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This paper presents an energy model for the medium- and high-frequency analysis of Love–
Kirchhoff curved beams. This model introduced by Nefske and Sung@Statistical Energy Analysis
NCA 3, 47–54~1987!# for straight beams and investigated further by other authors, is developed for
curved rods~tangential or longitudinal waves!, and then for curved beams~radial or flexural waves!.
The exact-energy solution for curved rods or beams is shown to consist of a smooth spatial
variation, which the energy model represents, and a spatially oscillating solution, which can be
represented by an energy envelope. Finally, a complete energy model is proposed for curved
components including both longitudinal and flexural waves. Boundary conditions are also given in
this paper. It is shown that this method, which is numerically attractive in the mid- and
high-frequency range, predicts the arithmetic mean value of the energy variables. ©1997
Acoustical Society of America.@S0001-4966~97!05807-4#

PACS numbers: 43.40.Cw@CBB#
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LIST OF SYMBOLS

v circular frequency
E0 Young’s modulus
E complex modulus
h damping ratio
s curvilinear coordinate
R radius of curvature
S area of section
I inertia
r mass density
N tensile load
T shear force
M bending moment

INTRODUCTION

In designing structures, one of the main questions is h
to predict and control noise and vibration? At low freque
cies, several tools allow the vibration level and the no
transmission to be predicted so that effective treatments
be applied. Among these techniques, the finite elem
method and the boundary element method are at presen
most important ones. However, these methods are not su
to the analysis of the behaviour of systems in the mid- a
high-frequency range, because a small mesh size is requ
which makes model generation, turnaround time, and c
putations too costly.

At high frequencies where the modal density of stru
tures is relatively high, statistical energy analysis~SEA!1 is
often used to predict the space and frequency-averaged
ergy level of each component of a built-up structure. Ho
ever, the SEA method gives no information on the spa
repartition of energies within each substructure. In additi
SEA requires the use of coupling loss factors which are
ficult to predict for complex structures.

Concerning the dynamic analysis of structures in
mid- and high-frequency range, some methods are still ba
943 J. Acoust. Soc. Am. 102 (2), Pt. 1, August 1997 0001-4966/97/
u tangential displacement
v radial displacement
u rotation of section
W energy density
P active energy flow
pdiss power density being dissipated
pl f exchanged power density from longitudina

to flexural form
k complex wave number of curved system
k` complex wave number of straight system
cg group velocity
a1,a2,b1,b2 displacement magnitudes
A1,A2 energy magnitudes
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upon the modal behavior. Dowell and Kubota2 and Doherty
and Dowell3 have shown that some results of SEA can
derived from an asymptotic limit of classical modal analys
They called this approach the asymptotic modal analy
~AMA !. This technique is based on the assumptions tha
the frequency domain under consideration, the modal ch
acteristics such as masses, frequencies, and damping, d
vary rapidly. Thus at high frequencies, AMA can be used
predict frequency-averaged vibrational responses. Howe
the feasibility of this technique for the analysis of compl
structures has yet to be demonstrated.

In an another context, Guyader4 developed the so-called
modal sampling method~MSM! for single and coupled rods
It consists of retaining only the most energetic modes in
modal decomposition of the structural response. Then,
method allows the prediction of an average level of structu
response. This technique is still under development.

The power flow method presented by Belovet al.5 and
Luzzato6 would appear to be an interesting alternative for u
in the mid- and high-frequency range. This approach ta
into account the spatial variation of energy within syste
and is an analytical formulation. In addition it is amenable
943102(2)/943/12/$10.00 © 1997 Acoustical Society of America
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a numerical implementation such as finite or boundary e
ment methods. Nefske and Sung7 established the relation be
tween the energy density and its flow in beams, and wro
second-order differential equation similar to that which d
scribes heat conduction. Wohlever and Bernhard,8 and
Bouthier and Bernhard9,10 investigated the procedure furthe
They proposed an energy model for bars, beams, m
branes, plates, and acoustical cavities. The cases consid
involved a single mode of propagation~unique group veloc-
ity!, and a single form of energy.

The aim of this study is to present an energy model
Love–Kirchhoff curved beams.11 First, the equation of mo-
tion is established in terms of radial and tangential displa
ment of a curved beam. The expressions of the total ene
density and the energy flow are also provided. Energy eq
tion and boundary conditions are developed separately
flexural and longitudinal waves. Finally, a complete ene
model for curved beams including both flexural and longi
dinal effects is given. A numerical example is presented
show the feasibility of this method.

I. KINEMATIC MODEL FOR CURVED BEAMS

The addition of curvature to beams which leads to
infinite variety of shapes, significantly modifies the vibr
tional behavior of beams. The standard reference for the g
erning equations of beams of arbitrary curvature is Love11

Referring to Love, the dynamical equation of motion for
beam of constant curvature is presented with several sim
fications. Energy quantities are also given.

First of all, the curved beam is assumed to be excited
a harmonic pure tonef 5v/2p and steady state condition
are assumed. Therefore, by using complex notation, the
dependenceeivt is suppressed in the remaining text. A hy
teretic damping model is adopted. Thus a complex modu
E5E0(11 ih) is introduced whereE0 is the Young’s modu-
lus.

Consider the curved beam shown in Fig. 1. The kin
matic behavior depends on the displacement of each sec
Three degrees of freedom are needed to describe disp
ments. The tangential displacement along the neutral axs
of the beam is denoted byu, andn andu denote the radia
displacement and the rotation, respectively, of each sec
The tensile load is notedN, the shear forceT, and the bend-
ing momentM . The variations of these quantities are sho
for a positive increment of arc lengthds in Fig. 2.

