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This paper is a discussion of the equivalence
between rain-on-the-roof excitation, diffuse field and
modal energy equipartition hypotheses when using
statistical energy analysis (SEA). A first example of a
simply supported plate is taken to quantify whether
a field is diffuse or the energy is equally distributed
among modes. It is shown that the field can be
diffuse in a certain region of the frequency-damping
domain with a single point force but without energy
equipartition. For a rain-on-the-roof excitation, the
energy becomes equally distributed, and the diffuse
field is enforced in all regions. A second example of
two plates coupled by a light spring is discussed. It
is shown that in addition to previous conclusions,
the power exchanged between plates agrees with the
statistical prediction of SEA if and only if the field
is diffuse. The special case of energy equipartition
confirms this observation.

1. Introduction
The statistical energy analysis (SEA) is a method
introduced by Lyon and co-workers [1–3] in the 1960s
intended to estimate the vibroacoustic response of
complex structures in the high-frequency range by a
statistical approach. This is the analogous of statistical
mechanics for structural dynamics and as such could
be called statistical vibroacoustics [4]. However, the
difficulties encountered when using SEA for engineering
purposes have motivated many studies on the required
assumptions and have divided the opinions of the
scientific community on their status.

2013 The Author(s) Published by the Royal Society. All rights reserved.
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The main result of SEA is the so-called ‘coupling power proportionality’. It states that the mean
power exchanged between two subsystems is proportional to the difference of modal energies [5].
The modal energy thus plays the role of vibrational temperature, and the ‘convective coefficient’
is called coupling loss factor. Regarding the foundations, there are several manners to approach
SEA: the modal and the wave approaches. Fahy [6] gives a retrospective for each one. The modal
approach of SEA starts from the basic equations of mechanical oscillators excited by random
forces and proves the existence of the coupling loss factors [1,2,7], whereas the wave approach
is based on the evaluation of the reflection and transmission coefficients at a junction [8–10]
(considering plane waves) and provides effective relationships for the coupling loss factors. Using
these concepts, the question of the equivalence between the hypotheses used in both approaches
is raised.

This work is a discussion on the assumptions of energy equipartition, rain-on-the-roof
and diffuse field. Although a complete derivation of SEA requires some other assumptions
that would also merit discussion, these three hypotheses are at the core of the wave/modal
duality of SEA. Their choice allows the highlighting of the conceptual equivalence of both
approaches. One has also chosen to stay in the strict vision of SEA (assuming conservative,
weak and direct coupling) for which the mathematical derivations are more rigorous and
unquestionable. In this regard, one must mention the numerous extensions of SEA to strong
coupling [11], non-conservative coupling [12–14], indirect coupling [15], non-uniform modal
energy distribution [16–18], non-uniform directional energy distribution [19] and non-uniform
spatial energy distribution [20,21].

In what follows, the two approaches of SEA are reviewed to highlight the usefulness of
all assumptions in the derivation of the coupling power proportionality equation. The three
hypotheses under discussion are introduced in §3. A benchmark is considered in §4 to evaluate
the practical conditions to fulfill these three assumptions. In §5, an example of two coupled
subsystems is discussed to verify that the coupling power proportionality holds under previously
determined conditions.

2. Basics of statistical energy analysis
The simplest system for which the coupling power proportionality may be stated consists of two
mechanical oscillators submitted to uncorrelated random forces as shown in figure 1. The state is
described by a unique variable Xi for the position of oscillator i. The governing equations are

m1Ẍ1 + MẌ2 + c1Ẋ1 + GẊ2 + k1X1 + K(X1 − X2) = F1

and m2Ẍ2 + MẌ1 + c2Ẋ2 − GẊ1 + k2X2 + K(X2 − X1) = F2,

}
(2.1)

where mi are the masses, ci the viscous damping coefficients and ki the spring stiffnesses of
oscillators. The oscillators are coupled through three constants M, G and K for, respectively,
inertial, gyroscopic and elastic couplings. These three kinds of coupling forces ensure that no
dissipation occurs in the coupling. With this respect, the first assumption of statistical energy
analysis is that the coupling is conservative. The external forces Fi are assumed to be random.
More exactly, the second assumption of statistical energy analysis is that the forces are uncorrelated
white noises. In particular, the power spectral densities are constant over the whole frequency
band, and the cross power density is null. Under these conditions, it has been proved by Lyon &
Maidanik [1] and Scharton & Lyon [22] that the expectation of the power flow between oscillators
is proportional to the difference in the expectation of vibrational energies,

〈P12〉 = β(〈E1〉 − 〈E2〉). (2.2)

This is the coupling power proportionality. The coefficient β is

β = μ2(�1Ω
4
2 +�2Ω

4
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Figure 1. Two oscillators having massmi , stiffness ki and damping ci excited by uncorrelated random forces Fi are coupled by
an inertialM, an elastic K and a gyroscopic G couplings. (Online version in colour.)

where Ω2
i = (ki + K)/mi, �i = ci/mi, μ= M/

√
m1m2, γ = G/

√
m1m2 and κ = K/

√
m1m2. Note that

in equations (2.2) and (2.3) the system of two oscillators remains deterministic but is excited by
random forces. The brackets 〈·〉 must therefore be interpreted as probability expectation with
respect to the stochastic processes F1 and F2.

