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ABSTRACT.This study is concerned with the measurement of friction noise radiated from the
contact area of two sliding solids. The domain of interest is dry contact under light pressure
where the roughness of surfaces is of a great importance. The modal properties of solids,
explained by a numerical modal analysis, behave like a filter applied to the excitation signal.
The friction mechanism is characterized by two effects. The contact stiffness coupling opposite
pieces is determined by measuring the eigenfrequency shift. And the level of frictional forces is
determined from measurement of power spectrum density of acceleration by deconvolution.

RÉSUMÉ.Cette étude concerne la mesure du bruit de frottement émis par la zone de contact de
deux solides en mouvement. Le domaine exploré est celui du contact sec sous faible pression
où la rugosité joue un rôle essentiel. Les propriétés modales des solides, connues par une
analyse modale numérique, se comportent comme un filtre appliqué au signal d’excitation. Le
mécanisme de friction est caractérisé par deux effets. La raideur de contact entre les pièces
opposées est déterminée par le décalage des fréquences propres. Et le niveau des forces de
friction est déterminé par déconvolution à partir des mesures de densité spectrale de puissance
d’accélération.
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1. Introduction

Friction sound may occur in a wide variety of situations. Brakes squeal of cars or
trains, all musical instruments such as violins, guitars, sound radiated by glass when
rubbing a moist finger, tyres on road and so on. This wide variety of examples hide
in fact a so large variety of physical phenomenons. For an overview of friction sound,
see (Akay 2002).

In this study, we are interested in roughness sound, that is the friction sound aris-
ing when two dry and rough surfaces are rubbed on each other under light normal
load. In such a situation, the sound is produced in three steps. Firstly, the interaction
of rough surfaces during the relative movement generates many shocks of opposite
asperities. Secondly, the whole structure loaded by interaction forces, vibrates on its
own eigenmodes. Finally, the sound is radiated from structure and then reaches the
receiver point. This study investigates steps 2 and 3 in experimental and numerical
ways, but does not provide a theory for the generation mechanism (step 1). However,
it aims to provide a method for measuring the interaction forces and contact stiffness,
an essential condition to understand step 1.

The experiment carried out in this study was first proposed in (Maruyamaet al.,
2004). This is an attempt to understand the relationship between roughness and sound
with the simplest pieces. Another related experiment on frictional sound may also be
mentioned (Othmanet al., 1990-1) and an original device for measuring the roughness
from sound is proposed in (Othmanet al., 1990-2).

2. Description of the experiment

Following the study of (Maruyamaet al., 2004), two sheets of steel are applied
on each other. A sliding movement generates the friction and also the noise (Fig. 1).
The movement is applied by hand with a loading force approximately controlled and
with a sliding speed which has been measured. The sound produced by the friction
is recorded with a microphone and a digital I/O board PCI-DAS-6013 16 bits in an
anechoic chamber. The power spectrum density is obtained withN = 1024 lines with
a Hanning time window. All details of the experimental implementation can be found
in (Maruyamaet al., 2004).

The pieces are made of hot rolled steel of common usuage (S235JRG2). This is
a ferritic steel whose mechanical characteristics are the followings. Young’s modulus
E = 210 GPa at20◦C, Poisson’s coefficientν = 0.3, tensile strengthRm = 370 Mpa
and yield strengthRe = 235 Mpa. The pieces have a parallelepipedic shape with
length80 mm, width19 mm and thicknesses3.9 mm,6.2 mm and8 mm. The surfaces
are prepared by milling for the most rough surface and by polishing for the others. In
Table 1 are shown the roughnessesRz andRa of the four surfaces.Ra is as usual
defined as the arithmetic mean value of the roughness profile andRz is the average of
five peak-valley heights.
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Figure 1. Two pieces of metal are rubbed on each other in transverse direction and
the friction sound is recorded with a microphone in an anechoic chamber.

name milled 80 400 1200
Rz 11.5µm 1.2µm 0.6µm 0.5 µm
Ra 2.3µm 0.2µm 0.1µm 0.08µm

Table 1. Roughness of sheets measured with profilometer.

The measured friction noise has a very large band spectrum. In Figure 2 is shown
the signal spectrum measured with a 1/4" microphone and a high sample frequency
(fe = 200 kHz). This microphone has a very high limiting frequency at 70 kHz
well-suited for the determination of the noise upper frequency. The noise spectrum
is found to extend up to 45 kHz. Beyond this limit, the friction noise level is com-
parable to the background noise level although the actual friction noise spectrum is
certainly wider than it can be measured. As we are only interested in audible noise,
all measurements of this study were confined into the audio band 20 Hz - 20 kHz by
using an anti-aliasing filter and a sample frequency offe = 60 kHz. A 1/2" free-field
microphone type B&K 4189 having a higher sensibility than the 1/4" microphone has
been prefered. It is better suited for high quality measurements.

