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Summary
The transmission of a plane sound wave through a finite plate is investigated by means of a local energy approach.
This study is an extension to vibroacoustic problems of an integral energy approach dedicated to the high frequen-
cies. This approximate approach deals with energy density and intensity, and leads to the spatial distribution of
energy averaged over time and frequency. Both resonant and non-resonant transmission processes are considered,
below and above the critical frequency of the fluid-loaded plate. This paper focusses on the sound transmission
between two semi-infinite acoustical media, giving rise to non diffuse pressure fields. Both structural and acoustic
averaged energy fields are well described except on caustics.

PACS no. 43.20.Tb

1. Introduction

The transmission of sound through walls has been studied
for a long time and complex phenomena have been high-
lighted, even in the simple case of the transmission of a
plane wave through a finite thin plate [1, 2]. For the de-
scription of such vibroacoustic systems in the higher part
of the audio frequency band, classical approaches like fi-
nite or boundary element methods are not relevant due to
the high computation cost. As a solution, statistical ap-
proaches dedicated to high frequencies and based on en-
ergy quantities have been developed. The most famous
one, the Statistical Energy Analysis (SEA), solves systems
by applying a global power balance for each subsystem
[2, 3], assuming that energy fields are diffuse. The total
averaged-energy of each subsystem is thus obtained.

As an alternative to SEA, the energy flow approach de-
scribed in this paper is based on some local energy quanti-
ties so that the distribution of energy inside the subsystems
is available. It has already been applied to pure acousti-
cal problems [4, 5, 6], to the coupling between structures
and cavities [7], and to pure radiation problems [8]. It is
here investigated for the transmission between two semi-
infinite acoustical media, which corresponds to a prob-
lem where energy fields are not diffuse at all. The present
approach is based on a simplified analysis: this involves
power balance in which the incident field excites the plate,
plate vibrations dissipate energy and plate vibrations radi-
ate energy. By virtue of the locality principle valid at high
frequencies [9], the power balance for excitation and radia-
tion processes are derived by solving some local canonical
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problems. As a result, the radiation is approximated by the
relevant edge/surface radiation from semi-infinite/infinite
plates, the expression depending on whether the excitation
is below or above the coincidence frequency.

The successive steps of the calculation are detailed as
follows. In section 2, energy fields corresponding to some
elementary waves are briefly studied. They are then used
in both the structural and acoustic energy formulations
to describe the contribution of some power sources intro-
duced on boundaries to check the energy flow balance at
couplings. In section 3, the corresponding power balance
equations at couplings are derived by solving some canon-
ical problems involving resonant and non-resonant trans-
mission effects. The resolution of the whole vibroacoustic
system is then performed in section 4 and some numerical
comparisons with reference results are presented in sec-
tion 5.

For the sake of simplicity, the transmission problem
is reduced to a two-dimensional system by considering a
one-dimensional baffled structure excited by a plane sound
wave. This paper focusses on the distributions of flexural
energy in the structure and transmitted sound energy.

2. Description of energy fields

2.1. Energy fields for plane and cylindrical waves

We note G and H the time-averaged energy density and
intensity vector due to a traveling plane or cylindrical
damped wave, in steady state conditions at pulsation !.
The local power balance is written [5],

divH+ �!G = �(S); (1)
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where � is the loss factor assumed to be light (� � 1), and
S the point source. The dissipated power is taken to be
�!G i.e. proportional to the energy density. This relation-
ship is rather conventional in the high frequency literature
[3] although it requires some comments. In acoustics this
relationship may be considered as relevant for the atmo-
spheric absorption in far-field. In structural dynamics, the
underlying assumption is that potential energy and kinetic
energy are equal so that the dissipated power may be ex-
pressed in terms of the total energy density, the damping
process being viscous or hysteretic. Indeed, this is not true
in a strictly sense but is generally considered as valid for
local quantities averaged over time, frequency and space,
except in some special cases like the non-resonant field in
an acoustically excited structure. Furthermore, the condi-
tion that the wave propagates is embodied in the relation

H = cGu; (2)

where u is the unit vector in the direction of propagation
and c the group speed of the wave. Substituting equation
(2) in equation (1), solutions for G and H at any point M
are derived as

G(S;M) =
1

c

e��!r=c

0 rn�1
(3)

and H(S;M) =
e��!r=c

0 rn�1
uSM ;

where r = jSM j and uSM is the unit vector in the di-
rection from the source point S to the receiving point M .
n = 1; 0 = 2 for plane waves and n = 2; 0 = 2�
for cylindrical waves. These expressions will be used to
derive the energy contribution of the boundary sources in-
volved in the description of the structural and acoustic en-
ergy fields.

