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ABSTRACT

This paper is a discussion of the assumptions of Statistical Energy Analysis within the framework of
non-equilibrium statistical mechanics. It is shown that Statistical Energy Analysis is analogous to
statistical mechanics of systems in thermal equilibrium when equipartition of vibrational energy
is reached. The extension of SEA which aims to relax the diffuse field assumption is analogous
to non-equilibrium statistical mechanics. The transition from non-equilibrium to equilibrium is
controlled by three dimensionless parameters, the number of modes, the modal overlap and the
normalized attenuation factor.

1 INTRODUCTION

Statistical Energy Analysis is largely inspired from statistical mechanics. By considering that
modes are numerous and that their exact frequency is not known, SEA splits the structure into
sub-systems defined as group of modes. The exchange of vibrational energy is then porportional
to the difference of modal energies.

SEA is the simplest way to adapt statistical mechanics to vibroacoustics. And since SEA
assumes the equipartition of energy, SEA is the theory of global equilibrium of vibrational energy.
The recent developments of SEA follow the historical developments of statistical mechanics. The
study of fluctuations in SEA [1, 2] can be linked the numerous fluctuation theorems in statistical
mechanics. The various extensions of SEA [3–5] which aim to relax the diffuse field assumption
are analogous to non-equilibrium statistical mechanics. The introduction of entropy in SEA [6, 7]
is also an unavoidable consequence of the application of statistical mechanics ideas.

In this study, the assumptions of SEA are discussed in connection with equilibrium and non-
equilibrium statistical mechanics with a particular attention paid to the transition from equilibrium
to non-equilibrium.

2 EQUILIBRIUM STATISTICAL ENERGY ANALYSIS

SEA is a statistical method applied to the audio frequency range (macroscopic vibrations) in the
same manner that thermodynamics is a statistical method applied to thermal vibrations at the
molecular scale (microscopic vibrations). While in thermodynamics the statistical population is
composed by a large number of molecules, atoms or any other sites which store the vibrational
energy, in SEA, the energy is localized in a large number N of modes. The number of molecules
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of thermodynamical systems is of order of Avogadro’s number (1023). But in SEA, the number of
modes may be only of order of several thousands in the best case [8]. Even if SEA is applied to
a statistical population of similar systems (the so-called canonical Gibbs ensemble) where N de-
notes the cumulative number of modes, the population still remains relatively low. This highlights
that SEA is a statistical method applied to small populations, and indeed, this fact can cause some
difficulties. Fluctuations around the mean are more important for small populations. In Ref. [1, 2],
the variance is found to be of order of logN/N2. The size of the population is therefore the first
criterion for the applicability of SEA. The mode count N that is the number of modes within the
frequency band ∆ω is,

N = n∆ω, (1)

where n is the modal density and a large population of modes reads,

N >> 1. (2)

This is the first criterion of validity of SEA.
SEA is the study of incoherent vibrational energy in the same manner that thermodynamics

is the study of ’degraded’ mechanical energy. This state of degradation for energy only arises when
the disorder prevails in the statistical population. Disorder is inherent to the statistical method.
Simple laws can emerge from the behaviour of a large population provided that all ’individuals’
are similar and that any of them may influence the population more than other ones. For thermal vi-
brations of solids, disorder means that the vibration of atoms are uncorrelated. While in the kinetic
theory of gases, disorder means that the velocities of molecules before the shock are statistically
independent. This is the so-called molecular chaos or Stosszahlanstaz introduced by Boltzmann
in 1872 [9]. Disorder in vibroacoustics rather means that mode amplitudes, considered as random
variables, are uncorrelated. This state is reached when no mode dominates the dynamics of the
system that is when the frequency response function is smooth. The modal overlap defined as,

M = nηω, (3)

is a measure of the overlapping of successive modes in the frequency response function. Thus, the
criterion for disorder in SEA is,

M >> 1. (4)

The diffuse field assumption of SEA means that the vibrational energy density is homoge-
neous and isotropic in all sub-systems. This assumption is equivalent to the equipartition of modal
energy (the vibrational energy is equally shared among all modes) [8]. But the modal energy plays
the same role as the energy per molecule in thermodynamics which is exactly the definition of
the temperature. This is why the modal energy can be called the vibrational temperature. Thus,
the diffuse field assumption means that the vibrational temperature is the same at any point of the
sub-system or, in other words, that the sub-system is in thermal equilibrium. To reach this equilib-
rium state, it is necessary that rays are mixed. The general mathematical conditions under which a
diffuse field can emerge are studied in billiard’s theory [10]. But at least, rays must cross several
times the sub-system before to be attenuated. If cg is the group speed of waves and m = ηω/cg
designates the attenuation factor of wave per meter,

