N tensile load Cqy group velocity

T shear force a*,a”,b",b” displacement magnitudes

M bending moment At A” energy magnitudes

INTRODUCTION upon the modal behavior. Dowell and Kubbtnd Doherty

- . . . and Dowelf have shown that some results of SEA can be
In designing structures, one of the main questions is hov‘(/jerived from an asymptotic limit of classical modal analysis
to predict and control noise and vibration? At low frequen- ymp ySIS.

They called this approach the asymptotic modal analysis

cies, several tools allow the vibration level and the noise MA). Thi hni is based h . hat i
transmission to be predicted so that effective treatments Ca% )- This technique is based on the assumptions that in

be applied. Among these techniques, the finite elementpe freq_uency domain under conside.ration, the mo_dal char-
method and the boundary element method are at present tRGI€rstics such as masses, frequencies, and damping, do not
most important ones. However, these methods are not suite@Y rapidly. Thus at high frequencies, AMA can be used to
to the analysis of the behaviour of systems in the mid- andPredict frequency-averaged vibrational responses. However,
high-frequency range, because a small mesh size is requirdge feasibility of this technique for the analysis of complex
which makes model generation, turnaround time, and comstructures has yet to be demonstrated.
putations too costly. In an another context, Guyadeteveloped the so-called
At high frequencies where the modal density of struc-modal sampling methoMSM) for single and coupled rods.
tures is relatively high, statistical energy analy(s&A)! is It consists of retaining only the most energetic modes in the
often used to predict the space and frequency-averaged emodal decomposition of the structural response. Then, the
ergy level of each component of a built-up structure. How-method allows the prediction of an average level of structural
ever, the SEA method gives no information on the spatiaresponse. This technique is still under development.
repartition of energies within each substructure. In additon,  The power flow method presented by Belewal® and
SEA requires the use of coupling loss factors which are difLuzzatd would appear to be an interesting alternative for use
ficult to predict for complex structures. in the mid- and high-frequency range. This approach takes
Concerning the dynamic analysis of structures in thento account the spatial variation of energy within systems
mid- and high-frequency range, some methods are still basezhd is an analytical formulation. In addition it is amenable to
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FIG. 1. Naturally curved beam.

a numerical implementation such as finite or boundary ele- FIG. 2. Differential element from a curved beam.

ment methods. Nefske and Sdregtablished the relation be-

tween the energy density and its flow in beams, and wrote & = The dynamic equilibrium of the element is then written

second-order differential equation similar to that which de-j, the three directions of displacement:

scribes heat conduction. Wohlever and BernRaraind

Bouthier and Bernhardinvestigated the procedure further. dN

They proposed an energy model for bars, beams, mem- RGc+T=-pS Ro?u,

branes, plates, and acoustical cavities. The cases considered

involved a single mode of propagatignnique group veloc- dT

ity), and a single form of energy. R ds N=—pSRw?v, @

The aim of this study is to present an energy model of

Love—Kirchhoff curved beam. First, the equation of mo- M

tion is established in terms of radial and tangential displace- ——+T=—plw?4.

ment of a curved beam. The expressions of the total energy

density and the energy flow are also provided. Energy equa- It can be also showh that the relationships between the

tion and boundary conditions are developed separately for ile 1oadN. the bending momentl. and the displace-

flexural and longitudinal waves. Finally, a complete energytenSI © ' . 9 ' P
) . . 2’ments are as follows:

model for curved beams including both flexural and longitu-

dinal effects is given. A numerical example is presented to

L3 . v du d u
show the feasibility of this method. N=ES =+—|, M=El—=|—-=+6
R ds ds

= . 2

In addition, assuming that the plane sections remain orthogo-
I. KINEMATIC MODEL FOR CURVED BEAMS nal to the neutral axis, the relationship which relates the de-

ree of freedon® to the radial displacementis simpl
The addition of curvature to beams which leads to ang P Py

infinite variety of shapes, significantly modifies the vibra- dv
tional behavior of beams. The standard reference for the gov- 6= s
erning equations of beams of arbitrary curvature is Lbve.

Referring to Love, the dynamical equation of motion for a gy neglecting the inertia term of rotation in the momen-
beam of constant curvature is presented with several simpliy,y equilibrium relationshigl), and by combining the ex-

fications. Energy quantities are also given. _ pressiong1)—(3), the governing equations of a curved beam
First of all, the curved beam is assumed to be excited by,nger steady state conditions, become

a harmonic pure toné= /27 and steady state conditions

(©)

are assumed. Therefore, by using complex notation, the time d?2 [u dv d du 5
dependence'“! is suppressed in the remaining text. A hys- El 32 R ds + ESd—S v+R ds= —pRSwu,
teretic damping model is adopted. Thus a complex modulus (4)
E=Eo(1+in) is introduced wher&, is the Young’'s modu- d (u dv v 1du

S Bt el P 2
lus. Bl ge (R ds) S(R2+ R ds) pSwTy.