2.2. Decomposition of systems

Consider the baffled structure of Figure 1 excited by an
incoming plane sound wave carrying the intensity I inca .

In order to predict the whole structural and acoustic
averaged energy fields, these fields are split into several
waves of type described above. Some future sources are
introduced on the boundaries of the subsystems to check
the local power balances. Further, the assumption is made
that all waves are uncorrelated so that their energy con-
tributions may be simply summed. Indeed, the choice of
decomposition of energy fields into traveling waves is of
great importance and, in general, different decompositions
will lead to different results. The leading idea is that the
decomposition must be as more “physical” as possible and
that energy balance must always be verified. The structural
and acoustic fields are split up as follows.

The energy Ws on the structure is thought of as the su-
perposition of the forced term W0 due to the incoming
sound wave and the free term Wf due to waves traveling
in the structure [1]. By virtue of the uncorrelation assump-
tion, both energy contributions are simply summed and the
total energy is written Ws = W0 +Wf . In order to check
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Figure 1. Sound transmission through a baffled plate: two struc-
tural sources, �sA and �sB describe the structural free energy Wf .
Two point acoustic sources, �aA and �aB , and a density of acous-
tic sources, �aP are introduced to describe the transmitted sound
energy Wa.

the power balance on extremitiesA andB of the structure,
two boundary sources, �sA and �sB are introduced (see Fig-
ure 1). The resulting free energy Wf and intensity If are
written for any point P on the structure(

Wf (P ) = �sAGp(A;P ) + �sB Gp(B;P );

If (P ) = �sAHp(A;P ) + �sBHp(B;P ):
(4)

Gp and Hp are the solutions given in equations (3) for
plane waves.

The transmitted sound energy is described by two point
sources, �aA and �aB located on extremities A and B, and
by a density of boundary sources, �aP (see Figure 1). The
reasons why the sources are located on extremities and dis-
tributed on the whole surface will become clear in the next
section dealing with canonical problems. We must con-
sider that these sources �aX where X = A;B; P depend
on the emission direction. The sound energy is written at
any point M ,

Wa(M) = �aA('AM)Gc(A;M) + �aB('BM)Gc(B;M)

+

Z
AB

�aP ('PM )Gp(P;M) d'PM ; (5)

with Gc being the energy solution (3) for cylindrical
waves. 'PM denotes the angle between the normal to the
plate na and the direction from the point P to the point
M .

Some canonical problems are now considered in order
to derive the magnitudes �sA;B , �aA;B and �aP of the struc-
tural and acoustic boundary sources. The structural forced
energy field W0 is also evaluated. At this stage, the local-
ity principle which states that the dynamics of a coupling
only depends on the local characteristics of the coupling
is invoked. The canonical problems are consequently not
derived with the actual configuration of the vibroacoustic
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system but with infinite or semi-infinite configurations that
lead to much more simpler resolutions.

3. Canonical problems

Several processes are involved in the transmission of
sound through thin elastic plates. They may be divided
into resonant and non-resonant effects [1, 2]. The resonant
transmission corresponds to the radiation of free flexural
waves traveling in the structure while the non-resonant
transmission is due to acoustically-forced waves in the
structure. These aspects are detailed below with the res-
olution of some canonical problems in terms of power bal-
ance. In each case, both the magnitude and the directivity
of the power sources involved in the problem are deter-
mined. For the sake of clarity, details of calculations are
reported in Appendix.

3.1. Non-resonant transmission

Consider an infinite plate excited by a plane sound wave
incident with the angle � (Figure 2).

Some plane sound waves are reflected and transmitted
through the plate and a flexural plane wave is created so
that this canonical problem is related to the distributed
acoustic sources �aP and the forced structural energy W0.
The ratios of reflected and transmitted powersPrefl; Ptran
over the incident one Pinc are written �1

nr and �2
nr (see

expressions (A1) in Appendix). The corresponding emis-
sion angles, noted '1

nr and '2
nr, are given in equations

(A2). The structural energy W0 in equation (A5) is that
of the forced wave. The power balance states the equality
of the incident power, i.e. the flux of the incident inten-
sity over the plate, with the reflected, transmitted and dis-
sipated powers, Pinc = Prefl+Ptran+Pdiss. The power
being dissipated is due to internal damping in the struc-
ture, taken into account by the loss factor �. It is shown
in equation (A6) to be proportional to the incident sound
power, Pdiss = �diss

nr Pinc, so that the global power bal-
ance can be expressed independently on the amount of in-
cident power:

�1
nr +�2

nr +�diss
nr = 1: (6)

This equation shows that all the power transmitted to
the structure is used to produce the forced wave which
may induce energy losses if the structure is damped. If
the structure is undamped, �diss

nr = 0 and all the inci-
dent power is reflected and transmitted. Since the forced
energy is taken into account by the term W0, no structural
power source needs to be introduced along the structure.
The plane shape of the transmitted sound wave and the lo-
cation of the non-resonant transmission phenomenon jus-
tify the introduction of the acoustic power sources �aP in
equation (5) distributed along the whole structure, and the
use of the energy solution (3) for plane waves to describe
their contribution to the acoustic energy. This implemen-
tation is detailed in section 4.