A generalization to an arbitrary number of oscillators is achieved by Newland [23], who
introduced the perturbation technique. Defining a small parameter ε for the strength of coupling,
the asymptotic developments of 〈Pij〉 and 〈Ei〉 in powers of ε lead to a direct comparison of 〈Pij〉
and 〈Ei〉 − 〈Ej〉. The coupling power proportionality as given in equation (2.2) remains valid up
to order two in ε for any pair of oscillators with β as in equation (2.3) provided that the coupling
is assumed to be weak (see [24] for a discussion on weak coupling). This is the third assumption in
statistical energy analysis.

The coupling power proportionality also applies to the exchange between groups of oscillators
(figure 2) [25–27]. For this purpose, one introduces the notion of subsystem which are groups of
oscillators randomly excited by uncorrelated white noises but with the same level of power spectral
density (rain-on-the-roof excitation).

The usual way to derive the coupling power proportionality in a modal framework is to
consider energy equipartition between modes. This is the method followed in [6,25,28–30]. Let us
consider two subsystems containing respectively N1 and N2 oscillators (henceforth called modes).
In each subsystem, the total vibrational energy 〈Ei〉 (with i = 1, 2) is the sum of individual modal
energies. Furthermore, the power exchanged 〈P12〉 is the sum of individual exchanges between
any pair of modes (figure 2). By applying the coupling power proportionality to any pair of modes
and by assuming the equipartition of modal energy (all modes have the same energy 〈Ei〉/Ni),

〈P12〉 = B
( 〈E1〉

N1
− 〈E2〉

N2

)
, (2.4)

where factor B is the sum of individual β for all pairs of modes. Assuming in addition that the
number of modes is large and the damping is light, factor B simplifies. For an elastic coupling of
stiffness K, factor B reads [13,26,31]

B = πK2n2

2ω2M1M2
, (2.5)

where Mi is the total mass of subsystem i and n2 the modal density of subsystem 2. The conceptual
difference between equations (2.3) and (2.5) is that the former requires the exact values of all
natural frequencies of all modes, an information computationally costly, in general, which is not
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Figure 2. Energy exchanges between two subsystems containing oscillators. (Online version in colour.)

the case for the latter. This justifies the gain in simplicity and consequently in the computation
time in using SEA.

In practice, systems are made of structural components which may be beams, plates, shells,
acoustical cavities, etc., and the subsystems are generally chosen as these components. In the
modal approach to statistical energy analysis, the vibrational field of each component is projected
on the modal basis (blocked modes), so that continuous subsystems are reduced to sets of
oscillators and consequently all previous conclusions apply and in particular the coupling power
proportionality (equation (2.4)) [1,7]. Because the number of modes of continuous structures is
infinite, the only further assumption is that the number of modes is truncated. One introduces
a frequency bandwidth of analysis in which the power spectral density of excitation is flat. The
notion of resonant modes (modes whose natural frequency lies within the frequency band of
external excitations) is also introduced. It is assumed that the only resonant modes contribute to the
global response.

The coupling loss factors are generally difficult to obtain by the modal approach of SEA due
to the considerations about distribution of the natural frequencies [32–34]. So, to determine them
in all situations of interest, the wave approach of SEA has been introduced [2,3,35]. This second
approach of SEA is based on geometrical acoustics [36] and is quite similar to Sabine’s theory
in room acoustics. The frequency is assumed to be sufficiently high to allow an interpretation in
terms of rays, and the energy exchange at an interface is assessed by solving the reflection and
transmission coefficients for plane waves. The coupling loss factors are then determined assuming
that the vibrational fields in all subsystems are diffuse.

Since the early beginning of SEA, application of thermodynamics to structural vibration has
been a main concern [37]. But more recently, the thermodynamical approach of SEA aroused
a renewed interest, and the coupling power proportionality has been revisited [12,38,39] in
particular by application of the second principle of thermodynamics [40,41]. The concept of
entropy in SEA may also be interesting [4,42].

In summary, the wave approach of SEA is mainly based on the diffuse field assumption,
whereas the modal approach of SEA is based rather on rain-on-the-roof excitation and energy
equipartition. These assumptions (figure 3) lead to the same equation of coupling power
proportionality (equation (2.4)). This wave/modal duality has been underlined by many authors
and has turned out to be a central concept in all subsequent developments in SEA. However,
this duality raises many questions such as the equivalence of the three aforementioned required
assumptions and their respective domain of validity.
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Figure 3. Different ways to obtain the coupling power proportionality—a wave-based approach (diffuse field) and a modal-
based approach (energy equipartition or rain on the roof). (Online version in colour.)

The aim of this paper is to examine each hypothesis, to discuss them in some simple examples
and evaluate their relevance in regards to the coupling power proportionality.