Consider the curved beam shown in Fig. 1. The kine-
matic behavior depends on the displacement of each section. g4, the following developments, the propagation char-

Three degrees of freedom are needed to describe displacgaieristics are obtained for such structures, by considering
ments. The tangential displacement along the neutral axis 4 rmonic waves of the form

of the beam is denoted hy, and v and # denote the radial

displacement and the rotation, respectively, of each section. y=ge ks, ,=pe ks, (5)

The tensile load is noteN, the shear forc&, and the bend-

ing momentM. The variations of these quantities are shownBy introducing these expressions into the governing equa-
for a positive increment of arc lengths in Fig. 2. tions (4), the following matrix equation is obtained:
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dix A, it can be seen that, when the radius of curvatire
becomes very largé.e., R tends to infinity, the solutions in
Eq. (8) become

\/; \/;[)S 21/4
w E w E,aw ,

ps 1/4 pS 1/4
_ = 2 . = 2 _-
(Elw> "<E|‘°> |

1/4
pS w2
El '
These expressions are the wave numbers for longitudinal
motion of bars and transverse motion of Euler—Bernoulli

straight beams. This justifies the use of the subsdripnd
f.

(€)

non dimensional wavenumber

The total energy density is the sum of energies associ-
ated with the longitudinal and flexural motions, as follows:

non dimensional frequency x 107

pSw? EoS (v du)( v du)*
= uuw+— =+ —||=+ ] ,
FIG. 3. Dispersion curve of a curved beam: nondimensional wave number 4 4 R ds/\R ds (10)
k versus nondimensional frequenayfor e=0.0014. W _pSw2 . =N d/u dv\ d/u dp\*
72 "W T4 ds\R ds/ds|R ds
2p2 . .
o°R . Moreover, there are three kinds of active energy flow
CK2R2_ k2,2 _ 3p,,2 ,
(2) K"R"—k"s I(kR+k"Rp%) al [o which represent the flexural and longitudinal behavior, and
2R2 b= 0}, the energy flow density exchanged between tange@itat
i(KR+K3Ru?) © ——1—Kk*R%u2 gitudinal and radial(flexura) waves, respectively,
0 .
lw M
©) P=Real - {N— =(u* |,
def def 2 R
wherecy=+ E/p andu=+1/S. ) .
Freely propagating harmonic waves may exist only if = =Rea(|—w To* 4+ M dv )
the determinant in the above system vanishes. The resulting ' 2 ds |/’ (11

dispersion equation is

iw *

w2R2 wZRZ p|f=Rea(— rNV* +M ]),

= _szz_k2M2)< = —1—k4R2,u2 2R ds
P#=—Pis-

0 0
—(kR+KRp?)?=0. @) In the following sections, several energy models will be
This bicubic equation, where the unknownkisleads to six presented. The aim of these models is to be able to predict
complex solutions where three wave numbers have oppositiie energy quantities that incorporate several simplifications
signs. The explicit expressions for these complex wave numwithout the need to solve the dynamical equations of motion
bers can be obtained by using the Cardan formulas, but thei#).
are not given here for the sake of simplicity. However, some
asymptotic expressions are derived for small valuese of
= u/R in Appendix A. The real parts of the nondimensional
wave number&=ku deduced from the dispersion equation We now present the smooth energy formulati®ER
are plotted in Fig. 3 versus nondimensional frequeacy for curved beams. This approach is based on the following
=puwlcy. This curve depends on the nondimensional paramassumptions:
eter e=u/R and shows the existence of two different re-
gions. In the first region, there are two symmetric branche%
of propagation, while in the second region four propagatin
modes are exhibited. These remarks will be very useful fo
the wave analysis given below. We are interested in model-
ing at medium- and high-frequencies in the second region. Two energy variables are involved in these models: the
The wave number solutions ¢7) can be noted as fol- energy densityV defined as the sum of the kinetic energy
lows: density and the potential energy density, and the active en-
K —k KP —KP K& —K° ®) ergy flow P defined as the real part of the complex energy
A A flow. As in previous section, a subscript is added that refers
where the subscrigt refers to longitudinal waves andto  to the type of wavel for longitudinal andf for flexural.
flexural waves. In addition, the superscrptefers to propa- Moreover, a superscript- or — denotes the direction of
gating waves whilee refers to evanescent waves. In Appen-propagation of the wave at hand. We define the incident

II. PREAMBLE FOR THE ENERGY MODELS

1) The damping loss factor is smalh&1).