FIG. 1. Naturally curved beam.
944 J. Acoust. Soc. Am., Vol. 102, No. 2, Pt. 1, August 1997
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The dynamic equilibrium of the element is then writte
in the three directions of displacement:

R
dN

ds
1T52rSRv2u,

R
dT

ds
2N52rSRv2n, ~1!

dM

ds
1T52rIv2u.

It can be also shown11 that the relationships between th
tensile loadN, the bending momentM , and the displace-
ments are as follows:

N5ESS n

R
1

du

dsD , M5EI
d

ds S 2
u

R
1u D . ~2!

In addition, assuming that the plane sections remain ortho
nal to the neutral axis, the relationship which relates the
gree of freedomu to the radial displacementn is simply

u5
dn

ds
. ~3!

By neglecting the inertia term of rotation in the mome
tum equilibrium relationship~1!, and by combining the ex-
pressions~1!–~3!, the governing equations of a curved bea
under steady state conditions, become

EI
d2

ds2 S u

R
2

dn

dsD1ES
d

ds S n1R
du

dsD52rRSv2u,
~4!

EI
d3

ds3 S u

R
2

dn

dsD2ESS n

R2 1
1

R

du

dsD52rSv2n.

For the following developments, the propagation ch
acteristics are obtained for such structures, by conside
harmonic waves of the form

u5ae2 iks, n5be2 iks. ~5!

By introducing these expressions into the governing eq
tions ~4!, the following matrix equation is obtained:

FIG. 2. Differential element from a curved beam.
944Le Bot et al.: Energy flow models
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Fv2R2

c0
2 2k2R22k2m2 2 i ~kR1k3Rm2!

i ~kR1k3Rm2!
v2R2

c0
2 212k4R2m2G FabG5F00G ,

~6!

wherec05
def

AE/r andm5
def

A I /S.
Freely propagating harmonic waves may exist only i

the determinant in the above system vanishes. The resulti
dispersion equation is

S v2R2

c0
2 2k2R22k2m2D S v2R2

c0
2 212k4R2m2D

2~kR1k3Rm2!250. ~7!

This bicubic equation, where the unknown isk, leads to six
complex solutions where three wave numbers have oppos
signs. The explicit expressions for these complex wave num
bers can be obtained by using the Cardan formulas, but th
are not given here for the sake of simplicity. However, som
asymptotic expressions are derived for small values ofē
5m/R in Appendix A. The real parts of the nondimensiona
wave numbersk̄5km deduced from the dispersion equation
are plotted in Fig. 3 versus nondimensional frequencyv̄
5mv/c0. This curve depends on the nondimensional param
eter ē5m/R and shows the existence of two different re-
gions. In the first region, there are two symmetric branche
of propagation, while in the second region four propagatin
modes are exhibited. These remarks will be very useful fo
the wave analysis given below. We are interested in mode
ing at medium- and high-frequencies in the second region

The wave number solutions of~7! can be noted as fol-
lows:

kl ,2kl ,kf
p ,2kf

p ,kf
e ,2kf

e , ~8!

where the subscriptl refers to longitudinal waves andf to
flexural waves. In addition, the superscriptp refers to propa-
gating waves whilee refers to evanescent waves. In Appen

FIG. 3. Dispersion curve of a curved beam: nondimensional wave numb
k̄ versus nondimensional frequencyv̄ for ē50.0014.
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dix A, it can be seen that, when the radius of curvatureR
becomes very large~i.e., R tends to infinity!, the solutions in
Eq. ~8! become

vAr

E
,2vAr

E
,S rS

EI
v2D 1/4

,

2S rS

EI
v2D 1/4

,i S rS

EI
v2D 1/4

,2 i S rS

EI
v2D 1/4

. ~9!

These expressions are the wave numbers for longitud
motion of bars and transverse motion of Euler–Berno
straight beams. This justifies the use of the subscriptl and
f .

The total energy density is the sum of energies ass
ated with the longitudinal and flexural motions, as follows

Wl5
rSv2

4
uu* 1

E0S

4 S n

R
1

du

dsD S n

R
1

du

dsD *
,

~10!

Wf5
rSv2

4
nn* 1

E0I

4

d

ds S u

R
2

dn

dsD d

ds S u

R
2

dn

dsD *
.

Moreover, there are three kinds of active energy flo
which represent the flexural and longitudinal behavior, a
the energy flow density exchanged between tangential~lon-
gitudinal! and radial~flexural! waves, respectively,

Pl5RealS iv

2 H N2
M

R J u* D ,

Pf5RealS iv

2 H Tn* 1M
dn*

ds J D ,
~11!

pl f 5RealS iv

2R H Nn* 1M
du*

ds J D ,

pf l52pl f .

In the following sections, several energy models will
presented. The aim of these models is to be able to pre
the energy quantities that incorporate several simplificati
without the need to solve the dynamical equations of mot
~4!.

II. PREAMBLE FOR THE ENERGY MODELS

We now present the smooth energy formulation~SEF!
for curved beams. This approach is based on the follow
assumptions:

~1! The damping loss factor is small (h!1).
~2! The participation of evanescent waves can be neglec
~3! The interferences between propagating waves can be

glected.

Two energy variables are involved in these models:
energy densityW defined as the sum of the kinetic energ
density and the potential energy density, and the active
ergy flow P defined as the real part of the complex ener
flow. As in previous section, a subscript is added that ref
to the type of wave:l for longitudinal andf for flexural.
Moreover, a superscript1 or 2 denotes the direction o
propagation of the wave at hand. We define the incid

er
945Le Bot et al.: Energy flow models
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energy densityW1 ~resp. reflected energy densityW2! and
the incident energy flowP1 ~esp. reflected energy flow
P2! as the energy quantities supported by a simple incid
wave ~resp. reflected wave!, traveling in a positive~resp.
negative! direction. These quantities are sometimes cal
partial energies.