1Σ1
nr

W0

2Σnr
2
nrϕ

Figure 2. Canonical problem for non-resonant transmission.

r
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Figure 3. Canonical problem for structure excitation.

3.2. Resonant transmission

The resonant transmission process may be divided in two
steps. The structure is first excited by the incoming sound
wave. The resultant free structural field then radiates in
both acoustical media [1].

3.2.1. Excitation of structures

Consider a semi-infinite plate excited by a plane sound
wave incident with the angle � (Figure 3).

Compared to the previous canonical problem, the plate
is now bounded so that a free flexural field is created. The
aim of this canonical calculation is to determine the power
being supplied to the plate, then leading to the structural
sources �sA;B . The ratio of structural power emanating
from the edge of the plate over the incident sound power
is noted �r in equation (A8). It is clear from the com-
parison of this canonical problem with the previous one
that the free wave emanates from the edge of the plate.
The exchange of power from the incident sound wave to
the plate is thus confined at the edge. This is the reason
why in equation (4) the free structural field is the sum
of only two terms �sA;B and no distributed source was
added. Due to the simplifications made for the solving of
the canonical problem in Appendix, one only knows the
ratio �r of structural power Ps over the incident sound
power Pinc. Rigorously, some reflected, transmitted and
diffracted sound intensities are also to be evaluated. They
have been omitted and the local power balance reduces to

Ps = �rPinc: (7)

It should be added that the local power balance (6) valid
for the transmission through an infinite plate no longer ap-
plies in the vicinity of the edge, due to the parts of the
sound power transmitted to the structure and diffracted
by the edge. Therefore, at the edge in the directions '1

nr

and '2
nr of non-resonant transmission/reflection, the non-

resonant transmission/reflection efficiencies �1
nr and �2

nr
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need to be modified. These directions correspond to caus-
tics. In the vicinity of these lines, the pressure may not
be thought of as the superposition of plane and cylin-
drical waves [9] so that our simple decomposition does
not apply. However that may be, we shall consider in the
present asymptotic analysis, that equality (6) always ap-
plies, meaning that the estimated sound intensity in the
caustics directions is wrong. As a consequence, the de-
scription of the energy field is right everywhere except in
the vicinity of caustics. This is an important limitation of
the present method.

3.2.2. Radiation of structures

Two mechanisms are involved in the radiation of the struc-
ture.

The scattering of flexural waves on structural disconti-
nuities occurs at any frequency [10]. In the present prob-
lem, it appears on extremities of the plate and is usu-
ally called edge radiation [11]. The point acoustic sources
�aA;B are introduced in equation (5) to account for this phe-
nomenon. The canonical calculation is performed with a
baffled semi-infinite plate with a flexural wave impinging
on the boundary (Figure 4).

Part of the incident power is reflected in the structure,
the other part is diffracted in both acoustical media. The
ratio of reflected power over the incident one is noted R
in equation (A13). The diffracted sound wave is shown to
be cylindrical centered on the edge point. The ratio of the
radiated power per unit solid angle about direction ', over
the incident flexural power is written �i

e(') in equation
(A12), where ' denotes the angle with the normal to the
plate. The power balance for the system states the equality
of the reflected and radiated powers with the incident one,

R+

Z �=2

��=2

�1
e(') d'+

Z �=2

��=2

�2
e(') d' = 1: (8)

Since the radiated waves are cylindrical centered on the
extremity point, the resulting power sources �aA;B in equa-
tion (5) are located on both extremities of the structure and
the energy solution (3) for cylindrical waves is used to de-
scribe their contribution to the acoustic energy.

The second radiation process occurs during the propa-
gation of the free flexural waves (Figure 5).