2) The participation of evanescent waves can be neglected.

3) The interferences between propagating waves can be ne-
glected.
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])(:,.M ds + pyds ds

+Phisst Pt =0 With pye= 7oW, and py=aW, .
(13

The second relationshifl3) is a common model for dissi-
pation. For instance, this is precisely the model used in sta-
tistical energy analysis.t assumes no distinction between
kinetic and potential energy densities. While the third rela-
tionship(13) is the part of longitudinal energy transferred to
flexural energy, flexural energy is not taken into account in
FIG. 4. Local power balance. this model, and may be considered as a dissipative term.
Hence, in order to establish an explicit energy equation,
energy densitylV" (resp. reflected energy densky™) and  a relationship between the global active energy flow and the
the incident energy flowP™ (esp. reflected energy flow total energy densityP,=H(W,) has to be obtained. This
P™) as the energy quantities supported by a simple incidentelationship depends on the kind and the number of the
wave (resp. reflected waye traveling in a positive(resp.  waves that occur which, in this section, is just the longitudi-
negative direction. These quantities are sometimes callechal wave. It is not easy to exhibit the more general energy
partial energies. operatorH. However, an alternative is to use the partial en-
Obviously, when an incident wave and a reflected waveergy quantities. Then, the partial power balances for separate
occur simultaneously, the global energy densffyand the incident energies and reflected energies can be written as

)/ >\ B(s)+dR

energy flowP are nota priori simply the sum of the corre- n dp-
sponding partial energies. An additional term appears bu+(nw+a,)wﬁ=0 and —I+(77w+a|)W|_=0-
cause of the existence of interferences between the twdds ds

waves. As the smooth energy formulati¢BEP does not (14)
take into account those interferences, this additional term is  Obviously, the global power balance given in expression
neglected and the global energy density and the active (13) can be deduced by summing these relationships. In ad-

energy flowP are given in the following form: dition, using the partial quantities, the relationships between
P=P*+P~, W=W"+W". (12) the partia_l energy density and active energy flow are merely
a proportionality. Then

This is a linear superposition principle extended to energy _ B
quantities. P"=cyW," and P/ =—c,W , (15

In the following sections three energy models are studwherecy, is the group velocity associated to the longitudinal
ied. The first one considers just the longitudinal energiegyaye.
produced by a tangential wave Where the effeCt Of fleXUI’al The group Ve|ocity is the Speed at Wh|Ch energy ﬂows_

energies is neglected. The second one considers just the fles definition in terms of the longitudinal wave number is
ural energies produced by a flexural wave. Finally, the third g
w

one is the most complete and takes into account the effects of | _ "%
the exchange of energy between the flexural and the longi- 9 dk’
tudinal waves. Indeed, the previous kinematic equationilternatively
show that if a longitudinal wave or a flexural wave appear roportionality constants given in Appendix B.

alone, both longitudinal and flexural energies are produced. The partial constitutive laws given in E6L5) are estab-

The two first m.odels must not be CO’?S'dere‘?' as parUcuIanShed for a nondissipative wave gufdeince the employed
cases of the third but actually as an illustration. Howevergroup velocity is that for an undamped system. For SEF
this approximation is introduced for the simplification that it developments, the damping loss factor is assumea to be very
brings. As can behs_ere]n, the _p(l)lwer ehxcuafnged be'gweelrfl t@%all (first assumptiopy and then relationship&l5) are as-

two waves is not hig desp_ek(]:la y at higl | rfequenmesj h 3sumed to remain valid. In addition, the effects of damping
given system s excite W't. a tangentia orce or WIth 3,16 taken into account by way of the power being dissipated
radial force, the corresponding energy dominates and thﬁ] the power balance relatiorig4)

other energy may be neglected. Substracting the relationshig$4) yields

(16)

its value can be evaluated directly from the

Ill. ENERGY MODEL FOR TANGENTIAL WAVE
A. Energy flow equation

Consider a system subjected to only longitudinal vibra-USing proportionality relationship&l.5)
tions. The energy quantities associated with this wave are , d N _ npeta
denoted a8V, and P, . Cq gs Wi +Wi)+—g— (P/+P)=0.