3. Statistical energy analysis hypotheses

(a) Diffuse field
As discussed by Langley & Shorter [43], two approaches are possible when talking about
diffuse field, the wave motion or the resonant modal energy point of view. It leads to different
types of definitions. In wave acoustics, Rossi [44] explains that a diffuse field is characterized
by a constant sound pressure level during steady state and a linear time decrease spatially
independent when sources are switched off. From the geometrical acoustics point of view given
by Faller [45], an ideal diffuse sound field is homogeneous and isotropic or, in other words, it is
assumed that independent sound waves of equal strength arrive at a receptor (the microphone)
from all directions. Lyon [46] proposed a definition of diffuseness from a statistical mechanics
point of view where modes are understood as oscillators. When sets of oscillators are taken
three conditions must be satisfied: (i) modes are equally energetic within the frequency band,
(ii) displacement and momenta of a mode are statistically independent and (iii) the displacements
of different modes are statistically independent within the frequency band. Fahy [47] defines
diffuse field using the energy density ‘the average energy density is the same throughout the
volume of the enclosure’. This will be our definition of a diffuse field in this article, the field
is considered diffuse if homogeneous. The question of the isotropic nature of a field is not
broached here.

(b) Energy equipartition
In statistical physics, equipartition of energy arises under quite general conditions provided that
nonlinear interactions between particles ensure the mixing of energy. For instance, in the kinetic
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theory of gases, each particle has a random motion and their energy is shared, thanks to their
collisions. It should be remembered that equipartition does not mean that all particles (modes
in the present context) have the same energy at a fixed time but only that their time-averaged
energies are equal [48]. A typical counter-example is that of linear oscillators as this is a non-
ergodic system. For such a system, the governing equations projected on the global modal basis
are uncoupled, so that the initial repartition of energy among modes remains unchanged in time.
However, this does not prevent a spatial reorganization of energy. In particular, an equipartition
of energy between coupled oscillators may be observed if the set of natural frequency is fairly
disorganized [49]. Magionesi & Carcaterra [50], in their discussion on the validity of the energy
equipartition for general engineering systems first recalled the critical aspect related to the
applicability formulated in statistical mechanics. Each system of an ensemble has the same
structure and the same physical properties ‘the hypothesis of a uniform probability of finding
representative points of the ensemble of systems over equal-energy-surface in the phase space
is assumed’, and the assumption of weak coupling is considered. They finally summarized the
hypothesis where the energy equipartition principle is supposed to hold: for linear homogeneous
and weakly coupled oscillators, energy equipartition may be possible if the same energy quantity
is injected via random forces. Calling 〈EA

i 〉 and 〈EB
k 〉, the average energies of mode i in subsystem

A and mode k in subsystem B; 〈EA〉 and 〈EB〉 the global energies; NA and NB the number of modes,
energy equipartition assumption can be written as [29],

〈EA
i 〉 = 〈EA〉

NA
; 〈EB

k 〉 = 〈EB〉
NB

. (3.1)

(c) Rain-on-the-roof excitation
In the modal approach of SEA, the external force distribution is assumed to be statistically
independent [23,28], so that all modes of the structure are excited with the same level. A force
field f (x, t) is called rain on the roof if its autocorrelation function is

Rff (χ , τ ) = 〈 f (x, t)f (x + χ , t + τ )〉 = δ(χ )δ(τ )S0, (3.2)

where S0 is a constant. Let ψn the mode shape of mode n, the modal forces Ln = ∫
fψn dx has the

cross-correlation
RLnLm (τ ) = 〈Ln(t)Ln(t + τ )〉 = S0δ(τ )δnm (3.3)

by virtue of orthonormality of modes. Thus, for a rain-on-the-roof force field, the corresponding
modal forces are uncorrelated white noises with the same power spectral density S0. The converse
is also true.

Fahy [51] pointed out that the special case of point excitation is not valid for SEA in the sense
that it does not lead to the same level of modal forces. A strict rain-on-the-roof field corresponds
to an infinite number of uncorrelated excitation points. But numerically, such an external force
distribution is reduced to a large number of excitation points placed randomly on the structure.
In this paper, a quantification is made to evaluate a ‘fair’ rain-on-the-roof excitation.

4. Benchmark: a single system
A typical issue in SEA is to compute the vibrational response of a structure excited by a random
force field. More precisely, one considers a structure excited by either a point force or a set of
random point forces having a power spectral density constant in a frequency band. The main goal
is to compute the expectation of the local energy 〈e〉(x, y,ωc) which depends on the receiver point
x, y and the frequency band�ω centred on ωc. The expectation of modal energy 〈En〉(ωc) depends
on the mode index n and the centre angular frequency ωc. The diffuse nature of a field can be
examined by comparing the energy at different points on the structure, whereas the principle of
energy equipartition is fulfilled if all modal energies are equal. The rain-on-the-roof hypothesis
evaluation is integrated to each of the latter assumptions by increasing the number of excitations
when evaluating the diffuse field and energy equipartition criteria.
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Figure 4. Simply supported plate excited by several random forces having the power spectral density of white noise and the
output is the deflection at a receiver point. (Online version in colour.)

(a) Assessment tools of the assumptions
Let us consider a plate having dimensions Lx × Ly excited by a set of white noise random
transverse point forces. The bending rigidity is noted D = Eh3/12(1 − ν2), ρ is the mass density, h
is the thickness, m = ρh is the mass per unit area, E is the Young modulus, ν is the Poisson ratio.
Figure 4 illustrates the test case.