m̄ =
ηω

cg
l, (5)

can be called the normalized attenuation factor [11], l being the mean free path of the sub-system.
Its value must be low enough to ensure mixing of rays that is the thermal equilibrium,

m̄ << 1. (6)
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All sub-systems are in thermal equilibrium. But two adjacent sub-systems may have differ-
ent vibrational temperatures. This is the assumption of local equilibrium. The same situation arises
in non-equilibrium thermodynamics. The notion of local temperature makes sense providing that a
local equilibrium is reached. The thermal energy flows higher temperature to lower temperature. In
SEA, the linearity of the net exchanged power with vibrational temperatures is simply the expres-
sion of linearity between fluxes and forces in linear irreversible thermodynamics [12], ωηijni being
the appropriate transport coefficient. It is well-known in non-equilibrium thermodynamics that the
linearity of fluxes and forces is valid for systems which are not too far from equilibrium. This is
the light coupling assumption. In the context of SEA, the light coupling assumption means that
the flow of exchanged vibrational energy is small compared with the internal dissipation of energy.
This can be enunciated as ηij << ηi. Although some authors have studied the possibility to extend
SEA to strong coupling [13], the usual relationships for coupling loss factors are derived under the
light coupling assumption. Following Smith [14], the coupling strength is defined as γij = ηij/ηi.
In case of assembled plates with a coupling length b, perimeters Pi and a transmission efficiency
τij , it yields,

γij =
τijb

m̄iPi

. (7)

The light coupling condition reads,
γij << 1. (8)

A complete transmission (τij = 1) over a small length in a large plate (b << Pi) leads to a light
coupling.

Indeed, the symmetric condition must also apply,

γji << 1. (9)

But the conditions Eqs. (8, 9) are not independent. They are related by,

γijMi = γjiMj. (10)

The set of dimensionless parameters γij , γji, Mi and Mj is therefore dependent.

3 NON-EQUILIBRIUM STATISTICAL ENERGY ANALYSIS

When equipartition of energy is not verified, classical thermodynamics is no longer valid and
as a consequence, classical SEA does not apply. This is the domain non-equilibrium statistical
mechanics. Non-equilibrium statistical mechanics is mainly based on Boltzmann’s equation. The
distribution function f(x,v) introduced by Boltzmann is the density in the phase space of particles
at any point x with any velocity v. Boltzmann’s equation gives the spatial and time evolution of
this distribution function f by writing that particles in volume dτ with velocity in solid angle dΩ
have either travelled with a constant velocity or result from a shock between two particle with
velocities v′ and v′

1 (Figure 1).
This suggests that equilibrium hypothesis in SEA can be relaxed with an analogous of

Boltzmann’s equation. But for steady-state SEA, rays are more appropriate than particles. Fur-
thermore, rays can cross without colliding. The mixing of rays is therefore rather due to multiple
reflections on boundaries rather than collisions inside the domain (Figure 2). The analogous of the
distribution function f is the radiative intensity I(x,u) defined as the power per unit length and
unit angle normal to the ray u. The balance of rays being reflected and incident on the boundary
is,

I(x,u) =

∫
R(x,u′,u) cos θ′I(x,u′)du′ + I0 (11)

where R is the bi-directional reflectivity of the boundary, θ′ the incident angle and I0 is the source
term. Indeed, the energy density and therefore, the total vibrational energy of sub-systems can
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Figure 1: Boltzmann’s equation. Particles in dτ with velocity v in dΩ result from, (a) a direct
transport over vdt or, (b) a shock between two particles with velocities v′ and v′

1.

calculated from the knowledge of radiative intensity on the boundary. The complete theory is
derived in References [3, 15, 16].

Figure 2: Mixing of rays. Rays reflected on the boundary within solid angle dΩ about v can stem
from vibrational sources with velocity v′ or from another part of the boundary with velocity v′′. In
the latter case, a multiple reflection occurs.

Such a theory is analogous to non-equilibrium statistical mechanics. And, as well, equi-
librium is a particular case of non-equilibrium. Thus SEA equation can be derived from Eq. (11)
[11].

The validity of this theory is the same as any energetic ray theory. The assumptions are
large number of modes N >> 1, large modal overlap to ensure the additivity of energy M >> 1.
But the mixing of rays m̄ << 1 is no longer required neither is the light coupling γ12 << 1 and
γ21 << 1.

4 VALIDITY DOMAIN OF SEA

The dimensional analysis provides a useful tool to define the validity domain of Statistical Energy
Analysis. Let develop the reasoning on the example of two coupled plates. The system is shown in
Figure 3. It is constituted by two rectangular plates whose exterior boundary are simply supported
and the common boundary ensures the continuity of deflection, rotation, moment and force.