Obviously, when an incident wave and a reflected wa
occur simultaneously, the global energy densityW and the
energy flowP are nota priori simply the sum of the corre
sponding partial energies. An additional term appears
cause of the existence of interferences between the
waves. As the smooth energy formulation~SEF! does not
take into account those interferences, this additional term
neglected and the global energy densityW and the active
energy flowP are given in the following form:

P5P11P2, W5W11W2. ~12!

This is a linear superposition principle extended to ene
quantities.

In the following sections three energy models are st
ied. The first one considers just the longitudinal energ
produced by a tangential wave where the effect of flexu
energies is neglected. The second one considers just the
ural energies produced by a flexural wave. Finally, the th
one is the most complete and takes into account the effec
the exchange of energy between the flexural and the lo
tudinal waves. Indeed, the previous kinematic equati
show that if a longitudinal wave or a flexural wave appe
alone, both longitudinal and flexural energies are produc
The two first models must not be considered as partic
cases of the third but actually as an illustration. Howev
this approximation is introduced for the simplification that
brings. As can be seen, the power exchanged between
two waves is not high especially at high frequencies. I
given system is excited with a tangential force or with
radial force, the corresponding energy dominates and
other energy may be neglected.

III. ENERGY MODEL FOR TANGENTIAL WAVE

A. Energy flow equation

Consider a system subjected to only longitudinal vib
tions. The energy quantities associated with this wave
denoted asWl andPl .

The first step in the derivation of the energy models
the well-known local power balance~Fig. 4!. Under steady
state conditions with no load, the global power balance
comes

FIG. 4. Local power balance.
946 J. Acoust. Soc. Am., Vol. 102, No. 2, Pt. 1, August 1997
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dPl

ds
1pdiss

l 1pl f 50 with pdiss
l 5hvWl and pl f 5alWl .

~13!

The second relationship~13! is a common model for dissi
pation. For instance, this is precisely the model used in
tistical energy analysis.1 It assumes no distinction betwee
kinetic and potential energy densities. While the third re
tionship~13! is the part of longitudinal energy transferred
flexural energy, flexural energy is not taken into account
this model, and may be considered as a dissipative term

Hence, in order to establish an explicit energy equati
a relationship between the global active energy flow and
total energy densityPl5H(Wl) has to be obtained. This
relationship depends on the kind and the number of
waves that occur which, in this section, is just the longitu
nal wave. It is not easy to exhibit the more general ene
operatorH. However, an alternative is to use the partial e
ergy quantities. Then, the partial power balances for sepa
incident energies and reflected energies can be written a

dPl
1

ds
1~hv1al !Wl

150 and
dPl

2

ds
1~hv1al !Wl

250.

~14!

Obviously, the global power balance given in express
~13! can be deduced by summing these relationships. In
dition, using the partial quantities, the relationships betwe
the partial energy density and active energy flow are me
a proportionality. Then

Pl
15cg

l Wl
1 and Pl

252cg
l Wl

2 , ~15!

wherecg
l is the group velocity associated to the longitudin

wave.
The group velocity is the speed at which energy flow

Its definition in terms of the longitudinal wave number is

cg
l 5

dv

dkl
. ~16!

Alternatively, its value can be evaluated directly from t
proportionality constants given in Appendix B.

The partial constitutive laws given in Eq.~15! are estab-
lished for a nondissipative wave guide12 since the employed
group velocity is that for an undamped system. For S
developments, the damping loss factor is assumed to be
small ~first assumption!, and then relationships~15! are as-
sumed to remain valid. In addition, the effects of dampi
are taken into account by way of the power being dissipa
in the power balance relations~14!.

Substracting the relationships~14! yields

d

ds
~Pl

12Pl
2!1~hv1al !~Wl

12Wl
2!50.

Using proportionality relationships~15!

cg
l d

ds
~Wl

11Wl
2!1

hv1al

cg
l ~Pl

11Pl
2!50.

Thus by virtue of~12!, the global active energy flow,Pl , is
simply proportional to the first derivative of the global e
ergy densityWl :
946Le Bot et al.: Energy flow models
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Pl52
cg

l 2

hv1al

dWl

ds
. ~17!

Finally, combining expressions~17! and ~13!, one ob-
tains the explicit energy equation for tangential movemen
curved waveguide:

d2Wl

ds2 2
~hv1al !

2

cg
l 2

Wl50. ~18!

Let us define the real wave numberk`
l as the wave num-

ber of the straight longitudinal excited nondissipative s

tem:k`
l 5

def
vAr/E0. Then, when the nondimensional quant

Rk̀l becomes infiniteRk̀l →`, the group velocitycg
l is the

same as for straight bar,v/k`
l , and the exchanged coeffi

ciental vanishes, so energy equation~18! is the same as tha
developed in Refs. 8 and 13:

d2W

ds2 2h2k`
l W50. ~19!

The solution of Eq.~18! is the sum of an incident and
reflected term:

Wl~s!5A1e@~hv1al !/cg
l
#s1A2e@~hv1al !/cg

l
#s. ~20!

To solve this problem completely, one must determine
energy amplitudesA1 andA2 occurring in the previous ex
pression~20!. To calculate the energy magnitudesA1 and
A2, the classical boundary conditions may be written
terms of the variablesWl andPl . A complete study concern
ing the energetic boundary and coupling conditions has b
already made14 in the case of a simple Euler–Bernoulli bea
and other waveguides.15 The general procedure propose
there remains, of course, valid in the case of radial wave
the waveguide. For instance, at an excited node locate
s0 , the active energy flow is assumed to be known.

Pl~s0!5Pin j . ~21!

For a dissipative end located ats1 , the equivalent energy
boundary condition is

Pl
2~s1!5r l Pl

1~s1!

or ~22!

~Pl2cg
l Wl !~s0!5r l~Pl1cg

l Wl !~s0!,

wherer l is a reflection coefficient. Note that this coefficie
may be smaller than one even for a nondissipative end du
mode conversion: A part of longitudinal incident energy flo
is converted into flexural energy flow.

Boundary conditions~21! and ~22!, when combining
with relationship~20!, allow the energy density magnitud
A1 andA2 to be calculated.

B. The envelope energy expression

Energy equation~18! given above allows the predictio
of the level of the total energy density, and the active ene
flow without interferences. Its solution~20! has a smooth
spatial variation with no local oscillations. In this sectio
947 J. Acoust. Soc. Am., Vol. 102, No. 2, Pt. 1, August 1997
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further information is deduced from the energy equation~18!
by comparing it to the solution of the equations of moti
~4!.

Indeed, the particular solution of Eqs.~4!, corresponding
to a couple of longitudinal waves, can be written

u5a1e2 ikl s1a2eikls,
~23!

n5b1e2 ikl s1b2eikls.

By virtue of ~6!, a proportionality exists betweenb6 and
a6. Let j l denote this proportionality, so thatb15j la

1 and
b252j la

2 where

j l5
v2R2/c0

22kl
2R22kl

2m2

i ~klR1kl
3Rm2!

5
2 i ~klR1kl

3Rm2!

v2R2/c0
2212kl

4R2m2 .

~24!

By introducing expression~23! in the longitudinal en-
ergy density expression given by~10!, the following formu-
las for the total energy density are obtained:

Wl~s!5Wsmooth~s!1Wasc~s!,

Wsmooth~s!5
1

4 FrSv21E0SUj l

R
2 ik lU2G

3~ ua1u2e2 Imag~kl !s1ua2u2e22 Imag~kl !s!,

~25!

Wasc~s!5
1

4 FrSv22E0SUj l

R
2 ik lU2G

3~a1a2* e22i Real~kl !s1a2a1* e2i Real~kl !s!.

The comparison between the total energy density~25!
calculated using solution~23! and the one given in expres
sion ~20! and evaluated from the smooth energy formulatio
shows that relationship~20! is the smooth term that occurs i
~25!. This first term, corresponding to the real exponen
terms, has a slow spatial variation, while the second ene
term has an oscillating spatial variation. In addition, a m
identification gives the magnitudesA1 and A2 in terms of
ua1u2 and ua2u2:

A15
1

4 FrSv21E0SUj l

R
2 ik lU2G ua1u2,

~26!

A25
1

4 FrSv21E0SUj l

R
2 ik lU2G ua2u2.

Moreover, the magnitude of the oscillating compone
Wosc is given by

Masc5
1

2 UrSv22E0SUj l

R
2 ik lU2Uua2a1* u

52
UrSv22E0SUj l

R
2 ik lU2U

UrSv21E0SUj l

R
2 ik lU2U AA2A1, ~27!

whereA1 and A2 are the energy magnitudes predicted
SEF.

In the case of large value ofRk̀l , the magnitude of the
oscillating components is simply

Masc'2AAB/R2k`
l 2. ~28!
947Le Bot et al.: Energy flow models
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As a result of this remark, the energy equation~20! con-
tains additional information on the lower and the upper
ergy envelopes:

Wupper~s!5A1e@~hv1al !/cg
l
#s1A2e@~hv1a1!/cg

l
#s1Masc,

~29!

Wlower~s!5A1e@~hv1al !/cg
l
#s1A2e@~hv1al !/cg

l
#s2Masc.

Consequently, SEF for tangential waves predicts not only
smooth level of the total energy density and active ene
flow, but their upper and lower envelopes too.

IV. ENERGY MODEL FOR RADIAL WAVES

In this section an energy model for a system contain
only radial waves is developed in a similar way as for t
system with only tangential waves in Sec. III.

A. Energy equation

Let us consider the solution of the frequency equati
In Eq. ~8! we noted that two kinds of wave numbers exist f
radial case: an evanescent wave numberkf

e and a propagating
wave numberkf

p . The amplitudes of the evanescent wav
decrease rapidly away from boundaries, and are then
glected for SEF developments~second assumption!. There-
fore the only group velocity to be considered for rad
waves is associated to the wave number for propaga
waves:

cg
f 5

dv

dkf
p . ~30!

Hence, the problem associated with the propagating
dial waves becomes similar to the tangential case tre
before. In particular, the relationship between the global
tive energy flow and total energy density is as follows:

Pf52
cg

f 2

hv1af

dWf

ds
. ~31!

By introducing this constitutive law in the active pow
balance, one obtains the following energy equation for
radial behavior of a curved waveguide:

d2Wf

ds2 2
~hv1af !

2

cg
f 2 Wf50. ~32!

By introducing the wave numberk`
f corresponding to a

straight nondissipative Euler–Bernoulli beam,k`
f

5
def

(rSv2/E0I )1/4, and by assuming the quantityRk̀f to be
very large, the energy equation obtained is merely the w
known energy equation developed by Refs. 7, 8, and 13

d2W

ds2 2
h2k`

f 2

4
W50. ~33!

The solution of energy equation~32! is

Wf~s!5A1e2@~hv1a!/cg
f
#s1A2@~hv1a!/cg

f
#s. ~34!
948 J. Acoust. Soc. Am., Vol. 102, No. 2, Pt. 1, August 1997
-

e
y

g

.

s
e-

l
g

a-
ed
c-

e

ll-

The equation above is solved using energetic bound
conditions. Here, relationships similar to~21! and~22! given
in the tangential case are valid.

B. The energy envelope expression

In a manner similar to that used for tangential waves,
upper and lower total energy density envelopes can be de
mined. Let us consider a couple of propagating flexu
waves where the resulting tangential and radial displa
ments are as follows:

u5a1e2 ik f
ps1a2eik f

ps,
~35!

n5b1e2 ik f
ps1b2eik f

ps.

The proportionality betweenb6 and a6 still applies i.e.,
b15j fa

1 andb252j fa
2 where

j f5
v2R2/c0

22kf
p2

R22kf
p2

m2

i ~kf
pR1kf

p3
Rm2!

5
2 i ~kf

pR1kf
p3

Rm2!

v2R2/c0
2212kf

p4
R2m2

. ~36!

Then, the expression for the transverse energy densit
case of a flexural propagating wave is:

Wf~s!5Wsmooth~s!1Wasc~s!,

Wsmooth~s!5
1

4 FrSv2uj f u21E0IU ik f
p

R
2kf

p2
j fU2G

3~ ua1u2e2 Imag~kf
p
!s1ua2u2e22 Imag~kf

p
!s!,

~37!

Wasc~s!5
21

4 FrSv2uj f u21E0IU ik f
p

R
2kf

p2
j fU2G

3~a1a2* e22i Real~kf
p
!s1a2a1* e2 Real~kf

p
!s!.

Hence, as in the tangential case, the magnitude of
oscillating field is given by

Masc52AA1A2. ~38!

It is surprising that this magnitude does not depend explic
on the presence of curvature. In fact, the obtained magnit
of oscillations 2AA1A2 is exactly the one given in Ref. 16
for the case of a straight Euler–Bernoulli beam. Obvious
the curvature affects the values of the coefficientsA1 and
A2 by means of the group velocity which depends on t
curvature.

In the case of radial waves in curved wave guides,
upper and lower total energy density variation are given s
ply by

Wupper~s!5A1e@~hv1af !/cg
f
#s1A2e@~hv1af !/cg

f
#s1Masc,

~39!

Wlower~s!5A1e@~hv1af !/cg
f
#s1A2e@~hv1af !/cg

f
#s2Masc.
948Le Bot et al.: Energy flow models
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V. COMPLETE ENERGY MODEL OF CURVED BEAMS

The case of the simultaneous propagation of radial
tangential waves in the waveguide is more complicated t
the propagation of the individual waves. Every kind of e
ergy quantity which was previously defined in Sec. I, appe
simultaneously in this case:

Pl
1 ,Pl

2 ,Pf
1 ,Pf

2 ,Wl
1 ,Wl

2 ,Wf
1 ,Wf

2 . ~40!

To these quantities, we add the active energy flo
which characterizes the exchange between the longitud
~tangential waves! and the flexural~radial waves! behavior.
The exchanged energy flows are

pl f
1 ,pl f

2 . ~41!

Let us generalize the derivation of the energy equati
established for a single wave. We noted that when inter
ences were neglected, a linear superposition principle is v
for energy quantities. Relationship~12! then becomes

Z5Z11Z2 with Z5P, W, or p. ~42!

In this case, the local power balance is composed of
coupled equations due to the presence of the exchange
ergy flows:

d

ds S Pl
1

Pf
1D 1S pdiss

l 1

pdiss
f 1 D 1S pl f

1

2pl f
1D 5S 0

0D ,
~43!

d

ds S Pl
2

Pf
2D 1S pdiss

l 2

pdiss
f 2 D 1S pl f

2

2pl f
2D 5S 0

0D .

The damping model,pdiss5hvW is still valid. Now, the
constitutive relationships between the propagating quant
have to be established. In the coupled case, relationships~15!
used for both radial waves and tangential waves are
valid, but the proportionality coefficient becomes a 2 by 2
matrix:

S Pl
1

Pf
1D 5@Cg#232S Wl

1

Wf
1D , S Pl

2

Pf
2D 52@Cg#232S Wl

2

Wf
2D .

~44!

An additional relationship is written for the exchang
energy flows as follows:

S pl f
1

2pl f
1D 5@A#232S Wl

1

Wf
1D , S pl f

2

2pl f
2D 5@A#232S Wl

2

Wf
2D ,

~45!

where@A# is a 2 by 2matrix with a second row equal to th
opposite of the first:

@A#5S l g

2l 2g D .

Note that the matrix appearing in the second relations
~45! is not the opposite of those in the first relationship co
trary to Eq.~44!. This means that when the propagation
rection of a wave is inverted, there is no modification of t
active energy flow exchanged between the radial and tan
tial waves. The complete expressions of the matrices@Cg#
and @A# are given in the Appendix B.
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Given the constitutive relationships in Eqs.~44! and
~45!, it becomes easy to deduce the equation for the ene
flow for coupled radial and tangential waves. The sum
expressions~43! leads to the global power balance:

d

ds S Pl

Pf
D1hvS Wl

Wf
D1@A#232S Wl

Wf
D5S 0

0D . ~46!

The difference between the expressions yields the c
stitutive relation between the global energetic variables:

d

ds H S Pl
1

Pf
1D 2S Pl

2

Pf
2D J 1~hv@ I #2321@A#232!

3H S Wl
1

Wf
1D 2S Wl

2

Wf
2D J 5S 0

0D , ~47!

where @ I # is the identity matrix. Substituting~44! for each
term yields

S Pl

Pf
D52@Cg#~hv@ I #1@A# !~21!@Cg#

d

ds S Wl

Wf
D . ~48!

Thus by substituting expressions~48! into ~46!, the sys-
tem of energy equations for the coupled problem is writ
as

d2

ds2 S Wl

Wf
D2„@Cg#~21!~hv@ I #1@A# !…2S Wl

Wf
D5S 0

0D .

~49!

The solutions of this system introduce four energy ma
nitudes which may be evaluated from energy boundary c
ditions. For instance, at an excited node, the injected ac
energy flow is assumed to be known, and then

S Pl

Pf
D ~s0!5S Pl inj

Pf inj
D . ~50!

Moreover, at a dissipative end, the following relationship
written:

S Pl
2

Pf
2D ~s1!5@R#232S Pl

1

Pf
1D ~s1!

or ~51!

F S Pl

Pf
D2@Cg#232S Wl

Wf
D G~s1!

5@R#232F S Pl

Pf
D1@Cg#232S Wl

Wf
D G~s1!.

The matrix @R# is constituted from four reflection coeffi
cients which illustrate mode-conversion phenomena. E
coefficient has a non-negative value smaller than one.
nondissipative condition leads to special relationships: T
sum of each column must be equal to one.

VI. NUMERICAL SIMULATIONS

Consider a curved beam with mass densityr
57800 kg/m3, Young modulusE52.1 e11 N/m2, inertia I
58.3 e210 m4, cross sectionS51 e24 m2, length L51 m,
and radius of curvatureR50.25 m. The damping ratioh is
taken to be equal to 0.05.
949Le Bot et al.: Energy flow models
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First of all, the curved beam is excited at its right end
node 1 by a longitudinal force of strength 1 N. Following
~21!, the longitudinal active energy flowPl is assumed to be
known at node 1. At the left end of the waveguide, node 0
the clamped end boundary condition is used which corr
sponds to the relationship~22! with an appropriate reflection
coefficient ~see Appendix C!. Two calculations are per-
formed. The first solves governing equations~4! and the lon-
gitudinal energy density and energy flow are then evaluate
using Eqs.~10! and ~11!. This classical calculation is taken
as a reference. On the other hand, combining expressio
~21! and ~22!, one can find the energy magnitudesA1 and
A2 and then the energy quantities are obtained from Eq
~17! and~20!. This is the SEF result. The results of the simu
lations are given in Figs. 5 and 6 for a pure-tone excitation
f 511 000 Hz. Thus it can be shown that the energy mod
~20! produces a prediction of the local space average of tot

FIG. 5. Longitudinal energy density variation versuss axis; s equation of
motion ~4!; * energetic equation~18! and its associated upper and lower
bounds given in~29!.

FIG. 6. Longitudinal energy flow variation versuss axis; s equation of
motion ~4!; * energetic equation~18!.
950 J. Acoust. Soc. Am., Vol. 102, No. 2, Pt. 1, August 1997
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energy density and active energy flow. Therefore, as the s
lution given by this model varies slowly in space, a numeri
cal implementation of this procedure with finite elements fo
instance, would require a few degrees of freedom. This
very attractive in the mid- and high-frequency domain. Fi
nally, note that the energy flow predicted by SEF does n
vanish at the clamped end. Actually, the local energy flow
predicted by the equation of motion will disappear but its
mean value over a vicinity will not disappear. This apparen
dissipation is relevant to mode conversion phenomena.

Second, the curved beam is excited at node 1 by a tran
verse force strength 1 N. The injected active energy flow
assumed to be known at this node. At the end of this wav
guide the energetic clamped end~22! is still valid at this
stage. The energy system to be solved in order to determi
the energy magnitudesA1 andA2 is formally the same as in
the longitudinal case. Results are given in Figs. 7 and 8. Th

FIG. 7. Transverse energy density variation versuss axis; s equation of
motion ~4!; * energetic solution~34! and its associated upper and lower
bounds given in~39!.

FIG. 8. Transverse energy flow variation versuss axis; s equation of mo-
tion ~4!; * energetic solution~34!.
950Le Bot et al.: Energy flow models



comparison between the classic calculation of the energ
density and the energy flow from the kinematic model~4!
shows that SEF again allows the prediction of the require
smooth level of the energy density and the energy flow
Moreover, the application of relationships~39! permits the
upper and lower energy envelopes to be known.

Finally, the complete coupled system is simulated. Tw
forces are applied: a longitudinal force of strength 5 N and
an antiphase transverse force of strength 1 N. The results
a simulation are given in Figs. 9–12 versus the curvilinea
coordinates. However, in opposition to previous simulations
where the excitation was in pure tone, the classical calcul
tion is now performed over the octave 5000 Hz–10 000 Hz
Actually, the matrix@R# has been determined for a semi-
infinite system and then it is applicable to a finite system i
a frequency-average sense. However, it turns out that t
differences between the pure-tone reflection coefficients~not

FIG. 9. Longitudinal energy density variation versuss axis; s equation of
motion ~4!; * energetic equation~49!.

FIG. 10. Longitudinal energy flow variation versuss axis; s equation of
motion ~4!; * energetic equation~49!.
951 J. Acoust. Soc. Am., Vol. 102, No. 2, Pt. 1, August 1997
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determined here! and the semi-infinite ones are small. Then,
as long as we are interested in just one kind of energy in-
duced by respective load, a pure-tone simulation is satisfac-
tory. But, for the coupled model, due to the large domination
of longitudinal energy level by transverse energy level, a
small miscalculation of the transverse reflection coefficient
may induce a large difference on longitudinal energy level.
This is why frequency averages are needed. Results given in
Figs. 9–12 are the average over this octave. The energetic
calculation stems from~49! with boundary conditions~50!
and ~51!. However, the injected power appearing in~50! is
not the exact pure-tone value at the mean frequency but the
mean value for this octave. The latter is obtained by consid-
ering the infinite impedance: The injected power is the one
created by the same excitation applied to the equivalent in-
finite curved beam. Note that the energy flows do not vanish
at the clamped end as previously observed. The longitudinal
energy flow at the clamped end is exactly the opposite of the

FIG. 11. Transverse energy density variation versuss axis; s equation of
motion ~4!; * energetic equation~49!.

FIG. 12. Transverse energy flow variation versuss axis; s equation of
motion ~4!; * energetic equation~49!.
951Le Bot et al.: Energy flow models
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FIG. 13. Longitudinal energy density variation versusf axis;s equation of
motion ~4!; * energetic equation~49!.

FIG. 14. Longitudinal energy flow variation versusf axis; s equation of
motion ~4!; * energetic equation~49!.

FIG. 15. Transverse energy density variation versusf axis; s equation of
motion ~4!; * energetic equation~49!.
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transverse energy flow at the same point. So, the clam
end is a nondissipative end. In Figs. 13–16 the energy qu
tities are plotted at a point versus frequency. It can be o
served that the energy quantities issued from SEF are
only the local space average of exact quantities but also
frequency average. This average must be performed ov
frequency band which contains at least several eigenfrequ
cies.

VII. CONCLUDING REMARKS

In this paper, a new formulation has been proposed
allow the prediction of the dynamical behaviour of curve
beams at high frequencies. This formulation is based o
solely energetic variables which are the total energy dens
and the active energy flow. The results given here genera
those given in the case of straight rods and beams.7,8,13 This
method is numerically attractive in the mid- and high
frequency range.

Three models have been studied. The first one is c
cerned only with the longitudinal behavior. Then by consi
ering a longitudinal wave alone, this model allows the pr
diction of the smooth part of the longitudinal energy dens
and energy flow. A similar model has been developed for
flexural behavior. However an additional assumption is
quired: The evanescent wave has to be neglected. In th
two models, the upper and lower envelops of the ene
density have been also evaluated. Finally, a complete mo
including the effect of the exchanged energy flow betwe
longitudinal and flexural behavior, has been proposed.
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FIG. 16. Transverse energy flow variation versusf axis; s equation of
motion ~4!; * energetic equation~49!.
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APPENDIX A

Let us rewrite frequency equation~7! by using the non-
dimensional quantitiesk̄5km, v̄5mv/c0 , and ē5m/R:

k̄62~v̄212ē 2!k̄41~ ē42v̄2~11 ē 2!!k̄21v̄2~v̄22 ē 2!50.
~A1!

This is a bicubic equation for the unknownk̄. As the wave
number for a straight rod isk`

l 5v/c0 , the solutionk̄l of Eq.
~A1! associated with longitudinal waves must tend tov̄ as
the small parameterē tends to zero. Moreover the value o
k̄l cannot depend on the sign of the radius of curvatureR.
Then, an asymptotic expression ofk̄l must take the form

k̄l5v̄1aē 21o~ ē 2!. ~A2!

Substituting~A2! in ~A1! yields

k̄l5v̄1
113v̄2

2v̄~v̄221!
ē 21o~ ē 2!. ~A3!

An analogous calculation for the transverse wave num
leads to

k̄f
p5Av̄1

31v̄

4Av̄~12v̄ !
ē 21o~ ē 2!. ~A4!

These relationships are valid in case of large radius of c
vature.

APPENDIX B

Let us consider a harmonic wave of form~5!. The ad-
missible values for the parameterk are given by dispersion
equation~7!. In order to simplify the following relationships
we notek1 ~resp.k2!, the incident longitudinal wave numbe
k1 ~resp. the incident propagating flexural wave numb
kf

p!.
Moreover, referring to~6!, for each harmonic wave o

form ~5!, the corresponding displacement magnitudesa and
b are proportional. So, letj i designate the ratio of the dis
placement amplitudesbi /ai for i 51,2. The expressions fo
j i are respectively given in Eqs.~36! and ~24!.

Now, let us assume that an incident radial wave and
incident tangential wave occur simultaneously in a giv
system. The total displacements are

u5a1e2 ik1s1a2e2 ik2s and n5b1e2 ik1s1b2e2 ik2s.
~B1!

Then substituting~B1! into energy expressions~10! and~11!,
and neglecting the cross product terms which are due to
terferences between radial and tangential waves, leads t

Wl
15(

i 51

2
1

4 H rSv21
E0S

R2 uj i2 ik iRu2J
3@ uai u2e2 Imag~ki !s#,

Wf
15(

i 51

2
1

4 H rSv2uj i u21
E0I

R2 uki u2u11 ik ij iRu2J
3@ uai u2e2 Imag~ki !s#,
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er

r-

r

n
n

n-

Pl
15(

i 51

2

RealH iv

2 FES

R
~j i2 ik iR!

2
EI

R2 ik i~11 ik ij iR!G J @ uai u2e2 Imag~ki !s#, ~B2!

Pf
15(

i 51

2

RealH iv

2

EI

R
@2ki

2~11 ik ij iR!j i*

2uki u2~11 ik ij iR!j i* #J @ uai u2e2 Imag~ki !s#,

pl f
15(

i 51

2

RealH iv

2

1

R2 @ES~j i2 ik iR!j i*

2EIuki u2~11 ik ij iR!#J @ uai u2e2 Imag~ki !s#.

