Alain Le Bot, Page number

Tenth International Congress

on Sound and Vibration
7-10 July 2003 ® Stockholm, Sweden

RADIATIVE TRANSFER EQUATION

FOR TIME-REVERBERTATION OF CONCERT
HALLS

A. Le Bot, T. Schmitt, N. Driot, J. Perret-Liaudet

Ecole centrale de Lyon,
Laboratoire de tribologie et dynamique des systemes
36, av. Guy de Collongue
69134 Ecully, France
e-mail address: alain.le-bot@ec-lyon.fr

Abstract

This paper is concerned with the solving of the radiative transfer equation for
the determination of time-reverberation in rooms. This method sometimes called
the radiosity method is based on an analogy with the radiative heat transfer in
thermics. It leads to an integral equation which can be solved with an iterative
algorithm. A software (CeReS) has been designed to achieve this task. The present
study is focused on the application of this method for numerical simulation of the
auditorium Maurice Ravel in Lyon, France. A large acoustical model of the concert
hall has been developped with CeReS. Results of numerical simulations have been
compared with some measurements.

INTRODUCTION

For many years, some methods intended to assess the time-reverberation in rooms

beyond the validity domain of Sabine’s formula, have been investigated. Among
them, the so-called radiosity method [1] applies for diffuse fields as well as for
largely non-diffuse fields.

The radiosity method, based on the radiative transfer equation, is originally
limited to the diffuse reflection (Lambert’s law) although some extensions have
been proposed for specularly reflecting surfaces [2, 3, 4]. The method also enables
to determine the repartition of energy inside systems [5, 6] and, further, has been
extended to vibroacoustics [7].

This method firstly developped by Kuttruff [8], has been deeply studied by
Miles [9] who proved the uniqueness of the time-reverberation. Some algorithms to
determine it have been proposed.
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The purpose of this paper is to apply solve the radiative transfer equation for
complex geometries with a large number of degree of freedom. It is shown that
a simplified algorithm can save much CPU time compared with other algorithms.
However, it leads to some limitations which are emphasized. Some results are pre-
sented for the concert hall Maurice Ravel in Lyon, France.

THEORETICAL METHOD

Let consider a room 2 of volume V enclosed by a surface I' of area S and fullfilled
with an acoustical fluid with a sound speed ¢ and an attenuation factor m. The
surface is assumed to be absorbing with a coefficient o defined as the ratio of
reflected power over incident power and a reflection coefficient 7 =1 — .

The reflection of energy is taken into account by some equivalent sources of
magnitude o(q,t) distributed over the surface I'. At any point p at a distance R
from q in direction 6, the radiative intensity is,

e—mR

I(p,t) =o0(q,t — R/c) COSOW. (1)
since the source is assumed to radiate energy following the cosine Lambert’s law.
R/c is the duration for the energy propagates from q to p. The incident power
per unit surface when p € T' is I(p,t) cos ¢ where ¢ is the incidence angle. In a
second hand, the power emitted from p in all directions is given by integrating the
intensity over a small sphere surrounding the source. It yields, o(p,t)/4. Now, at
any point p € I', the energy balance reads P,ef = 7Pinc where Peeq is the reflected
power (emitted from the equivalent source) and Py, is the power incident from all
other equivalent sources. Substituting the previous equations, the energy balance is

o(p.t) = [ o (at=r/0)7(p)K (P a)dT(@) (2)

where,

e—mR

R (3)
Until now, it has been tacitly assumed that the domain € is convex, that is all points
q € I' are viewed from the point p. But, in the general case where some obstacles
may lie inside €, it must be considered that some points q cannot contribute to
the incident power at p. The function K in equation (3) must be multiplied by the
visibility function V' defined by V(p,q) = 1 if q is viewed from p and V(p,q) =0
otherwise.

Now, after the source is switched off, the decay of energy follows an exponential
law o(p,t) = o(p)e” ™ where 1/) is the decay rate of energy. Thus,

K(p,q) = cosfcos g

o(p) = [ o (a) e 7(p)K (p. )l (q) @

This is the radiative transfer equation for time-reverberation. The problem is now
to determine the constant A which allows the existence for a non negative function
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o. It is convenient to introduce the operator T defined by Tyo = [ oeM/er KAT
which maps L2(T') into itself. Equation (4) then reads (Id — Ty)o = 0.

The uniqueness of A follows from the variations of the real-valued function [9],
A +— (Id — Ty)o(p) for any fixed point p whose derivative is

Vi [o(@) Tt rp)K (p a)r(a) )

which is a negative function since o, 7, K > 0. The former function is then decreasing
and thus admits at most one zero.