3. Modal behavior and contact stiffness

A numerical modal analysis was performed with a finite element software for a
parallelepipedic sheet of steel with free boundary conditions. Four eigenfrequencies
are found forh = 6 and 8 mm in the audio band and six eigenfrequencies forh =
4 mm. These eigenfrequencies are summarized in Table 2. The eigenvectors are
shown in Figure 3. It is clear that the first eigenfrequency is always the first flexural
mode (fz1), the second eigenfrequency is the first torsional mode (tx1), the third and
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Figure 2. Spectrum of the friction noise measured with a 1/4" microphone with limit-
ing frequency 70 kHz, sample frequency 200 kHz,Rz = 11.5 µm andh = 4 mm.

fz1 tx1 fz2 fy1 tx2 fz3
h = 3.9 mm 3207 7644 8763 13506 15688 16935
h = 6.2 mm 5068 11219 13513 13533 > 20 kHz > 20 kHz
h = 8 mm 6423 13415 16813 13520 > 20 kHz > 20 kHz

Table 2. Eigenfrequencies (Hz) by finite element method within the audio band.

fourth eigenfrequencies are the first flexural mode in transverse direction (fy1) and
the second flexural mode (fz2). The additional fifth and sixth eigenfrequencies for
h = 4 mm are respectively the second torsional mode (tx2) and the third flexural
mode (fz3).

The power spectrum density of friction noise has been measured for different load-
ing forces, roughnesses and sliding speeds. Results are respectively shown in Fig-
ures 5, 6 and 7. The vertical thick lines point out the position of eigenfrequencies of
uncoupled pieces computed by finite element method. We first remark that the eigen-
frequencies computed by finite element method well match with the peaks of power
spectrum density especially for low loading force, high roughness and high sliding
speed. It means that the coupling between the two metal pieces is light and that the
pieces behave like being totally uncoupled. This type of friction noise involving weak
contacts of rough surfaces has been named roughness noise in (Akay 2002) Section
II. But when the loading force increases (Figure 5), when the roughness decreases
(Figure 6) or when the sliding speed decreases (Figure 7), the coupling become more
important and the first eigenfrequency is shifted towards high frequencies.

In order to understand the shift of eigenfrequency, let consider that the interaction
may be modelled as a single contact stiffness localized in the centre of the pieces as
shown in Figure 4. The presence of this additional stiffness acts as a constraint and
then results in an increase of eigenfrequency.
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Figure 3. Eigenmodes by finite element method. (a), First flexural modefz1. (b),
First torsional modetx1. (c), First transverse flexural modefy1. (d), Second flexural
modefz2.

Mode 1 is more dependant on the coupling strenght than modes 2, 3 (which are al-
most one in Figs. 5-7) and 4. This phenomenon has been pointed out in (Maruyamaet
al., 2004) and can be explained from the numerical modal analysis. Mode 1 is a flex-
ural one and has a maximun of vibration at the centre of piece. This eigenfrequency is
then highly dependant on the contact stiffness. Modes 2, 3 and 4 are the first torsional
mode, the first transverse flexural mode and the second flexural mode. All of them
have a node of vibration at the centre of the piece in normal direction. They are thus
unaffected by the application of an additional rigidity (contact stiffness) at this point.
This explains why these eigenfrequencies are not dependant on the contact conditions.

It is apparent from Figures 5, 6 and 7 that the contact stiffness increases with
the static normal load, with the reciprocal of roughness and with the reciprocal of
sliding speed. It possible to assess the contact stiffness. By applying the Rayleigh-Ritz
method to the first eigenfrequency, the circular frequencyω′ of the coupled system is
such that equality of deformation energy and kinetic energy is verified,

D

∫ l

0

ψ′′2(x)dx+ kψ2(l/2) = mω′2
∫ l

0

ψ2(x)dx, [1]

whereψ(x) = coshλx/l + cosλx/l − σ(sinhλx/l + sinλx/l) with σ = 0.98
andλ = 4.73, l = 80 mm being the length of the beam (Blevins 1979), is the first
eigenmode for flexural wave of a single piece andk is the contact stiffness applying
atx = l/2. D = Eh3/12(1 − ν2) is the bending stiffness of the beam andm is the
mass per unit length. The uncoupled eigenfrequencyω also verifies the equality of
energies,

D

∫ l

0

ψ′′2(x)dx = mω2

∫ l

0

ψ2(x)dx. [2]
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Figure 4. Two sheets of metal separated by a contact stiffness acting in normal direc-
tion.

Figure 5. Power spectrum density of friction noise for different loading forces.