The first step in the derivation of the energy models is 9
the well-known local power balandgig. 4). Under steady Thus by virtue of(12), the global active energy flovR,, is
state conditions with no load, the global power balance besimply proportional to the first derivative of the global en-
comes ergy densityW, :

d
d—s(Pr—PF)+(77w+a|)(W|+—W|_)=0-
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o dw, further information is deduced from the energy equatits)

=— s~ by comparing it to the solution of the equations of motion
I:)I nw+a ds (17) (4)3 p g q
Finally, combining expression€&l7) and (13), one ob- Indeed, the particular solution of Edg), corresponding
tains the explicit energy equation for tangential movement ofo a couple of longitudinal waves, can be written
curved waveguide: u=ate kst g elkis
’ 23
d2W| (77w+a|)2 v=bte kis;p~glks, (23
4 7 W =0. (18) _ o _ )
Cq By virtue of (6), a proportionality exists between~ and
a*. Let & denote this proportionality, so that = ¢a* and

Let us define the real wave numbér as the wave num- b~=—¢a- where
ber of the straight longitudinal excited nondissipative sys- !

def 2p2/~2 _ 1,2p2_ 12,2 i 3p, 2
tem:k!. = w/p/E,. Then, when the nondimensional quantity glzw R/CO k|3R 2k|,u =— '2(k'2R+k' Rf 2) ;.
RK, becomes infiniteRK, — o, the group velocity:'g is the i(kR+ki'Ru) o R/cog—1-k'R°u
same as for straight baw/k. , and the exchanged coeffi- (24)
cienta, vanishes, so energy equatiti) is the same as that By introducing expressiori23) in the longitudinal en-
developed in Refs. 8 and 13: ergy density expression given 1§%0), the following formu-

las for the total energy density are obtained:
d>w
a9z 7]2kIOCW= 0. (19 Wi (S) =Wsmoot S) + Wasd S),
2
The solution of Eq(18) is the sum of an incident and a Wamooti S) = E pSw?+EyS é—ik| }
reflected term: 4 R
W(s) =A+e[(77“’+a|)/cl_;]s—i—A*e[(”“’Jral)/clg]s_ (20) X (|a+ |292 Imagkp)s | |a* |2e72 Imagk|)5),
25
To solve this problem completely, one must determine the ; 29
energy amplitude#&* andA~ occurring in the previous ex- W, fS)= } pSw?—EyS é—ik
pression(20). To calculate the energy magnitudds and as 4 R

A, the classical boundary conditions may be written in
terms of the variabled/, andP,. A complete study concern-
ing the energetic boundary and coupling conditions has been The comparison between the total energy den&ify)
already mad¥ in the case of a simple Euler—Bernoulli beam calculated using solutiof23) and the one given in expres-
and other waveguidés. The general procedure proposed sion(20) and evaluated from the smooth energy formulation,
there remains, of course, valid in the case of radial waves ishows that relationshif20) is the smooth term that occurs in
the waveguide. For instance, at an excited node located &25). This first term, corresponding to the real exponential
sy, the active energy flow is assumed to be known. terms, has a slow spatial variation, while the second energy
P/(S) =P 21) j[erm .has an ogcillating spatiql variation. In addition, a mere
i identification gives the magnitudes™ and A~ in terms of
For a dissipative end located at, the equivalent energy |a*|? and|a™|?:
boundary condition is

><(a-¢—a—*e—2i Realk))s a—a+*ezi Rea[k|)5).

2

1 &
- At ==1pSw?+E,S=—ik| |la*|?
Py (s)=rP/'(s1) 4 |P>® oo g K EN 29
or (22) 1 & . |?
Ai:Z pSa)2+EOS ﬁ_ikl |a*|2.

(P,—clW))(s0) =T (P +CLW))(Sp), _ o
1~ CgW)(50) =11 (i W) (o) Moreover, the magnitude of the oscillating components
wherer is a reflection coefficient. Note that this coefficient w__ is given by

may be smaller than one even for a nondissipative end due to

2
mode conversion: A part of longitudinal incident energy flow M == | pSw?—EgS é_ ik, |a‘a+*|
is converted into flexural energy flow. 2 R
Boundary conditions(21) and (22), when combining 3 2
with relationship(20), allow the energy density magnitude ‘pSwZ—EOS ﬁ—ik|
+ - —
AT andA~ to be calculated. =2 | - VATAT, (27)
pSw2+ Eos ﬁ_ |k|
B. The envelope energy expression \évhereA+ and A~ are the energy magnitudes predicted by
: : - EF.
Energy equatiori18) given above allows the prediction In the case of large value &K, , the magnitude of the

of the level of the total energy density, and the active energ¥scillating components is simply
flow without interferences. Its solutiof20) has a smooth o 12
spatial variation with no local oscillations. In this section, = Masc2VAB/Rk.,. (28)
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As a result of this remark, the energy equat{@f) con- The equation above is solved using energetic boundary
tains additional information on the lower and the upper en-conditions. Here, relationships similar ¢1) and(22) given
ergy envelopes: in the tangential case are valid.