The equation of motion governing the transverse displacement w(x, y, t) of an undamped plate
excited by a force field f (x, y, t) is

D∇4w(x, y, t) + m
∂2w(x, y, t)

∂t2 = f (x, y, t), (4.1)

where ∇4 = ∂4f/∂x4 + ∂4f/∂y4 + 2(∂2/∂x2)(∂2/∂y2). In the case of N point sources, the force
distribution reads

f (x, y, t) =
N∑

i=1

Fi(t)δ(x − xi)δ(y − yi), (4.2)

where Fi are random functions whose power spectral density Si(ω) is assumed constant within
the frequency band �ω and zero elsewhere. Let H be the frequency response function between w
at x, y and Fi at xi, yi. By a modal decomposition and introducing an ad hoc damping loss factor η
to account for dissipation, H is given by

H(x, y; xi, yi;ω) =
∑
n≥0

ψn(xi, yi)ψn(x, y)

m(ω2
n − ω2 + jηωnω)

, (4.3)

where ψn denotes the mode shape of mode n.

(i) Local energy expectation

The complete expression of the plate energy is given by Soedel [52]. However, for the sake of
simplicity, one defines the local energy e(x, y, t) as twice the kinetic energy density. Therefore, the
expectation of local energy is

〈e(x, y, t)〉 = m〈ẇ(x, y, t)2〉. (4.4)

The term 〈ẇ2〉 can be viewed as the autocorrelation function of ẇ taken at zero. This is also the
Fourier transform of the power spectral density Sẇẇ at zero,

〈ẇ(x, y, t)2〉 = Rẇẇ(0) = 1
2π

∫+∞

−∞
Sẇẇ(ω) dω. (4.5)

But, because forces are uncorrelated, the power spectral density of ẇ is related to the power
spectral density of forces by,

Sẇẇ(ω) =
N∑

i=1

ω2|H|2(ω)Si(ω). (4.6)
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Combining equations (4.4), (4.5) and (4.6) gives

〈e〉(x, y,ωc) =
N∑

i=1

Si

2π
m

∫
�ω

ω2|H|2 dω, (4.7)

where the bounds of the integral have been reduced to �ω, because Si(ω) is zero outside.
The mean 〈e〉 does not depend on time for stationary forces. One has added ωc as variable to
highlight the dependance on centre frequency. The problem comes down to the computation of
the frequency response function H between any two arbitrary points.

(ii) Modal energy expectation

The global energy can be calculated by integrating the local energy over the plate surface. It yields

〈E〉(ωc) =
∫Lx

0

∫Ly

0
〈e〉(x, y,ωc) dx dy. (4.8)

The orthogonality of mode shapes reads
∫

S ψn(x, y)ψp(x, y) dx dy = δn,p, where δn,p is Kronecher’s
symbol. By combining (4.3), (4.7) and (4.8), the expectation of the global energy is reduced to

〈E〉(ωc) =
∑
n≥0

〈En〉, (4.9)

where the modal energy 〈En〉 is

〈En〉(ωc) =
N∑

i=1

Si

2π

∫
�ω

ω2 ψn(xi, yi)2

m((ω2
n − ω2)2 + (ηωnω)2)

dω. (4.10)

(iii) Diffuse field and energy equipartition criteria

From the distribution of local energy inside a plate, one must estimate whether the field is diffuse
or not. To obtain a single criterion, one introduces the standard deviation divided by the mean
value of the local energy expectation,

σd =
√

〈e〉2 − 〈e〉2

〈e〉 , (4.11)

where the (.) operator is defined by (.) = (1/LxLy)
∫∫

(.)(x, y) dx dy.
An analogous approach is adopted with energy equipartition. The criterion is similar to

equation (4.11),

σe =
√

〈En〉2 − 〈En〉2

〈En〉 , (4.12)

where now (.) = (1/N)
∑N

n=1 (.). When σd or σe approaches zero, the local energy is uniformly
distributed over the plate or the modal energy is uniformly distributed among modes.

(b) Evaluation and discussion of the three hypotheses
As first example, let us consider a simply supported rectangular plate having characteristics as
shown in table 1. The excitations have the same power spectral density constant in an octave
band centred on ωc and their positions are randomly chosen with a uniform distribution. There
are 3000 receiver points which are also randomly chosen. Nine octave bands are considered.
For a simply supported rectangular plate, the mode index n is a double subscript (α,β), and
the expressions of the undamped natural frequencies and the mode shapes are [53] ωn =√

D/m((απ/Lx)2 + (βπ/Ly)2) and ψn(x, y) = (2/
√

LxLy) sin(παx/Lx) sin(πβy/Ly). The computation
of the local energy follows from equation (4.7) with Si = 1 and H given by equation (4.3),
where ψn and ωn are as above. However, in the sum of equation (4.3), only resonant modes
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Figure 5. Diffuse field criterion for a rectangular plate excited by a single point force versus wavenumber—damping ratio
compared with the modal overlapM= 1 (dotted line), the attenuation factorm= 2 (dashed line) and the number of modes
N = 10 (vertical solid line). (Online version in colour.)

Table 1. General parameters of the studied plate.

type symbol value unit

dimensions Lx × Ly 1.44 × 1.2 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

density ρ 7800 kg m−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Young’s modulus E 2.1E11 N m−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Poisson’s ratio ν 0.3 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

thickness h 2 mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

damping coefficient η [0.001–0.9] —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

central octave frequency fc [16–8000] Hz
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

frequency step df (ηfmax)/4 Hz
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mean free path l 1.0282 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(modes within the frequency band) have been considered. All non-resonant modes have been
simply neglected. The computation of the modal energy and the equipartition criterion follow
respectively equations (4.10) and (4.12), again limited to resonant modes.