It appears above the so-called critical frequency when
flexural waves become supersonic, and corresponds to the
surface radiation process [11]. This phenomenon is con-
sequently related to the distributed acoustic source �aP . A
plane sound waves is radiated in each media in directions
'1
s and '2

s given in equation (A14). The ratio of power be-
ing radiated in the medium i over the power carried by the
flexural wave is noted �i

s in equation (A15). The result-
ing attenuation of the flexural wave is described with the
radiation loss factor

�s = cs(�
1
s +�2

s)=! (9)

to be added to the damping loss factor � in expressions
(3). cs denotes the group speed of the flexural wave. Thus,

1
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1

Figure 4. Canonical problem for edge radiation.
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Figure 5. Canonical problem for surface radiation.

above the critical frequency, each free wave traveling in
the plate is subjected to this radiation process and there-
fore, must be described with energy solutions (3) including
the additional radiation loss factor (9). The power sources
�aP describing the radiation of the supersonic waves in
equation (5) are distributed along the structure, with the
directivity�'1

s depending on the direction of propagation
of the flexural wave. Energy solutions (3) for plane waves
in acoustics are used for their contribution to the acous-
tic energy. When flexural waves are subsonic, no power is
radiated by this process since only evanescent waves are
created in the acoustical medium.

Above the critical frequency, both radiation processes
occur giving rise to caustics starting from both extremi-
ties A and B with the angles �'1

s and �'2
s. The same

problem as encountered for the excitation of structures in
subsection 3.2.1 also appears so that the description of en-
ergy will be realistic except near these caustics. Similarly
the power balance (8) does not apply since efficiencies
�i
e need to be modified in the directions of caustics �'is.

In fact, the efficiencies evaluated by solving the previous
canonical problem do not verify the power balance be-
cause they have some strong singularities in the directions
�'is. Integrals of equation (8) are therefore singular and
the reflection coefficient R for the fluid-loaded plate can
not be derived. A convenient way to overcome this diffi-
culty is to consider that R = 1 when solving the structural
problem. Indeed an error is introduced since the structure
seems to not loss some energy by edge diffraction. But
this error is expected to be relatively light, the largest part
of energy being exchanged by surface radiation process
[2, 11]. But when solving the acoustical problem, the sin-
gular efficiencies are applied separately for each direction
excepted for caustics directions. The acoustic energy is
thus correct far from the caustics.
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4. Resolution of the system

The system resolution requires the calculation of all the
boundary sources �sA;B , �aA;B and �aP shown in Figure 1.
To this aim, the local power balances derived in the previ-
ous canonical problems are written in terms of the power
sources of equations (4,5) and the energy solutions of
equation (3). The two structural sources �sA and �sB are
first determined. The resonant excitation and the radiation
by edge scattering are involved in the energy behavior at
edgesA andB, and the corresponding canonical problems
are invoked. The power balance on each extremities states
that the structural power emanating from the edge is re-
lated to the incident sound power I inca and to the structural
power coming from the opposite edge by equalities,

(
1
2�

s
A = �r I

inc
a na +R [�sBHp(B;A):ns;A];

1
2�

s
B = �r I

inc
a na +R [�sAHp(A;B):ns;B ]:

(10)

R and �r are defined in the previous canonical calcula-
tions. Iinca is the intensity of the incident sound wave, and
na is the unit vector normal to the plate. Hp denotes the
solution (3) for plane waves, taking into account the radia-
tion loss (9) when flexural waves are supersonic. ns;A and
ns;B are unit vectors oriented outside the plate from its ex-
tremities. The terms inside brackets are the incoming flex-
ural energy flow on both extremities, which are reflected
with the coefficientR. The contribution of the energy flow
of the forced waves does not appear since it is included
in the term �r. The two solutions �sA and �sB of this sys-
tem are introduced in equation (4) to evaluate the flexural
energy density Wf related to the free waves.

The acoustic sources �aA, �aB , and the density of acous-
tic sources, �aP are now evaluated. At any point P of the
structure except extremities A and B, the emitted power
is written as the sum of the radiated power from the su-
personic flexural waves and the transmitted power by non-
resonant process. Furthermore, the intensity into direction
' is �aP (')u(')=2 where u(') is the unit vector in di-
rection defined by '. The emitted power is thus Prad =
�aP (') cos(')=2, and is written according to the relevant
canonical solutions,

�aP (')
cos'

2
= �2

s [�
s
AHp(A;P )ns;B ] �('� '2

s)

+�2
s [�

s
BHp(B;P )ns;A] �('+ '2

s)

+�2
nr I

inc
a na �('� '2

nr): (11)

The first two terms describe the supersonic flexural waves
radiation and are to be considered above the critical fre-
quency only. Each term is related to a direction of propaga-
tion on the structure: quantities inside brackets are the flex-
ural energy flow traveling in the corresponding direction,
at the point P . The last term describes the non-resonant
transmission. The singular directivities of each radiation
process are taken into account by the Dirac terms.

On structure extremities, the edge radiation must be
taken into account in addition to expression (11). The two
point sources on A and B are written(

1
2��

a
A(') = �2

e(') [�
s
BHp(B;A):ns;A];

1
2��

a
B(') = �2

e(') [�
s
AHp(A;B):ns;B ]:

(12)

Once again, one recognizes the incoming flexural energy
flow on both extremities in the terms inside brackets. Sub-
stituting expressions (11,12) in equation (5) leads to the
transmitted sound energy at any point M .

5. Numerical results

Some comparison calculations have been performed on
a 2m large aluminum plate (E = 72GPa, �s =
2800kg m�3, � = 0:3), in air (ca = 340m/s, �a =
1:3 kg m�3). The plate is rigidly baffled and simply sup-
ported on its edges. The plane sound wave of unit magni-
tude is incident with the angle � = 45�. The plate thick-
ness is h = 3mm and the resultant critical frequency in air
is fc = 4000Hz. The plate is lightly damped with a loss
factor � = 0:5%, in order to emphasize effects of radia-
tion on the structural energy losses. The acoustical media
are undamped. Both frequency ranges, below and above
the critical frequency are investigated.

The reference results are numerical solutions of the
equations of motion. Calculations are performed using a
boundary integral method for the acoustic energy, coupled
with a modal superposition for the structure [12]. For the
acoustics, the Green’s function used in the related inte-
gral equation is the sum of the contributions of the actual
source and the image source which accounts for reflection
on the baffle. Thus, the Neumann condition is always ful-
filled over the baffle and the fictive sources are confined
into the structure. Since the plate is simply supported on
its edges, the in vacuo modes have a known sine shape.
The resulting integral equation is solved by dividing the
structure in finite collocation elements. The energy flow
results are obtained by solving equations (10-12) and sub-
stituting the power source values in equations (4) and (5).
Both frequency and spatial evolutions of the flexural en-
ergy and the transmitted sound energy are carried out. In
both cases, energy flow results are compared to third oc-
tave band frequency-averaged reference results.

Figure 6 and 7 show the frequency evolutions of the
flexural energy, in dB (re 1 Jm�1), in the middle of the
structure and the acoustic energy, in dB (re 1 Jm�2), at
two points of the acoustical medium. The calculation be-
gins at 800Hz and covers four octaves. The abscissa is the
frequency normalized by the critical frequency. For both
flexural and acoustic energies, the energy flow approach
is shown to give a frequency-averaged estimation of the
reference result.

For the structure, the separated contributions of free and
forced waves are also shown in Figure 6. Energy flow re-
sults are in good agreement with the reference ones, mean-
ing that both the excitation and the energy loss effects are
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Figure 6. Evolution of the flexural energy in dB (10 logWs) at
the middle point of the structure (x = 0m), versus the frequency
normalized by the critical frequency. The reference result is plot-
ted in grey, the frequency-averaged reference result with stars
and the energy flow result with a thick line. The contributions of
the forced and free terms by the energy approach are drawn with
dashed lines.

well described. The energy approach gives a smooth evo-
lution describing the frequency-averaged reference result.
The maximum of energy corresponds to the so-called coin-
cidence frequency (fcoin = fc= sin

2 � = 8000Hz) where
the trace matching of the incoming sound wave occurs [1].
The contribution of the forced wave is shown to be very
small except near this coincidence frequency and near the
critical frequency. The loss of flexural energy by radiation
suddenly increases at the critical frequency, since flexural
waves become supersonic. This explains the discontinuity
observed on the energy flow results at this frequency. This
also explains the fact that the forced contribution becomes
here significant.

Concerning the acoustic energy evolution on Figure 7,
one point has been chosen inside the non-resonant trans-
mission area, i.e. the beam of transmitted sound by non-
resonant effect in the direction of the incoming wave, the
other one outside: (x = 1m, y = 1m) and (x = �1m,
y = 2m) in the frame centered in the middle of the plate
(see Figure 1). The contributions of non-resonant trans-
mission, edge radiation and surface radiation given by the
energy flow approach are also plotted.