The governing equation for the out-of-plane vibration vi of plate i is,

∆2vi − k4
i (1− jηi)vi = fi, (12)

where the imaginary part−jηi is the contribution of damping to the wavenumber ki. The boundary
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Figure 3: Two rectangular coupled plates. Their lengths are a1 and a2 and their width is b. Exterior
edges are simply supported and the plates are coupled along the common edge. Position of the
driven force (o) and the receiver points (+).

conditions for simply supported edges at y = 0, y = b are,

vi(x, 0) = vi(x, b) = 0, (13)
∂2vi

∂y2
(x, 0) + νi

∂2vi

∂x2
(x, 0) =

∂2vi

∂y2
(x, b) + νi

∂2vi

∂x2
(x, b) = 0. (14)

Similar boundary conditions must also hold at x = 0 and x = a1 + a2. The continuity conditions
at the interface are,

v1(a1, y) = v2(a1, y), (15)
∂v1

∂y
(a1, y) =

∂v2

∂y
(a1, y) (16)

D1

[
∂2v1

∂x2
(a1, y) + ν1

∂2v1

∂y2
(a1, y)

]
= D2

[
∂2v2

∂x2
(a1, y) + ν2

∂2v2

∂y2
(a1, y)

]
, (17)

D1

[
∂3v1

∂x3
(a1, y) + ν1

∂3v1

∂y2∂x
(a1, y)

]
= D2

[
∂3v2

∂x3
(a1, y) + ν2

∂3v2

∂y2∂x
(a1, y)

]
. (18)

So, the only physical parameters of this set of equations are the wavenumbers k1, k2, the
damping loss factors η1, η2, the length a1, a2, the common width b, the Poisson’s coefficients ν1, ν2

and the bending stiffnesses D1 and D2. There is 11 physical parameters. Their only physical units
are the length and the Newton. The theorem of Vaschy-Buckingham [17, 18] gives the number
of dimensionless parameters of this problem, 11 − 2 = 9. These dimensionless parameters can
be chosen arbitrarily provided that they are independent. A possible choice is the dimensionless
wavenumber κi = kili/2π where li = πaib/2(ai + b) is the mean free path, the shape ratio
εi = (ai + b)/

√
πaib defined as the ratio between the perimeter of the plate and that of a circle

of the same area, the damping loss factor ηi, the Poisson’s coefficient νi and the transmission
efficiency τ12 which is a function of the ratio D1/D2. This set of dimensionless parameters is
well-suited to rewrite the governing equation (12) and the related boundary conditions (13-18) in
dimensionless form. As well, it will be called ’primary’ set of dimensionless parameters.

But any other choice of independent dimensionless parameters is possible. The set of
dimensionless SEA parameters introduced in Section 2 that is, N1, N2, M1, M2, m̄1, m̄2, ν1, ν2

and γ12, is acceptable provided that a one to one map can be found,

κ1, η1, ε1, κ2, η2, ε2, τ12 −→ N1,M1, m̄1, N2,M2, m̄2, γ12. (19)
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These relationships are easily found,

Ni = 2
√

2κ2
i ε

2
i , (20)

Mi = 4ηiκ
2
i ε

2
i , (21)

m̄i = πηiκi, (22)

γ12 =
τ12

πη1κ1

µ1(ε1). (23)

where µ1 = b/2(a1 + b) is a function of ε1. The problem of a pair of vibrating plates is mathemat-
ically fully determined by the only nine dimensionless parameters Ni, Mi, m̄i, νi and γ12. Since
SEA is a theory included in the Love’s theory of plate in the sense that equation of SEA can be de-
rived from the governing equation of Love’s plate and considering that Poisson’s coefficient is of a
low importance in SEA, the validity domain of SEA is necessarily confined into the 7-dimensional
space N1, M1, m̄1, N2, M2, m̄2 and γ12.

Eqs. (2), (4) and (6) give the boundary of the validity domain of SEA for plates and Eq. (8)
for the coupling. The last condition (9) (γ21 << 1) can be expressed as,

γ12
M1

M2

<< 1. (24)

All these conditions are curved varieties in the 7-dimensional space.

5 NUMERICAL SIMULATION

The numerical simulation aims to compare results from direct numerical simulation and SEA.

Simulation o 4 ∇ × +
κ 5.0 10.0 2.9 0.91 5
η 0.01 0.1 0.0001 0.08 0.01
ε 1.13 1.13 1.96 1.96 1.13
τ 0.125 0.125 0.0012 0.68 1.0
N 90 360 90 9 90
M 1.3 51 0.013 1 1.3
m̄ 0.16 3.14 0.001 0.23 0.16
γ 0.2 0.01 0.62 0.14 1.6

Table 1: Dimensionless parameters. Both plates have same dimensionless numbers. They are
acceptable for SEA in the reference simulation (o) but not for other simulations: The attenuation
m̄ is too high (4), the modal overlap M is too low (∇), the mode count N is too low (×) and the
coupling strength is high (+).