| |
Wuppe(s) :A+e[('r]w+a|)/cg]5+ A—e[(nw+al)/cg]5+ MaSCl

(29 B. The energy envelope expression

Wiower(S) =A™ el(70+aniegls.y a=gl(ro+aniegls In a manner similar to that used for tangential waves, the
upper and lower total energy density envelopes can be deter-
ined. Let us consider a couple of propagating flexural
aves where the resulting tangential and radial displace-
ments are as follows:

Consequently, SEF for tangential waves predicts not only th
smooth level of the total energy density and active energy,,
flow, but their upper and lower envelopes too.

u=ate kst g gikfs
’ 3
IV. ENERGY MODEL FOR RADIAL WAVES kP _ kP (35
v=bTe "5+ b e,
In th.is section an energy mo.del for a system containing, proportionality betweem™ and a* still applies i.e.
only radial waves is developed in a similar way as for theb+:§fa+ andb™ = — £a~ where

system with only tangential waves in Sec. Ill.
2 2
w?R2/CE—KP'RZ—KP" 12

A. Energy equation &= i(KPR+ kP Rp2)
Let us consider the solution of the frequency equation. - o 2
In Eqg. (8) we noted that two kinds of wave numbers exist for —i(kfR+kf Ru?)

) . = . 36
radial case: an evanescent wave nunkjend a propagating wZRzlcg— 1— k?4R2 w? (36

wave numbek?. The amplitudes of the evanescent waves ) o
decrease rapidly away from boundaries, and are then ne- 1hen, the expression for the transverse energy density in
glected for SEF developmentsecond assumptionThere-  ¢a@se of a flexural propagating wave is:

fore the only group velocity to be considered for radial Wi (S) = Wemoot(S) + Was{ S),

waves is associated to the wave number for propagating
ikP

waves: 1 ol 12 Kt o? 2
Wsmootr(s)zz pSw |§f| +Eol ﬁ_kf &
; do (30
Cq=—"5-
g dk? ><(|a+|2e2 |magk?)s+|a7|2672|maqk?)3),
Hence, the problem associated with the propagating ra- (37)

dial waves becomes similar to the tangential case treated

before. In particular, the relationship between the global ac- - 20 .12 ikf K’ 2
H ' . . = — + —_—
tive energy flow and total energy density is as follows: WasdS) 4 pSw?|&*+ Eol R &
C(;Z de % (a+a—*e—2i Rea[k?)s+ a—a+* e2 Rea(k?)S)_

nota; ds Hence, as in the tangential case, the magnitude of the
By introducing this constitutive law in the active power oscillating field is given by

balance, one obtains the following energy equation for the Masc=2\/W.

radial behavior of a curved waveguide:
W, (ew+ap)? It is surprising that this magnitude does not depend explicitly
L 5 f W;=0. (32 on the presence of curvature. In fact, the obtained magnitude
ds’ Cg of oscillations 2/A*A™ is exactly the one given in Ref. 16
for the case of a straight Euler—Bernoulli beam. Obviously,
the curvature affects the values of the coefficiefts and
def A~ by means of the group velocity which depends on this
=(pSw?/Egl)** and by assuming the quantigk’ to be  curvature.

(38

By introducing the wave numbéc, corresponding to a
straight nondissipative  Euler—Bernoulli  beamk’,

very large, the energy equation obtained is merely the well-  |n the case of radial waves in curved wave guides, the

known energy equation developed by Refs. 7, 8, and 13: ypper and lower total energy density variation are given sim-
W 2k ply by
92 2 W=o (33 Wipoef S) — Atel(motapichlsy p-gl(no+apichls .

The solution of energy equatidid32) is (39
Wi(s)=ATe [moraregls . o-l(roraieyls (34) Wioweds) =A T el(motaniegls g o-gl(notapiegls
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V. COMPLETE ENERGY MODEL OF CURVED BEAMS Given the constitutive relationships in Eqgl4) and

45), it becomes easy to deduce the equation for the energy

The case of the simultaneous propagation of radial a”%ow for coupled radial and tangential waves. The sum of
tangential waves in the waveguide is more complicated tha@xpression$43) leads to the global power balance:
the propagation of the individual waves. Every kind of en-

ergy quantity which was previously defined in Sec. I, appears  d P|) W|) W ) _ ( 0
simultaneously in this case: ds \ P¢ e W; LAz W/ 10/ (46)
pl+ Py ,pf+ P; ,W|+ W ,Wf+ Wy (40) The difference between the expressions yields the con-
N ] stitutive relation between the global energetic variables:
To these quantities, we add the active energy flow, . B
which characterizes the exchange between the Iongitudinaﬂ’I P P
; - . e + = p= | [ T (noll]2x2t[Al2x2)
(tangential wavesand the flexuralradial waveg behavior.  ds | \ Ps P;
The exchanged energy flows are . _
W, W, _( 0 4
Pit +Pit - (41) “Nwd ) “lwy [ Tlo) “47)

