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Statistical energy analysis (SEA) is the most famous method intended to prediction of sound
and vibration in high frequency range with random excitations. Although SEA is largely in-
spired from statistical mechanics and thermodynamics, it is up to now limited to the application
of the first principle of thermodynamics. In this study, we introduced the related entropy con-
cept and it is shown that an entropy balance is possible, as a counterpart of the energy balance.
An illustration of the approach is proposed.

1. Introduction
Statistical energy analysis is an attempt to model the vibro-acoustical behaviour of structures in

the frequency domain where statistics on modes begin to operate efficiently. However, the equations
of motion are still valid in this domain and we could raise the question of utility of SEA. The simplicity
of SEA compared with the huge amount of calculation required to solve the equations of motion by
finite element method in the high frequency domain is a strong argument in favour of the statistical
approach. This situation is quite similar to the problem of turbulence in fluid mechanics. Navier-
Stoke’s equation applies for both laminar and turbulent fluids but its direct resolution, the so-called
direct numerical simulation, highlights the limitation of the brute force approach.

The statistical approach applied to small wavelengths are however conceptually interesting. The
employed method is the same as in statistical physics but at a different scale. So, like in statistical
physics, the fact that in SEA we deliberately neglect a part of information raises the question of
existence of entropy and its meaning. This is what is done in this paper.

2. Energy and SEA
Statistical energy analysis is based on application of the energy balance to sub-systems. Ba-

sically, the primary variables of sub-systems are the vibrational energy Ei and mode count Ni for
i = 1 . . . n contained within a frequency band of width ∆ω and central frequency ω (typically an
octave band). The sources assumed to be white noise mutually uncorrelated, are characterized by
their injected power Pi.

The dissipation of vibration occurring in sub-systems is summarized in a single damping law,

P diss
i = ηiωEi (1)

which states that the dissipated power is proportional to the energy level.

ICSV18, 10–14 July 2011, Rio de Janeiro, Brazil 1



18th International Congress on Sound and Vibration, 10–14 July 2011, