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ABSTRACT 
 

Energy methods are of a great interest to solve acoustic radiation problems at high frequency 
range. One of these methods called ‘radiosity method’ has been applied in room acoustics’ to 
the calculation of reverberation times : it is based on the equation of the radiative energy 
transfer and deals with local energy quantities. But, only geometrical optical rays are taken 
into account in the ‘radiosity method’, and consequently diffraction phenomena are neglected. 
However, these phenomena lead to a redistribution of the incident energy that should be taken 
into account to well describe the repartition of sound pressure. 
In this context, this paper aims to include diffraction phenomena into the radiosity method. A 
software called CeReS specially appropriate for this method was improved for the task and 
was used for calculations. An example of acoustical diffraction around corners is considered 
to assess the method, and results are compared to the Geometrical Theory of Diffraction 
(GTD) and to results given by the Boundary Element Method using the software Sysnoise ©. 
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INTRODUCTION 
 

The problem of acoustical diffraction has given rise to a lot of papers in the literature, whether 
it is question of diffraction behind plane screens, around wide barriers [1], or around corners 
[2]. The diffraction phenomena can be treated thanks to the Geometrical Theory of Diffraction 
developed by Keller in the 1950s [3]. This theory relies on the high frequency assumption that 
waves propagate like rays, so it appears as an extension of geometrical acoustics introducing 
diffracted rays.  
 
This paper is aimed to study diffraction phenomena by means of another method called the 
radiosity method. This method has been investigated in room acoustics [4,5] and is based on 
radiative transfer equations. A recent study [6] was lead to adapt the radiosity method to 
perfectly specular reflection. This is going to be completed here with the introduction of 
diffraction effects. All cases studied here are two-dimensional.  
 
Section 1 is dedicated to the theoretical formalism: power exchanges are investigated and 
energy balance leads to an expression of the energetic diffraction coefficient. The sound 
energy calculation is detailed in section 2. In sections 3 and 4, some numerical examples are 
presented to support the theory: a two-dimensional study of diffraction around corners is 
considered in section 3, a case of multiple diffraction is exhibited in section 4. Results are 
compared respectively with the Geometrical Theory of Diffraction (GTD), and with results 
given by the standard Boundary Element Method using the software Sysnoise ©. 
 

CALCULATION OF THE ENERGETIC DIFFRACTION COEFFICIENT 
 

Consider an incoming sound wave in the direction v impinging on a structure with a 
diffraction point O . The sound wave is then diffracted in the direction u . The energetic 
diffraction coefficient D( , )v u can thus be defined as follows: 

diff incP ( ) = D( , )I ( )u v u v  (1) 

where diffP ( )u  is the specific intensity that is to say the diffracted power flow per unit solid 
angle in the direction u  and incI ( )v  is the incident power flow in the direction of 



propagation v. 

For an incident plane wave with an amplitude 0p  at the diffraction point, the diffracted wave 
is given by the GTD [2] and can be written:  
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where d( , )v u  is the diffraction coefficient introduced by the GTD due to the source in the 
direction v  and the observation point at position ( ,r)u . k  denotes the acoustical 
wavenumber. d( , )v u  depends on the inner angle of the diffracting wedge 2Ω , ν  is a wedge 

index defined as ( )π 2π-2Ων = , φ  and 0φ  give source and observation point positions 

defined such that the region exterior to the wedge is between φ=0  and φ=2π-2Ω .  
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Figure 1: Source and observation point positions 

The specific intensity for the diffracted wave can thus be written in terms of the impinging 
acoustical power flow incI  in the direction v: 

2
diff incP ( )= d( , ) I ( )u v u v  (4) 

Thus, the energetic diffraction coefficient can be written in terms of the diffraction coefficient 
introduced by the GTD: 



2D( , )= d( , )v u v u  (5) 

 

SOUND ENERGY CALCULATION 
 

The radiosity method relies on the assumption that all sources are uncorrelated so that the 
superposition principle can be applied to energy fields. Reflection and diffraction phenomena 
are taken into account so three kinds of power sources are introduced. The contribution of 
these sources to the whole acoustical field can be written thanks to the kernel function at point 
M  defined in a 2D configuration as -mrG(r)= e 2πrc  where r  denotes the source-receiver 
distance, c  is the sound speed, and m  is the attenuation factor. From this point, the whole 
power flow at any point M  (M)I  is calculated by summing the power flow attached to the 
direct field dir (M)I , the power flow attached to the reflected field refl (M)I  and the power 
flow attached to the diffracted field diff (M)I : 

dir refl diff(M)= (M)+ (M)+ (M)I I I I  (6) 

With : diff i i
i

(M)= cσ ( )G(r )∑ i iI u u  (7) 

where iu  and ir  are respectively the direction and the distance between the diffracting point 

iP  and the receiver point M . 

Diffraction sources iσ  are determined thanks to the expression of energetic coefficient: 

i inc iσ ( )=2πD( , )I (P )i iu v u  
(8) 

The incident field incI  takes into account all fields coming at the diffracting point that is to 
say the direct field, the reflected field and the diffracted field coming from the other 
diffracting points.  
For the practical point of view, equation (6) is solved numerically and is applied here to two 
situations : the diffraction of plane wave at wedge, and the diffraction of cylindrical wave at 
edge of a half-plane. 

 
 



NUMERICAL EXAMPLES 
 
Diffraction at wedges 
 

The first example considered here is the diffraction of a plane wave with unit amplitude 
around a rigid wedge. The wedge inner angle is 2Ω= π 4 .The energetic reflection coefficient 
R( , )v u  is taken equal to 1 and the energetic diffraction coefficient D( , )v u  is given in 
equation (5).  

 

Results for the energy density are presented in figure 2 and are compared to results obtained 
from analytical formulations of the GTD [2]. Figure 3 shows the repartition of the energy 
density in a linear scale along a representative line taken at y=0.2m. A good agreement 
between both methods is noticeable: interferences are not visible applying the radiosity 
method as they are not taken into account in the assumption of wave uncorrelation. At 
geometrical boundaries the diffraction coefficient tends to infinity: indeed, in these regions 
the acoustical field cannot be divided into geometrical and diffraction parts. 

 

 

 
(a) 

 
(b) 

Figure 2: Sound pressure level (Lp) in dB with the radiosity method (a) and with the GTD. 
Frequency : 2500 Hz. 

 

 



 

 

Figure 3: Energy density in linear scale with the radiosity method (-) and with the GTD(- -). 
Frequency : 2500 Hz. 

 

 

Diffraction at edges of an half-plane 
 

The second example is intended to illustrate a case of multiple diffraction. Consider a unit 
cylindrical point source emitting in front of a half-plane. Acoustical rays are reflected in the 
left half-plane and diffracted at the two edges of the half-plane facing the source. Diffraction 
sources σ  are thus determined solving a linear system linking contributions of direct and 
diffraction sources. Results are presented in figure 4 and are compared to results obtained 
with the boundary element method using the software Sysnoise ©.  

 

As in the previous case, variations of acoustical energy are quite well described with the 
radiosity method, interference effects are neglected. Geometrical boundaries are particularly 
visible because in these regions the diffraction coefficient tends to infinity, and so the sound 
pressure level is infinite. In these regions, the acoustical field cannot be described in terms of 
rays so the ‘radiosity method’ which is a ray method is not adapted. Such a problem does not 
occur with the Boundary Element Method. 



 
(a) 

 
(b) 

Figure 4: Sound pressure level (Lp) in dB with the radiosity method (a) and with the Boundary 

Element Method (Sysnoise ). Frequency : 2500 Hz. 

 

CONCLUSIONS 
 

An expression for the energetic diffraction coefficient is proposed in this paper. This 
expression is interesting as it enables to introduce diffraction phenomena in the radiosity 
method. The results obtained with this method are comparable to those obtained with 
analytical formulations of the GTD or with the boundary element method : interference 
effects are not visible as the method relies on the assumption that wave are not correlated so 
that energy fields can be added. The limits of the method appear at geometrical boundaries 
where results obtained are not valid : indeed, in these regions the acoustical field cannot be 
described in terms of rays so the radiosity method as the GTD cannot be applied. 
Thus, the work has now to be developped to well describe the acoustical field at these 
geometrical boundaries. 
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