(i) Diffuse field

Recently, Le Bot & Cotoni [54] proposed validity diagrams on the frequency-damping space to
have an idea of how well the SEA method could be applied to a system. It leans on some specific
parameters: the number of resonant modes N in the frequency band; the modal overlap M which
is defined as the product of the modal density and ηωc; the attenuation factor per unit length
m = ηωl/cg, where cg is the group speed of waves and l = πLxLy/2(Lx + Ly) the mean free path;
the dimensionless wavenumber κ = kl/2π , where k = (ω2 m/D)1/4 is the structural wavenumber.
Such a representation is used to observe the diffuse field.

Figure 5 shows the evolution of diffuse field criterion for a single point force versus κ and
η. The dotted line represents the modal overlap M = 1, the dashed line the attenuation factor
m = 2 and the vertical solid line the number of modes N = 10. The presence of several points
(A,B,C,D,E,F and G) is useful for the next paragraphs and sections.
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Figure 6. Evolution of the diffuse field criterion versus the number of uncorrelated random excitations. (a) From modal field
to diffuse field (κ = 1.29, fc = 31.5 Hz; η= 0.03); (b) from dominant direct field to diffuse field (κ = 7.31, fc = 1000 Hz;
η= 0.1). (Online version in colour.)

The σd = 0.7 contour line defines the area of a quasi-diffuse field. It occurs principally at
high frequency and low damping. Above this contour line, increasing the damping, the criterion
quickly increases showing a change in the energy field. The field is no more diffuse but is
dominated by the direct field emanating from the point force. The 0.7 contour line is almost a
straight line above κ = 1.84. As one can see, the dashed line representing the attenuation factor
m = 2 fits well with that contour line. At low frequency (below κ < 1.40 or N< 10), the diffuse
field criterion slightly increases. In these first frequency bands, only few modes are resonant and
the energy field is dominated by a modal behaviour. The dotted line drawn in figure 5 shows
values for which the modal overlap M = 1 occurs. It is often assumed that for energy methods
such as SEA, the modal overlap of the structure has to be higher than one. This limit is clearly not
correlated to the diffuse field criterion.

Figure 6 shows the evolution of the diffuse field criterion versus the number of point
excitations with the same power spectral density. Two cases are tested represented by point A and
point B in figure 5: in figure 6a, the field is modal with a single excitation (κ = 1.29, fc = 31.5 Hz;
η= 0.03; point A in figure 5). In figure 6b, the field is direct (κ = 7.31, fc = 1000 Hz; η= 0.1) with
a single excitation (point B in figure 5). In both cases, the criterion decreases going below 0.7
drawn in grey when the number of excitations increases (from 1 to 1000). A large number of
excitations is a favourable condition for diffuse field. The fact that the criterion tends to non-
zero limit may be explained by two approximations done in the simulation: first, the limited
number of receiver points (3000) and the fact that the kinetic energy is arbitrary fixed at zero by
the boundary conditions. By this second approximation, an outskirt area of the plate has a null
energy density. The size of this area depends on wavelength and thus on the frequency band: the
lower the frequency, the larger this area.

From figure 6, it is observed that even if a field is not diffuse for a single excitation (σd > 0.7),
it becomes diffuse when a higher number of excitations is used. It means that if a field is not
naturally diffuse in a subsystem (modal fields, direct fields) using a rain-on-the-roof excitation
would enforce it to be diffuse. Consequently, the hypothesis of a rain-on-the-roof excitation
implies the state of the diffuse field. The reciprocal is not verified because it has been shown
that a field can be naturally diffuse even with a single excitation.
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Figure 7. Repartition ofmodal energy for a rectangular plate excitedby a single point force. (a) point C: (κ = 14.63, fc = 4 kHz;
η= 0.1) and (b) point D: (κ = 14.63, fc = 4 kHz; η= 0.001). (Online version in colour.)
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Figure 8. Repartition of modal energy repartition for a plate excited by 10 point forces. (a) Point C: (κ = 14.63, fc = 4 kHz;
η= 0.1) and (b) point D: (κ = 14.63, fc = 4 kHz; η= 0.001). (Online version in colour.)

(ii) Energy equipartition

Figures 7 and 8 show the repartition of modal energy in two test cases: point C (κ = 14.63; η= 0.1)
and point D (κ = 14.63; η= 0.001) from figure 5. The excitation is either a single (figure 7) or a
group (figure 8) of random forces.

The repartition of the modal energy when the plate is excited by a single excitation is
decreasing and can be fitted with a Weibull distribution. The first order of such a function reads

W(x, a, b) = abxb−1 e−axb
, (4.13)
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where a and b are adjustable parameters. About 36–38% of the total number of modes in the
frequency band have a low modal energy value. Very few modes have the maximum of the modal
energy (≈ 0.3%). The equipartition criteria σe for each case are between 1.1 and 1.2. The frequency
range influences the number of modes in the frequency band and the damping coefficient the
value of modal energies, but the general distribution of modal energy is identical for both cases.
In the simulation, η= 0.1 (figure 7a) gives (a = 0.006; b = 0.063) and η= 0.001 (figure 7b) gives
(a = 1.201; b = 0.049). a and b have such values that the Weibull distribution can be approximated
by,

W(x, a, b) ∼ ab
x

. (4.14)

This clearly shows that equipartition is usually not fulfilled for a single excitation. Figure 8
shows the repartition of modal energy when 10 random excitations are used and for two cases
of damping loss factor (point C—figure 8a and point D—figure 8b). These repartition can be fitted
with Gaussian distributions

G(x, c, d, f ) = ce−((x−d)/f )2
, (4.15)

where c, d and f are adjustable parameters. The case η= 0.1 gives (c = 69.13; d = 4.584E −
5; f = 3.071E − 5) and η= 0.001 gives (c = 85.15; d = 5.207E − 3; f = 3.025E − 3). The value of
damping coefficient does not affect the repartition shape which is now centred on the mean value.
The rain-on-the-roof excitation is therefore favourable for equipartition.