Let us generalize the derivation of the energy equationsvhere[1] is the identity matrix. Substitutingd4) for each
established for a single wave. We noted that when interferterm yields
ences were neglected, a linear superposition principle is valid

" . d (W
for energy quantities. Relationshif2) then becomes (PL = —[Cal(no[IT+[ADV[C,] I (Wlf) (48)
Z=Z"+7Z" with Z=P, W, or p. (42

Thus by substituting expressiof#3) into (46), the sys-
In this case, the local power balance is composed of twaem of energy equations for the coupled problem is written
coupled equations due to the presence of the exchanged exs

ergy flows: 2w, W, 0
_ (-1 2 =

TR CREARE 2 s[5
ds\ P/ \pgss | —pii) 10)° 43 (49

_ - _ The solutions of this system introduce four energy mag-
d (P Pgi p 0 . .
— N ?ES +| M :< ) nitudes which may be evaluated from energy boundary con-
ds | Py Pais ~Pis 0 ditions. For instance, at an excited node, the injected active

The damping modepgis= 7oW is still valid. Now, the ~ €nergy flow is assumed to be known, and then
constitutive relationships between the propagating quantities
have to be established. In the coupled case, relationships
used for both radial waves and tangential waves are still

valid, but the proportionality coefficient become 2 by 2 Moreover, at a dissipative end, the following relationship is

P'inj
(So)= P, |- (50)

inj

|
Py

matrix: written:
P/’ W\ (Pr Wi P/ P’
Per :[Cg]2><2 W;r ’ P; = _[Cg]2><2 W; ' P; (Sl):[R]ZXZ P;r (Sl)
(44)
” . o . or (51
An additional relationship is written for the exchanged
energy flows as follows: P W
a (pf)_[cg]ZXZ(Wf> (s1)
Pir | _ W' P | _ Wi
_p+ _[A]2><2 W+ ’ _p* _[A]ZXZ WAl P| W|
If f If f (45) =[Rl2x2 P, +[Cqlox2 W, (s1)-
where[A] is a 2 by 2matrix with a second row equal to the The matrix[R] is constituted from four reflection coeffi-
opposite of the first: cients which illustrate mode-conversion phenomena. Each
coefficient has a non-negative value smaller than one. The
[A]= A Y nondissipative condition leads to special relationships: The
-\ —y) sum of each column must be equal to one.

Note that the matrix appearing in the second relationshi
(45) is not the opposite of those in the first relationship con—R/I' NUMERICAL SIMULATIONS
trary to Eq.(44). This means that when the propagation di- Consider a curved beam with mass densipy
rection of a wave is inverted, there is no modification of the=7800 kg/mi, Young modulusE=2.1 e N/m?, inertia |
active energy flow exchanged between the radial and tanger=8.3e 1% m*, cross sectiorB=1e % m?, lengthL=1m,
tial waves. The complete expressions of the matrfc@g] and radius of curvatur®=0.25 m. The damping ratie is
and[A] are given in the Appendix B. taken to be equal to 0.05.
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FIG. 5. Longitudinal energy density variation versuaxis; O equation of
motion (4); * energetic equatiotil8) and its associated upper and lower
bounds given in(29).

FIG. 7. Transverse energy density variation versusxis; O equation of
motion (4); * energetic solution(34) and its associated upper and lower
bounds given in39).

First of all, the curved beam is excited at its right endenergy density and active energy flow. Therefore, as the so-
node 1 by a longitudinal force of strength 1 N. Following |,tion given by this model varies slowly in space, a numeri-
(21), the longitudinal active energy floR, is assumed to be ¢4 implementation of this procedure with finite elements for
known at node 1. At the left end of the waveguide, node Ojnstance, would require a few degrees of freedom. This is
the clamped end boundary condition is used which COrMeyery attractive in the mid- and high-frequency domain. Fi-
spond; to the reIationsh@Z) with an approp_riate reflection nally, note that the energy flow predicted by SEF does not
coefficient (see Appendix € Two calculations are per- yanjsh at the clamped end. Actually, the local energy flow
formed. The first solves governing equatigdsand the lon-  pregicted by the equation of motion will disappear but its
gitudinal energy density and energy flow are then evaluategean value over a vicinity will not disappear. This apparent
using Eqs.(10) and(11). This classical calculation is taken dissipation is relevant to mode conversion phenomena.
as a reference. On thg other hand, combin.ing expressions Second, the curved beam is excited at node 1 by a trans-
(21) and (22), one can find the energy magnitud&s and  yerse force strength 1 N. The injected active energy flow is
A~ and then the energy quantities are obtained from Edsassumed to be known at this node. At the end of this wave-
(17) and(20). This is the SEF result. The results of the Simu'guide the energetic clamped efi22) is still valid at this
lations are given in Fi_gs. 5 and 6 for a pure-tone excitation aktage. The energy system to be solved in order to determine
f=11000 Hz. Thus it can be shown that the energy modeje energy magnitudes™ andA~ is formally the same as in
(20) produces a prediction of the local space average of totahe |ongitudinal case. Results are given in Figs. 7 and 8. The