Thus, the contact stiffness is related to the frequency shift∆ω = ω′ − ω with,

k = 2mω2 × ∆ω
ω

× ||ψ||2

ψ2(l/2)
. [3]

with ||ψ||2 =
∫
ψ2dx. An integration of the square of the above functionψ leads to

ψ2(l/2)/||ψ||2 = 1.97/l. For instance, from Figure 6 the frequency shift of the first
eigenmode is∆ω/ω = 0.2 betweenRz = 11.5 andRz = 1.2. leading to a contact
stiffnessk = 15 106 N/m.

4. Power spectrum density of exciting forces

As it has been pointed out, the sound power spectrum density is highly dependant
on the modal behavior of the pieces being excited by friction. The question arising
now is whether it is possible or not to investigate the effect of roughness independantly
of the shape or mechanical properties of pieces. This is achieved by measuring (in an
indirect way) the dynamical force level responsible of vibration and sound.
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Figure 6. Power spectrum density of friction noise for different roughnesses.

Figure 7. Power spectrum density of friction noise for different sliding speeds.

Assuming that the driving forcef(t) stemming from friction is a random function
of time, the accelerationa(t) at any receiver point on the structure is also a random
function filtered by the modal behavior of the piece. If the filter is considered to
be linear, the power spectrum densitySaa of the acceleration is related to the power
spectrum densitySff of the driving point by (Peebles 1987),

Saa(ω) = |Hfa(ω)|2Sff (ω), [4]

whereω is the frequency andHfa is the transfer function between the driving force
at pointx0 and the acceleration at the receiver pointx1. This function may be known
either by direct measurement or by numerical modal analysis with

Hfa(ω) =
4∑

i=1

ω2

M

ψi(x0)ψi(x1)
ω2

i + 2iζiωωi − ω2
, [5]

whereM is the mass of piece. The eigenmodesψi and eigenfrequenciesωi have been
previously determined by finite element method. It is however difficult to predict the
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Figure 8. The frequency response function of piece 1 is first measured between an
accelerometer and a force probe under the shaker by applying a white noise. Secondly,
the power spectrum density of acceleration is measured in same conditions by rubbing
piece 2 on piece 1.

Figure 9. Power spectrum density of acceleration.

modal damping factorsζi without measurement. This is the reason why the experi-
mental solution has been prefered. An accelerometer type B&K 4975 is positioned in
a corner of the piece. This receiver point can catch three of the four modes. The fre-
quency response functionHfa has been first measured with an electromagnetic shaker
and a force probe type B&K 8001 with a white noise excitation within the audio band.
Secondly, the acceleration power spectrum density has been measured by rubbing the
other piece on the first one but without removing the shaker. This is important because
when the frequency response function was measured, all modes of the isolated piece
but also of the entire system including probes and shaker was captured. Then for an
accurate deconvolution, the acceleration power spectrum density must be acquired in
exactly same conditions.
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Figure 10. Frequency response function force-acceleration.

Figure 11. Power spectrum density of dynamical contact force obtained by deconvo-
lution.

In Figures 9-11 is shown an example of force power spectrum density determined
by this method. As expected, the power spectrum density of acceleration has some
peaks corresponding to the eigenfrequencies of pieces but also to some additional
eigenfrequencies of the entire system. These eigenfrequencies are more visible on the
frequency response function. But, the power spectrum density obtained from Eq. (4)
is more flat in the frequency band 5 kHz - 20 kHz although some holes are yet visible.
A perfectly constant power spectrum density is typical for white noise. In case of
Figure 11, a constant level ofSff = 4 mN2/Hz is obtained showing that the excitation
by friction is anδ-correlated white noise and may be modelled by a "rain-on-the-roof"
excitation.

Using this method, it has been found that the power spectrum density of force
highly depend on the sliding speed and the roughness (increasing function) but less
on the loading force. This result may be checked on the sound pressure level shown
in Figs. 5, 6 and 7.
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5. Conclusion

In this study, it has been shown how the noise emanating from rubbed rough sur-
faces depend on the modal properties of pieces in contact. Modes and eigenfrequen-
cies of uncoupled pieces have been determined and well match with measurements
showing that the coupling between opposite pieces remains light during contact. Then,
it has been proposed to characterize the friction mechanism generating noise with two
quantities.

First, the contact stiffness is responsible of a shift to high frequencies of the first
flexural mode. The contact stiffness is related to this frequency shift by Eq. (3). It is
found that the contact stiffness increases with the static normal load, with the recipro-
cal of roughness and with the reciprocal of sliding speed.

Secondly, the driving force level has been determined by a deconvolution from
the measurement of the power spectrum density of acceleration and the frequency
response function of the system. These forces are found to be closed to a "rain-on-
the-roof" excitation. The roughness sound is thus a white noise filtered by the modal
behavior of the piece. It increases with roughness and sliding speed but less with
loading force.
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