The results may be interpreted as follows. The general expression of the modal energy is in the
special case of a single excitation,

〈En〉(ωc) = S0ψn(xi, yi)2

2π

∫+∞

−∞
ω2 dω

m((ω2
n − ω2)2 + (ηωnω)2

= S0ψn(xi, yi)2

2mηωn
, (4.16)

where the limit of integration of equation (4.10) have been extended to infinity for the sake of
simplicity. The modal energy is therefore strongly dependent on the mode by the term ψn/ωn

which demonstrates that the energy is not equally distributed. On the contrary, for an infinite
number of excitations and since limN→∞(1/N

∑N
i=1 ψn(xi, yi)2) = 1/(LxLy). The expectation of the

modal energy is

〈En〉(ωc) =
N∑

i=1

S0ψn(xi, yi)2

2mηωn
= NS0

LxLy2mηωn
∼ 1
ωn

. (4.17)

The modal energy depends on the frequency. Consequently, a constant damping loss factor and
a rain-on-the-roof excitation leads to a modal energy which is not equally distributed [27]. But
when choosing another damping model, for example the one used by Lyon & Dejong [28] that is
a half-power bandwidth �= ηωn constant then the modal energy becomes

〈En〉(ωc) = NS0

LxLym�
. (4.18)

In that case the energy is equally distributed between modes, the equipartition of modal energy
is reached.

Figure 9 represents the repartition of modal energy for both models of damping. The centre
frequency stays at fc = 4000 Hz and a group of 1000 random excitations is taken. The energy
distribution is drawn in light grey when the modal damping ratio is maintained constant with
η= 0.01 (diffuse field condition). It corresponds to a Gaussian distribution similar to the one
in figure 8. Otherwise, when the half-power bandwidth defined as �= 4πηfc = 502.65 (in dark
grey) is maintained constant the modal energy distribution is again a Gaussian but much tighter
showing that the modal energies have closed values. The energy equipartition criterion is in that
case three times lower (σe = 0.067 instead of σe = 0.211). This clearly shows that equipartition is
reached when the modal forces have the same power spectral density (rain on the roof) and when
the half-power bandwidth of modes is the same. The case of a coupled subsystem is discussed
in [25]. For each of the damping models, two approximations are done: the truncation on the
mode number and the number of excitation points which is finite.
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Figure 9. Modal energy repartition for a plate excited by 1000 random point forces. The centre frequency is fc = 4000 Hz and
the damping models are different: η constant (η= 0.01)—light grey and�= 4πηfc constant (�= 502.65)—dark grey
repartition.

This simple simulation on a single plate highlights that energy equipartition is a direct
consequence of rain-on-the-roof excitation, whereas the diffuse field state can be either reached
by suitable values of damping and frequency or forced by a rain-on-the-roof excitation.

5. Case of two coupled subsystems
In this section, the expectation of local and modal energies in coupled plates are calculated to
quantify the state of diffuse field and energy equipartition but also to evaluate the difference
between SEA prediction and the reference calculation on the ratio of global energies. The case of
two rectangular simply supported plates coupled by a spring is examined (figure 10).

(a) Assessment tools of the assumptions
wA and wB denote the deflection of plate A and plate B, K the coupling spring stiffness. If plate
A is excited by a sum of stationary stochastic processes fi(x, y, t) which follows equation (4.2), the
equations of motion are similar to equation (4.1) with an additional term for the coupling force,

D∇4wA(x, y, t) + m
∂2wA(x, y, t)

∂t2 = f (x, y, t) + K(wB(xB, yB, t) − wA(xA, yA, t))δ(x − xA, y − yA),

(5.1)
for plate A and

D∇4wB(x, y, t) + m
∂2wB(x, y, t)

∂t2 = K(wA(xA, yA, t) − wB(xB, yB, t))δ(x − xB, y − yB), (5.2)

for plate B where xA, yA is the attached point of the spring on plate A and xB, yB on plate B.
Let GA(x, y; xi, yi,ω) (resp. GB) be the frequency response function of the coupled system for a

receiver at x, y on plate A (resp. plate B) and a unit point force at xi, yi on plate A. To determine
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Figure 10. Simply supported plates coupled with stiffness K. Plate A is excited by a sum of random forces having the power
spectral density of white noise. (Online version in colour.)

GA, one introduces the frequency response functions of uncoupled plates

HA(x, y; xi, yi,ω) =
∑
n≥0

ψA
n (x, y)ψA

n (xi, yi)

m(ω2
A,n − ω2 + jηAωA,nω)

, (5.3)

where xi, yi may be either the position of an external force (i = 1, 2..., N) or the position of the
coupling spring xA, yA and ηA, ψA denote respectively the damping coefficient and the mode
shape of an isolated plate. The frequency response function for an isolated plate B is similar.