x10° Longitudinal energy flow for longitudinat mode! Transversal energy flow for transversal model
........ ' . . QG 777 e e e e
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FIG. 6. Longitudinal energy flow variation versgsaxis; O equation of FIG. 8. Transverse energy flow variation versuaxis; O equation of mo-
motion (4); * energetic equatiofl8). tion (4); * energetic solutiori34).
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FIG. 9. Longitudinal energy density variation versiaxis; O equation of

motion (4); * energetic equatiof49).

comparison between the classic calculation of the energ
density and the energy flow from the kinematic mo@#l

shows that SEF again allows the prediction of the require
smooth level of the energy density and the energy flow.
Moreover, the application of relationshi§39) permits the

upper and lower energy envelopes to be known.

Finally, the complete coupled system is simulated. Tw
forces are applied: a longitudinal force of strém@t N and

Transversal energy density for coupled model
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o
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o
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s-axis (m)

FIG. 11. Transverse energy density variation versais; O equation of
motion (4); * energetic equatiof49).

determined hepeand the semi-infinite ones are small. Then,
¥s long as we are interested in just one kind of energy in-
(?uced by respective load, a pure-tone simulation is satisfac-
ory. But, for the coupled model, due to the large domination
of longitudinal energy level by transverse energy level, a
small miscalculation of the transverse reflection coefficient
may induce a large difference on longitudinal energy level.

OThis is why frequency averages are needed. Results given in

an antiphase transverse force of strength 1 N. The results (I):]Jgs. 9-12 are the average over this octave. The energetic

a simulation are given in Figs. 9-12 versus the curvilinear
coordinates. However, in opposition to previous simulations
where the excitation was in pure tone, the classical calcul

a_

calculation stems front49) with boundary condition$50)
and (51). However, the injected power appearing(B0) is
not the exact pure-tone value at the mean frequency but the

tion is now performed over the octave 5000 Hz—10 000 H, mean value for this octave. The latter is obtained by consid-

Actually, the matrix| R] has been determined for a semi-
infinite system and then it is applicable to a finite system i
a frequency-average sense. However, it turns out that the
differences between the pure-tone reflection coefficiemis

Energy flow (Watt)

FIG. 10. Longitudinal energy flow variation versgsaxis; O equation of
motion (4); * energetic equatiof49).
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n

ering the infinite impedance: The injected power is the one
created by the same excitation applied to the equivalent in-
finite curved beam. Note that the energy flows do not vanish
at the clamped end as previously observed. The longitudinal
energy flow at the clamped end is exactly the opposite of the

Iransversal energy tlow for coupled model
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FIG. 12. Transverse energy flow variation versusxis; O equation of
motion (4); * energetic equatiof49).
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FIG. 15. Transverse energy density variation versais; O equation of
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FIG. 16. Transverse energy flow variation verdusxis; O equation of
motion (4); * energetic equatiofd9).

transverse energy flow at the same point. So, the clamped
end is a nondissipative end. In Figs. 13—16 the energy quan-
tities are plotted at a point versus frequency. It can be ob-
served that the energy quantities issued from SEF are not
only the local space average of exact quantities but also the
frequency average. This average must be performed over a
frequency band which contains at least several eigenfrequen-
cies.

VIl. CONCLUDING REMARKS

In this paper, a new formulation has been proposed to
allow the prediction of the dynamical behaviour of curved
beams at high frequencies. This formulation is based on a
solely energetic variables which are the total energy density
and the active energy flow. The results given here generalize
those given in the case of straight rods and beafsThis
method is numerically attractive in the mid- and high-
frequency range.