The direct numerical simulation is based on the solving of Eq. (12) for each plate with
conditions (13-18). The solution is developped as a Fourier’s series along the y-axis. The series
is truncated to 2000 terms. Plate 1 is excited by an out-of plane force located at x0 and y0. The
response is computed on a 30 × 30 grid of receiver points on each plate. The vibrational energy
Ei of plates in the octave band is assessed by computing the frequency response function for 1000
frequencies and by summing the contributions of the 900 receiver points.

The SEA computation is quite simple. It is based on the set of linear equations,

ω

(
n1(η1 + η12) −n2η21

−n1η12 n2(η2 + η21)

)(
E1/n1

E2/n2

)
=

(
P inj

1

P inj
2

)
(25)
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The modal density is given by,

n =
Sω

2πcgcϕ
, (26)

where S is the area of the plate, cg and cϕ the group speed and the phase speed of the flexural wave.
The coupling loss factors is,

ηij =
bcgi

πSiω
τij (27)

where τij is the mean transmission efficiency from plate i to plate j. The injected power is,

P inj
1 =

|F |2

16
√
mD

. (28)
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Figure 4: Validity domain of SEA for a pair of coupled rectangular plates. The lines m̄ = 1 (–),
M = 0.5 (-.-), N = 20 (-), γ12 = 0.5 and γ21 = 0.5 are plotted in the κ, η-cut of ’primary’
dimensionless space in cases (a), ε = 1.13 and (b), ε = 1.96. Numerical simulations are positioned
in the reference case (o), for large attenuation (4), low modal overlap (∇), few modes (×) and
strong coupling (+).

Five numerical simulations have been realized. The respective dimensionless numbers are
shown in Table 1. They have been chosen as follows. A first simulation (symbol o) is done with
dimensionless numbers N , M and m̄ chosen in such a way that they are correct for SEA. They
verify the criteria (2), (4), (6), (8), (9). All subsequent simulations violate a criteria. The second
simulation (symbol 4) has a large normalized attenuation factor m̄ > 1, the third simulation
(symbol ∇) has a small modal overlap (M < 1), the fourth simulation (symbol ×) has a small
number of modes N = 9 and the fifth simulation (symbol +) has a strong coupling γ > 1. The
positions of these five simulations are plotted in Figures 4a and 4b respectively for ε = 1.13 and
ε = 1.96. In these diagrams, the validity domain of SEA is delimited by the linesN = 20,M = 0.5
and m̄ = 1. The position of symbols relative to these lines clearly show which assumption is
violated.

Numerical results are shown in Figure 5. The relative error between the direct numerical
simulation and SEA is plotted for the power being injected by the driven force and the total vi-
brational energies of plates 1 and 2. It is clear that the reference calculation (symbol o) shows a
fine agreement between SEA and direct numerical simulation. It means that the injected power
is well estimated by Eq. (28), but also that the power being exchanged between the two plates is
well estimated. For the following three simulations 4, ∇ and ×, the energy of plate 2 is not well
estimated. The discrepancy is large (from 200% up to 400%) and cannot be explained by the error
on the injected power. Both injected power and exchanged power given by SEA are wrong. Also
interesting is the last simulation (+) with strong coupling. Although the assumption γ << 1 is
violated, results are good. It seems that the assumptions (8, 9) are not so important, at least for this
case of two coupled plates.
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Figure 5: Relative errors(%) of SEA results compared with the direct numerical simulation. Errors
on energy of plate 1 (black), energy of plate 2 (grey), injected power (white). The reference
situation (o) and strong coupling (+) lead to good results on injected power as well as vibrational
energies. But, large attenuation (∆), low modal overlap (∇) and low number of modes (x) show
discrepancies between SEA and direct numerical simulation.

6 CONCLUDING REMARKS

In this paper, it has been shown that SEA is analogous to statistical mechanics of systems in
thermal equilibrium when equipartition of vibrational energy is reached. More exactly, each sub-
system must be in thermal equilibrium but, two adjacent sub-systems may have different modal
energies and therefore, may exchange vibrational energy. The conditions under which equilibrium
is reached are large mode count N >> 1, large modal overlap M >> 1, low attenuation m̄ << 1
and light couplings γ12 << 1 and γ21 << 1. These conditions define the validity domain of
SEA in the κ,ε,η,τ -space. The numerical simulations highlight that they are necessary since a
discrepancy is observed between direct numerical simulation and SEA if any of these conditions
is violated (excepted light coupling may be).
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