SOME ALGORITHMS

The simpler method for solving equation (4) was proposed by Gerlach and Mellert
[10]. The distance R is replaced by the average value < R >=4V/S. The constant
factor e A<F>/¢ ig then an eigenvalue of the operator Ty which is determined in one
step by classical algorithms.

The second method proposed by Gilbert [11] assumes that the attenuation factor
is zero and then [ KdI' =1 at any point. The factor X is therefore solution of

B [ ac/rdT
- [[oK (eM/e —1) /AdI?

A (6)

The algorithm is,
1. start with some realistic values for og and A,
2. op =Th,_,0n-1,
3. A\ is computed from o,_1, A,—1 with equation (6).
The third algorithm is proposed by Kuttruff [12]. The algorithm is as follows,
1. start with some realistic values for oy and g,
2. 0, =Ty, _,0n—1 and oy, = a,,/ || o, |,
3. Ap = Ap—1 —¢S/AV x In || o), ||

Finally, the method proposed in this text does not require the determination of
the function o.

1. start with a realistic value Ay (from Sabine’s formula),
2. find a root for det(Id — T)) around Ay with any standard algorithm,
3. check that o > 0.

The last step is necessary because in general the equation det(Id — T)) = 0 has
several solutions. But only one admits a non-negative function o verifying equation
(4). This is an important limitation of the present algorithm. It runs faster provided
that the good root is found. A software named CeReS has been designed to solve
equation (4) with this algorithm for complex structures.
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Figure 1: View of the geometry of the concert hall Maurice Ravel.

| | 125 Hz | 250 Hz | 500 Hz | 1kHz |

Ceiling 0.13 0.13 0.10 0.10
Seat 0.27 0.27 0.23 0.27
Scene 0.10 0.07 0.05 0.05

Linoleum 0.02 0.02 0.03 0.03
Wall 0.40 0.30 0.20 0.10
Porous panel 0.13 0.73 0.85 0.72

Table 1: Table of absorption coefficient for the auditorium.

CONCERT HALL MAURICE RAVEL

The concert hall Maurice Ravel in Lyon has a volume of 22000 m>. The total area

of walls, floor and ceiling is 6000 m? with a mean absorption coefficient & = 0.2.
The acoustical constant is R = 1500 m?. The time-reverberation for the empty
auditorium is about 3 s over the audible range.

The auditorium has been modelled by CeReS with the geometry shown in Figure
1. About 210 faces were necessary for a total amount of 1000 triangles of meshing.
The enclosure is not convex and, thus, the visibility function must be carefully
computed. Six different absorption coefficients have been introduced in the model
for seats, walls (wood), floor (linoleum), scene (hard wood), ceiling and back walls
(porous panel). Their values (Table 1) were taken from some tables available in the
literature (in situ measurements have not yet been carried out).

In Table 2 are the time reverberations determined from Sabine’s formula, the
radiative transfer equation and some measurements (empty auditorium). But it is
significant to observe that the difference between Sabine’s formula results and the
ones of radiative transfer are about 10%. Unfortunatly, the measurements cannot
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| Tr | 125 Hz | 250 Hz | 500 Hz | 1kHz |
Sabine 3.3s 2.6s 28s | 2.8s
Radiosity 2.7s 24's 26s | 25s
Measurements 3.0s 29s 2.6s 2.5s

Table 2: Table of time-reverberation (empty room).
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Figure 2: Predicted SPL inside the concert hall (empty room) at 1 kHz.

decide between Sabine’s formula and the radiative transfer equation since the uncer-
tainty on the absorption coefficients introduced in the model, results in a variability
greater than 10% of reverberation time.

In Figure 2 is shown the repartition of sound inside the hall. Although the
uniformity of sound may be considered as sufficient to ensure an equal quality of
listening, the sound is not totally diffuse. This is probably the reason of the dis-
crepancy betwwen Sabine’s formula and the radiative transfer equation.

CONCLUSION

A numerical scheme for solving the radiative transfer equation has been proposed
in this paper. The time-reverberation of rooms is more accurately determined than
by applying Sabine’s formula. Furthermore, this algorithm runs faster than other
algorithms proposed in the literature, and thus, is applicable for large rooms with
complex geometry. However, the uniqueness of time-reverberation is no longer en-
sured. A first determination of time-reverberation with Sabine’s formula is required
to assess an interval where the time-reverberation is expected. This is a limitation
of the present approach.
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