Three models have been studied. The first one is con-
cerned only with the longitudinal behavior. Then by consid-
ering a longitudinal wave alone, this model allows the pre-
diction of the smooth part of the longitudinal energy density
and energy flow. A similar model has been developed for the
flexural behavior. However an additional assumption is re-
quired: The evanescent wave has to be neglected. In these
two models, the upper and lower envelops of the energy
density have been also evaluated. Finally, a complete model
including the effect of the exchanged energy flow between
longitudinal and flexural behavior, has been proposed.
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APPENDIX A 2 iwES

+ .
. . . Pi=> Rea(—[—(giﬂkiR)
Let us rewrite frequency equatidi@) by using the non- =1 2[R

dimensional quantitiek=ku, o= puw/cy, ande=u/R:

El . . .
k8= (@?+2eD)k*+ ("~ w?(1+ €2k + 0% (02— €?) =0, — g2 iki(1+iki&R) ][lailzez'"‘aQK”SJ, (B2)

(A1)

2 .
This is a bicubic .equatior? Ifor the unknowim As the wave pf+:2 Rea(%" % [—ki2(1+iki§i R) &
number for a straight rod ie, = w/cy, the solutiork' of Eq. i=1

(A1) associated with longitudinal waves must tenddtcas

the small parametes tends to zero. Moreover the value of — |ki|2(1+iK;&; R)§i*]}[|ai|2e2 Imagki)s],
k' cannot depend on the sign of the radius of curvafre

Then, an asymptotic expression ldfmust take the form N 2 iw 1 . .
— pir =2, Real 5 = [ES(& - ikiR)§

K'=w+ae?+o(e?). (A2)
Substituting(A2) in (Al) yields
gAz) in (AL y _E||ki|2(1+iki§iR)]J[|ai|292|magki)s]-
— 1480 A3
Tt 2w(w’—1) e“+o(e?). (A3) The corresponding quantities with a minus superscript are

. gbtained by substituting-k; and — &; everywhere. Relation-
An analogous calculation for the transverse wave number, . . ) . .
ships(B2) can be written in a simple matrix form as

leads to
W|+ |a1|2e2 Imagky)s P|+
3tw -
KP= ot @ €2+ 0(e?). (A4) (Wf*) [Wlax2 |a,| 2 Imagkz)s) ( P/
4o(l-w)
|a1|2e2 Imagkq)s
These relationships are valid in case of large radius of cur- =[p]lox2 B |2€2|magk2)s) P
vature. 2
|a1|2e2 Imagkq)s
=[plix2 |a,|2€? |maqk2)s>- (B3)
APPENDIX B

The coefficients of the matri{w]oxo, [¢]ox2, and
Let us consider a harmonic wave of fors). The ad- [P]ix2 are easily identified from expressio(B2). Thus the

missible values for the parametierare given by dispersion Matrix[Cgylox2 and[A].x» are given by

equation(7). In order to s_implify the fo_llovv_ing relationships, [Cg]:[(@][w](fl) and [\ y]=[p][w] Y. (B4)

we notek; (resp.k»,), the incident longitudinal wave number

kl (resp_ the incident propagating flexural wave number When either the |0ngitudinal or transverse model is con-

kP). sidered, the group velocity and the coefficieatsainda; are
Moreover, referring ta6), for each harmonic wave of determined from these matrices:
form (5), the corresponding displacement magnitudesnd d=c. andc=cC
. . . . g g g g2 21
b are proportional. So, le; designate the ratio of the dis- : (B5)
placement amplitudels; /a; for i=1,2. The expressions for a=\ and a;=—u.

&, are respectively given in Eq§36) and (24).

Now, let us assume that an incident radial wave and apppENDIX C
incident tangential wave occur simultaneously in a given
system. The total displacements are Let us determine the reflection coefficients matrix occur-
o ikys ikps o aikss “ikys ring in (51). For this purpose, an incident longitudinal wave

u=a,e " age and y=h,e ">+ bye (.Bl) of form (5) whose magnitudes are denoteddy andb," is

o . ' considered first. When this wave encounters the clamped

Then substitutingB1) into energy expressiond0) and(11),  end, some reflected longitudinal, propagating transverse and
and neglecting the cross product terms which are due to inevanescent transverse waves are created. Their magnitudes
terferences between radial and tangential waves, leads to are denoted, respectivelg, , b, af , bP , a¢ , and

2

EqS b?f. By applying the classical clamped boundary conditions
— 2 H 2
Wﬁ—; 4 [Psw + RZ |&i—ikiR) ] (i.e., u=v=60=0) and recalling that magnituddsare pro-
portional to magnitudes, three equations determine the
X[|a|?e? magkis], magnitudesy, , af , af in terms ofa; ;
2 —
1 Eol a
Wi =2, —1{pSe? &2+ =7 k|2 1+ik&R|? -
1=3, 7 |osorlelt+ S PR ) e -
X[|ai|2e2lmagki)5], a?
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