The deflections at any receiver point are given by

GA(x, y; xi, yi,ω) = HA(x, y; xi, yi;ω) + HA(x, y; xA, yA;ω)K[WB(xi, yi;ω) − WA(xi, yi;ω)],

and GB(x, y; xB, yB,ω) = HB(x, y; xB, yB;ω)K[WA(xi, yi;ω) − WB(xi, yi;ω)],

⎫⎬
⎭
(5.4)

where WA(xi, yi;ω) = GA(xA, yA; xi, yi,ω) and WB(xi, yi;ω) = GB(xB, yB; xi, yi,ω). The displacements
WA and WB are found by substituting x, y with xA, yA and xB, yB,[

1 + KHA(xA, yA; xA, yA;ω) −KHA(xA, yA; xA, yA;ω)
−KHB(xB, yB; xB, yB;ω) 1 + KHB(xB, yB; xB, yB;ω)

][
WA

WB

]
=
[

HA(xA, yA; xi, yi;ω)
0

]
. (5.5)

Then, the frequency response function GA and GB at any receiver point are obtained by applying
(5.4) with WA and WB just determined by equation (5.5).

(i) Local energy expectations

Using equation (4.7), the local energy density 〈e〉(x, y,ωc) for plate A is given by

〈eA〉(x, y,ωc) =
N∑

i=1

Si

2π
m

∫
�ω

ω2|GA(x, y; xi, yi;ω)|2 dω (5.6)

idem for plate B.

(ii) Modal energy expectations

The expectations of the modal energies for the two plates are found using a similar development
that was done for a single plate.

〈EA〉(ωc) =
∫

LA
x

∫
LA

y

〈eA〉(x, y,ωc) dx dy (5.7)
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Table 2. General parameters of the coupled plates.

type symbol value unit

plate A LAx × LAy 1.44 × 1.2 m2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

plate B LBx × LBy 1.39 × 1.1 m2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

density ρ 7800 kg m−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Young’s modulus E 2.1E11 N m−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Poisson’s ratio ν 0.3 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

thickness hA = hB 2 mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

coupling stiffness K 981 N m−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mean free path lA 1.028 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mean free path lB 0.964 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

idem for plate B. After calculation, the global energy of plate A is

〈EA〉(ωc) =
∑
n≥0

〈EA
n 〉(ωc), (5.8)

where the modal energy expectation is

〈EA
n 〉(ωc) =

N∑
i=1

Si

2π

∫
�ω

ω2 |ψA
n (xi, yi) + KψA

n (xA, yA)[WB(xi, yi;ω) − WA(xi, yi;ω)]|
m((ω2

A,n − ω2)2 + (ηAωA,nω)2)

2

dω, (5.9)

for plate A and

〈EB
n〉(ωc) =

N∑
i=1

Si

2π

∫
�ω

ω2 |KψB
n (xB, yB)[WA((xi, yi;ω)) − WB((xi, yi;ω))]|

m((ω2
B,n − ω2)2 + (ηBωB,nω)2)

2

dω, (5.10)

for plate B.

(b) Discussion on the assumptions
The parameters used for the numerical simulation are presented in table 2. The computation
of the expectations of local and modal energies follow the equations (5.6), (5.9) and (5.10).
A various number of random excitations is applied on plate A (from 1 to 100) with a uniform
distribution. There are 3000 receivers points which are randomly and uniformly placed on both
plates. The coupling spring is attached with plate A at xA = 0.72, yA = 0.6 and with plate B at
xB = 0.38, yB = 1.06. The energy equipartition and diffuse field criteria are computed on each
octave band. Moreover, similarly with the case of a single plate, only resonant modes within
the frequency band are taken in the calculation of HA and HB.

The evolution of the diffuse field and the equipartition criteria for both plates are carried out at
high frequency (fc = 2000 Hz) and high damping (ηA = ηB = 0.1) (point E from figure 5) in figure 11
while the number of random excitation increases. Concerning the diffuse state (figure 11a), results
for coupled plates are along the lines of what has been said for a single plate. When plate A
is excited by a single point force the diffuse field criterion is high (σd ≈ 2.8) indicating a strongly
non-diffuse state. The energy is transferred to plate B via the stiffness which acts as a located point
force. The diffuse field criterion of plate B has consequently a high value (σd ≈ 2.8), and the field
in plate B is strongly non-diffuse. When the number of excitations increases up to one hundred
the diffuse field criterion of plate A decreases showing that the field becomes diffuse in plate A.
But the diffuse field criterion stays high for plate B, because the excitation remains a single point
force. The dispersion bars are computed for a population of 10 simulations. They are large with
few excitations, because results are strongly dependent on the excitation and receiver positions.
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Figure 11. (a,b) Diffuse field and energy equipartition criteria evolution versus number of excitations for two coupled plates at
point E: (κ = 10.35, fc = 2 kHz; ηA = ηB = 0.1). (Online version in colour.)