The transmitted energy field is shown to be non diffuse
with more than 30 dB between both points at particular
frequencies. Here again one can identify the coincidence
and critical frequencies. Reference and energy flow results
match well except at particular frequencies where energy
flow results become very large. They correspond to fre-
quencies for which the point is located near a caustic due
to the supersonic waves radiation. Notice that the loca-
tion of these caustics moves since the radiation angle '2

s

from equation (A14) is frequency dependent. When the
frequency is such that the caustic goes through the vicinity
of the point, the energy flow evaluation is wrong. It hap-
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Figure 7. Evolution of the transmitted sound energy in dB
(10 logWa) at two points, versus the frequency normalized by
the critical frequency. The reference result is plotted in grey, the
frequency-averaged reference result with stars and the energy
flow result with a thick line. The contributions of non-resonant
transmission, edge radiation and surface radiation, by the energy
approach are drawn with dashed lines. Upper: point inside the
non-resonant transmission area (x = 1m, y = 1m). Lower:
point outside the non-resonant transmission area (x = �1m,
y = 2m).

pens at f=fc = 1:2 for the first point. The energy at the
first point is mainly due to the non-resonant transmission
below this frequency. Then, the surface radiation appears,
having quite the same contribution than the non-resonant
effect. The level of surface radiation is strongly related to
the light level of structural damping, inducing a large free
field on the structure. For the second point, the main con-
tribution comes from edge radiation in the subsonic fre-
quency range and until f=fc = 2. Then the far more effi-
cient surface radiation appears and edge radiation becomes
negligible.

Figures 8 and 9 are concerned with the distributions of
flexural and acoustic energies for an excitation below the
critical frequency (f = 3000Hz, f=fc = 0:75). In Fig-
ure 8, the third octave band frequency-averaged reference
result and the energy flow result are plotted. The averaged
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Figure 8. Flexural energy distribution in the structure, for an
excitation below the critical frequency (f=fc = 0:75). The
frequency-averaged reference result is plotted in grey, the energy
flow result with a thick line. Contributions of the forced and free
terms by the energy flow approach are drawn with dashed lines.
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Figure 9. Contour plot of the transmitted sound energy in
dB (10 logWa), for an excitation below the critical frequency
(f=fc = 0:75). The plate is located between abscissa �1m and
1m on the ordinate 0m.

flexural energy is shown to have a fluctuating spatial de-
pendence, especially in the vicinity of extremities where
the assumption that waves are uncorrelated is not valid.
Away from extremities, fluctuations tend to reduce and the
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Figure 10. Flexural energy distribution in the structure, for an
excitation above the critical frequency (f=fc = 1:25). The
frequency-averaged reference result is plotted in grey, the energy
flow result with a thick line. Contributions of the forced and free
terms by the energy flow approach are drawn with dashed lines.

energy level is well represented by the sum of the uncor-
related free and forced terms, plotted with dashed lines.

The forced energy is constant along the structure. En-
ergy losses for the free field are due to both the structural
damping acting as waves attenuation, and edge radiation
effects occurring at the reflection of the flexural waves.
Figure 9 shows the maps of the transmitted sound energy
by the frequency-averaged reference result in the upper di-
agram and by the energy flow result in the lower one. Con-
tours are plotted in dB (re 1 Jm�2). The plate is located
between abscissa �1m and 1m on the ordinate 0m.

The averaged transmitted energy is shown to be the
sum of the uncorrelated effects of non-resonant transmis-
sion and edge radiation, except in the vicinity of caus-
tics. These two caustics starting from the extremities of the
structure with the angle � = 45� are clearly identified as
two straight lines. They delimit the sound beam due to the
non-resonant transmission. The energy outside this beam
is only due to the edge scattering of the flexural free field,
which constitutes the resonant transmission.

The same simulation has been performed for an excita-
tion above the critical frequency (f = 5000Hz, f=fc =
1:25). The flexural energy distribution along the structure
is shown in Figure 10.

Compared with the previous subsonic case in Figure 8,
surface radiation effect is now added to the internal damp-
ing leading to an increased attenuation of free waves. One
may thus observe that the slope of the free energy along
the structure is larger in the supersonic case, due to the
apparition of these radiation effects. Figure 11 shows the
maps of the transmitted sound energy in dB (re. 1 s m�2).
The energy flow result matches well with the frequency-
averaged reference result.

Both effects of non-resonant transmission and super-
sonic flexural waves radiation are recognized on the radi-
ation pattern. They produce six caustics easily identified.
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Figure 11. Contour plot of the transmitted sound energy in
dB (10 logWa), for an excitation above the critical frequency
(f=fc = 1:25). The plate is located between abscissa �1m and
1m on the ordinate 0m.

The two caustics delimiting the non-resonant transmission
beam emanate from the edges with the angle � = 45�.
Four caustics (two directions from both edges) due to the
supersonic waves radiation emanate from the edges with
the angles '2

s = �63:4� given by equation (A14). This
radiation process is the main contributor to the resonant
transmission. However, edge scattering effects remain sig-
nificant since they explain the energy level outside the
beams due to non-resonant transmission and supersonic
radiation.