The corresponding quantities with a minus superscript
obtained by substituting2ki and2j i everywhere. Relation-
ships~B2! can be written in a simple matrix form as

S Wl
1

Wf
1D 5@w#232S ua1u2e2 Imag~k1!s

ua2u2e2 Imag~k2!sD S Pl
1

Pf
1D

5@`#232S ua1u2e2 Imag~k1!s

ua2u2e2 Imag~k2!sD pl f
1

5@p#132S ua1u2e2 Imag~k1!s

ua2u2e2 Imag~k2!sD . ~B3!

The coefficients of the matrix@w#232 , @`#232 , and
@p#132 are easily identified from expressions~B2!. Thus the
matrix @Cg#232 and @A#232 are given by

@Cg#5@`#@w#~21! and @l g#5@p#@w#~21!. ~B4!

When either the longitudinal or transverse model is co
sidered, the group velocity and the coefficientsal andaf are
determined from these matrices:

cg
l 5Cg1,1

and cg
f 5Cg2,2

,
~B5!

al5l and af52m.

APPENDIX C

Let us determine the reflection coefficients matrix occ
ring in ~51!. For this purpose, an incident longitudinal wav
of form ~5! whose magnitudes are denoted byal

1 andbl
1 is

considered first. When this wave encounters the clam
end, some reflected longitudinal, propagating transverse
evanescent transverse waves are created. Their magni

are denoted, respectively,al
2 , bl

2 , af
p2

, bf
p2

, af
e2

, and

bf
e2

. By applying the classical clamped boundary conditio
~i.e., m5n5u50! and recalling that magnitudesb are pro-
portional to magnitudesa, three equations determine th

magnitudesal
2 , af

p2
, af

e2
in terms ofal

1 ;

S al
2

af
p2

af
e2
D 5@r #saa1

1 . ~C1!
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Now, applying~B2!, relationships between the reflected e
ergy flows and the incident energy flows carried by the in
dent longitudinal wave are determined as

S Pl
2

Pf
2D

l

5@R#22S Pl
1

Pf
1D

l

. ~C2!

The subscriptl following the vectors indicates that thes
energy flows are obtained for an incident longitudinal wa
Let us recall that in~C2! the unknowns are the coefficients
the matrix @R#. In a same way, another relationship is d
rived by considering an incident flexural propagating wa
instead of a longitudinal wave. Then

S Pl
2

Pf
2D

f

5@R#22S Pl
1

Pf
1D

f

. ~C3!

Both ~C2! and ~C3! provide all the material necessary
calculate the four coefficients of the matrix@R#. A numerical
verification shows that for a undamped system~evanescent
waves do not carry any energy flow!, the sum of each col-
umn of @R# is equal to one. This fact is relevant to a nond
sipative end.

Finally, the reflection efficiencies for either longitudin
or flexural model are just the diagonal coefficients of t
matrix @R#:

r l5R1,1 and r f5R2,2. ~C4!

1R. H. Lyon, Statistical Energy Analysis of Dynamical Systems: The
and Applications~MIT, Cambridge, 1975!.

2E. H. Dowell and Y. Kubota, ‘‘Asymptotic Modal Analysis and Statistic
954 J. Acoust. Soc. Am., Vol. 102, No. 2, Pt. 1, August 1997
-
-

.

-
e

-

Energy Analysis of Dynamical Systems,’’ J. Appl. Mech.52, 949–957
~1985!.

3S. M. Doherty and E. H. Dowell, ‘‘Experimental study of asymptot
modal analysis applied to a rectangular plate with concentrated mass
J. Sound Vib.170, 671–681~1994!.

4J. L. Guyader, ‘‘Modal sampling method for the vibration study of sy
tems of high modal density,’’ J. Acoust. Soc. Am.88, 2269–2276~1990!.

5V. D. Belov, S. A. Rybak, and B. D. Tartakovski, ‘‘Propagation of vibr
tional energy in absorbing structures,’’ J. Sov. Phys. Acoust.23, 115–119
~1977!.

6E. Luzzato, ‘‘Approximations and solutions of the vibration energy de
sity equations in beams,’’ Inter Noise 1991.

7D. J. Nefske and S. H. Sung, ‘‘Power flow finite element analysis
dynamic systems: Basic theory and applications to beams,’’ Statis
Energy Analysis3, 47–54~1987!.

8J. C. Wohlever and R. J. Bernhard, ‘‘Mechanical energy flow models
rods and beams,’’ J. Sound Vib.153, 1–19~1992!.

9O. M. Bouthier and R. J. Bernhard, ‘‘Simple models of energy flow
vibrating membranes,’’ J. Sound Vib.182, 129–147~1995!.

10O. M. Bouthier and R. J. Bernhard, ‘‘Simple models of the energetics
transversely vibrating plates,’’ J. Sound Vib.182, 149–164~1995!.

11L. S. D. Morley, ‘‘Elastic waves in a naturally curved rod,’’ Q. J. Mech
Appl. Math. 14, ~1961!.

12L. Cremer and M. Heckl,Structure Born Sound: Structural Vibrations an
Sound Radiation at Audio Frequencies~Springer-Verlag, Berlin, 1973!.

13Y. Lase and L. Jezequel, ‘‘Analysis of a dynamic system based on a
energetic formulation,’’ International Congress on Intensity Techniqu
Senlis CETIM~1990!.

14M. Djimadoum and L. Guyader, ‘‘Prediction of coupled beam energy w
the equation of diffusion-boundary, excitation and coupling condition
International Congress on Intensity Techniques, Senlis CETIM~1993!.

15M. N. Ichchou, ‘‘Formulations e´nergétiques pour l’étude des moyennes e
hautes fre´quences des syste`mes: The´orie et applications,’’ The`se École
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