For the energy equipartition criterion (figure 11b), results are again in agreement with those
of an isolated plate: a decrease of the criterion for plate A is observed meaning that rain-on-the-
roof excitation is favourable to equipartition. The dispersion bars are high for both plates with
few excitations and quickly decrease. The energy equipartition criterion for plate B stays high
(σe ≈ 1.17) because it is still excited by a single source. The modal energy distribution is never
equally distributed in plate B.

(c) Evaluation of the coupling power proportionality
The global energies ratio given by equation (5.8) are now compared with their SEA predictions.

(i) Statistical energy analysis approach

For two coupled subsystems A and B, where A is excited by a force field supplying a mean power
〈PA〉, the energy balance of each subsystem jointly with the coupling power proportionality leads
to the standard SEA equation [28],

1
ωc

(
〈PA〉

0

)
=
[
ηA + ηAB −ηBA

−ηAB ηB + ηBA

][
〈EA〉
〈EB〉

]
, (5.11)

where ηA, ηB are the internal damping of subsystems A and B. The coupling loss factors ηAB and
ηBA for two plates coupled by a spring are given by Mace & Li [27]

ωcnAηAB =ωcnBηBA = K2

32πω2
1√

ρAhADA
√
ρBhBDB

, (5.12)

where DA, DB are the bending stiffness of plate A and B and nA, nB = LxLy
√

m/D/(4π ) are the
modal densities. The energy ratio predicted by SEA is therefore

(
〈EB〉
〈EA〉

)
SEA

= nB/nA

1 + ηB/ηBA
. (5.13)
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Figure 12. Error between SEA and the referencemethod for several conditions: modal field—point F: (κ = 1.29;ηA = ηB =
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16 kHz;ηA = ηB = 0.0001) 1 excitation; energy equipartition—point E: (κ = 10.35;ηA = ηB = 0.1) 100 excitations. (Online
version in colour.)

(ii) Difference between statistical energy analysis and reference

The error of SEA compared with the governing equations is

�SEA-reference =
∣∣∣∣∣10 log

(
〈EB〉
〈EA〉

)
SEA

− 10 log

(
〈EB〉
〈EA〉

)
reference

∣∣∣∣∣ , (5.14)

where 〈EB〉/〈EA〉SEA is estimated by equation (5.13) and the reference ratio by equation (5.8).
Figure 12 illustrates the error�SEA-reference for different conditions of simulations (repeated 10

times to compute the dispersion as excitations are randomly distributed). The coupling stiffness
varies for each simulation (K = 981 N m−1 circle marker or K = 9.81 N m−1 cross marker). The
conditions of modal field on plate A corresponds to point F in figure 5 (fc = 31.5 Hz, κ = 1.29; ηA =
ηB = 0.001) with a single point force. The error is important whatever the coupling strength is
(around 20 dB with a coupling of K = 981 N m−1) with a large dispersion. The criteria of diffuse
field and energy equipartition are σA

d = 0.75, σB
d = 0.97, σA

e = 0.88 and σB
e = 1.23 showing that

these assumptions are not fulfilled. On the modal field domain where there is neither diffuse
field nor energy equipartition SEA tends to overestimate the energy transfers.

Direct field conditions are set up with a large damping coefficient (ηA = ηB = 0.1) a high
frequency (fc = 4 kHz, κ = 14.35) and a single excitation (point C in figure 5). The error is still
high (≈ 11 dB) as well as dispersion. The criteria show that the conditions of equipartition and
diffuse field are not respected (σA

d = 3.03, σB
d = 3.56, σA

e = 1.20 and σB
e = 2.39) which confirms that

SEA cannot be used in such a case.
Plate A is in diffuse field condition (σA

d = 0.12 and σB
d = 0.19) when the damping is low, the

excitation is single and the frequency band is high (point G). In that case, the difference between
SEA and reference is near zero which means that a diffuse field state is a sufficient condition for
SEA even if neither the hypothesis of rain-on-the-roof nor energy equipartition are fulfilled.

Finally, being in an energy equipartition condition (100 excitations, ηA = ηB = 0.1, fc = 2 kHz,
κ = 10.35 represented by point E) permits to apply correctly SEA. The energy equipartition criteria
are in that case σA

e = 0.25 and σB
e = 1.30. The measured error ranges from 1 to 2 dB which may be

improved with a lighter coupling stiffness.

6. Conclusion
It has been shown that a rain-on-the-roof excitation usually implies a diffuse field state whatever
the damping and the frequency band. Contrarily, a point force can produce a diffuse field if
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the damping is low and the frequency is high. The case of two coupled plates confirms these
observations made for a single plate.

The vibrational energy is equally distributed among modes when a rain-on-the-roof excitation
is applied provided that the half-power bandwidth is maintained constant. But, in the meantime,
the field becomes diffuse. This observation is valid for all studied frequency/damping cases.
Consequently, energy equipartition indirectly implies a diffuse field.

The two test cases reveal that the assumption with the larger domain of validity is the diffuse
field assumption (it consists of the domain of validity of the other assumptions plus the case of a
point force under low damping and high frequency). However, one must remember that diffuse
field and equipartition are consequences of the type of excitation and the internal properties of
the structure (either single excitation in the diffuse field domain or rain-on-the-roof excitation).
Assuming diffuse field or energy equipartition allows the use of SEA but is complicated to check
based on theory. This is why to be sure that SEA may be applied, it is more convenient to assume
rain-on-the-roof excitation.
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