6. Concluding remarks

An energy flow approach has been extended to sound
transmission problems. Both the structure and the acousti-
cal media are described in terms of simple traveling waves.
It is shown that the assumption that waves are uncorre-
lated and the use of the locality principle lead to a simple
and intuitive representation of the averaged energy fields.
Some power sources are introduced on subsystems bound-
aries in order to check the local power balance. Averaged
energy fields are well described, except in the vicinity of
caustics, where the decomposition in uncorrelated simple
waves does not apply. The method clearly distinguishes
the several contributions to the transmitted sound, i.e. non-

resonant transmission, surface radiation and edge radia-
tion.

As SEA, the present approach is dedicated to the high
frequency range where the locality principle and the as-
sumption of waves decorrelation are valid. However, no
assumption has been made on the vibration fields except
the decomposition in simple uncorrelated waves. As a con-
sequence, the approach enables us to describe the distribu-
tion of energy, even for non diffuse fields like encountered
in exterior radiation and transmission problems. Of course
it requires a more precise description of systems and more
CPU-time than SEA does, but it still provides a huge gain
compared to reference calculations. Both approaches give
results to be compared to frequency-averaged data. Notice
that due to the wrong description of the acoustic energy in
the vicinity of caustics, the method is not suitable for the
calculation of the global transmission loss.

The two-dimensional problem studied in this paper was
chosen to enable the reference calculations at high fre-
quency. It should be stressed that the method is applicable
to three-dimensional geometries, provided the correspond-
ing canonical problems are solved [13].

Appendix

A1. Canonical problems resolution

The canonical problems involved in the transmission
of sound are solved below. Since the structure is one-
dimensional, the normal incidence of flexural waves is
the only to be considered here. In the following equa-
tions, we note ks the flexural wavenumber, cs the flexural
group speed andD the flexural stiffness. Hysteretic damp-
ing may be introduced by considering the complex stiff-
ness D(1 + j�), where � is the damping loss factor. ki, ci
and �i denote the wavenumber, the wave velocity and the
density in the acoustical medium i. All calculations are
performed under harmonic conditions and the time factor
e j!t is omitted.

A1.1. Non-resonant transmission

Given an infinite plate excited by a plane sound wave
incident with the angle � from medium 1, p(x; z) =
p0 e

�jk1(sin � x+cos � z), a plane sound wave is reflected in
medium 1 and transmitted in medium 2 (Figure 2). The ra-
tios of reflected and transmitted powers over the incident
one are written in terms of the plate and acoustical media
impedances as

�1
nr(�) =

����1� 2Z1

Zs + Z1 + Z2

����
2

(A1)

and �2
nr(�) =

Z1

Z2

���� 2Z2

Zs + Z1 + Z2

����
2

;

where Zi = �j �i!2=ki cos'
i
nr, and Zs = D(k4s �

k41 sin
4 �). The corresponding directivities are derived by

applying the Snell-Descartes law for reflection and trans-
mission. The reflection and transmission angles are ex-
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pressed in terms of the incidence angle and the wavenum-
bers as follows:

'1
nr = � and sin'2

nr =
k1
k2

sin �: (A2)

The forced transverse displacement of the structure is
written

u0 e
�j k1 sin � x with u0 = 2p0=(Zs + Z1 + Z2): (A3)

The corresponding time-averaged energy W0, is the sum
of the kinetic and potential energies,

W0 =
1

4
ms!

2ju0j2 + 1

4
<[D](k1 sin �)

4ju0j2; (A4)

where ms is the mass per unit of area of the plate and
< denotes the real part. Notice that for forced displace-
ments, kinetic and potential time-averaged energies are
not equal. Expressing the incident sound power Pinc =
jp0j2 cos �=2�1c1, and substituting (A3) in (A4) leads to
the expression of the flexural energy in terms of the inci-
dent power,

W0 =
�
ms!

2 +<[D](k1 sin �)
4
�

2jZ1j
!
��Zs + Z1 + Z2

��2Pinc: (A5)

The power being dissipated by structural damping is
written Pdiss = Pinc(1��1

nr��2
nr). Calculations enable

to check that it is related to the potential energy V0 and the
hysteretic loss factor � by the equality Pdiss = 2�!V0.
Since the potential energy is proportional to the incident
power, we may write Pdiss = �diss

nr Pinc with

�diss
nr =

4jZ1j<[D](k1 sin �)
4

jZs + Z1 + Z2j2
�: (A6)

A1.2. Excitation of structures

Given a semi-infinite plate excited by plane sound wave in
medium 1 (Figure 3), we seek to determine the power sup-
plied to the plate. Following the approach of reference [1],
one may evaluate the free displacement field that checks
the boundary conditions of the plate with the forced dis-
placement field, assuming that the fluid loading is negligi-
ble. Compared to the previous canonical problem, the plate
is now bounded on the abscissa x = 0, which explains the
presence of the structural free field.

The expression of the forced displacement is given in
equation (A3). The free structural waves in the in vacuo
plate have the wavenumbers ks and jks. By expressing the
boundary conditions involving the forced wave and both
propagative and evanescent free waves, the magnitude of
each free wave may be obtained. For example, for simply
supported boundary conditions (u = 0 and d2u=dx2 = 0
on abscissa x = 0), the magnitude of the propagative
free wave is written upr = u0[1 � (k1 sin �=ks)

2]=2.
Since evanescent waves do not carry power away from the
boundary, they are not accounted in the evaluation of the

transmitted power, and the propagative wave is the only
one to be considered here. The power carried by this wave
is the sum of transverse and rotation velocities effects,

Ps =
!

2
< �D(k3s + k2s k

�

s )
� juprj2; (A7)

where � denotes the complex conjugate. �r is the ratio of
this power Ps over the incident sound power Pinc,

�r =
Ps
Pinc

=
jZ1<

�
D(k3s + k2s k

�

s )
�

jZs + Z1 + Z2j2�����1�
�
k1 sin �

ks

�2
�����
2

: (A8)

A1.3. Radiation of flexural waves by edge scattering

The sound power radiated when a flexural wave is reflected
on the extremity of a plate (Figure 4) is calculated as fol-
lows: considering that the fluid loading is light, the radi-
ated pressure is expressed using spatial Fourier transforms
of the in vacuo velocity field [10].

Consider a rigidly baffled extremity, the negative half-
space (x < 0) corresponding to the wave bearing struc-
ture. A flexural wave of unit displacement magnitude is
incident on the edge. If v� denotes the reflected transverse
velocity on x < 0 and v+ the velocity field on x > 0
corresponding to the incident wave traveling without the
edge discontinuity, we note V the Fourier transform of the
following field:(

v�(x) x < 0;

�v+(x) x > 0:
(A9)

The corresponding radiated pressure in medium i is writ-
ten with the inverse Fourier transform

pi(x; z) = (A10)Z +1

�1

�i! V ()

(k2i � 2)1=2
e�j(x+

p
k2
i
�2z) d:

The diffracted pressure corresponds to the branch cut con-
tribution of integral (A10). It is evaluated by the stationary
phase approach and the far-field pressure is expressed in
cylindrical coordinates r; ' defined by x = r cos',

pi(r; ') = ��i!
r

2�

kir
V (ki cos') e

�j (kir+�=4): (A11)

The resulting time-averaged sound intensity is written
jpi(r; ')j2=2�ici. Divided by the incident flexural power
expressed with equation (A7) for a wave of unit magni-
tude, we get the ratio �i

e of sound power radiated in an unit
solid angle around ' over the incident structural power,

�i
e(') =

2��ijV (ki sin')j2
< [D(k3s + k2s k

�

s )]
: (A12)

This power was calculated using the in vacuo flexural dis-
placement field for which no power is actually loss by ra-
diation. Consequently, the amount of flexural energy re-

835



ACTA ACUSTICA UNITED WITH ACUSTICA Cotoni et al.: Sound Transmission by an Energy Flow Approach
Vol. 88 (2002)

flected by the edge when the plate is loaded by a fluid must
account for this effect. In order to respect the power bal-
ance at the edge, the in vacuo energy reflection coefficient
Rvacuo must be changed to R by taking into account the
radiated power on both sides,

R

Rvacuo
= 1�

Z �=2

��=2

�
�1
e(') + �2

e(')
�
d': (A13)

A1.4. Radiation of supersonic flexural waves

A simple calculation using the propagative forms of the
flexural and sound waves for an infinite fluid-loaded plate
shows that radiation occurs when flexural waves are su-
personic (Figure 5). A traveling sound wave is radiated in
each medium i. This wave is shown to propagate with the
angle

'is = arcsin(<[ks]=ki) (A14)

with the normal to the plate. NotingKi = (k2i�k2s)1=2, the
ratio of radiated power over the flexural power is written

�i
s =

�i!
2<[Ki]

jKij2< [D(k3s + k2s k
�

s )]
: (A15)

The resulting attenuation on the flexural waves is ex-
pressed in terms of the group velocity of flexural waves
cs, by the loss factor �s = cs(�

1
s + �2

s)=!, taking into
account the radiation on both sides of the plate.
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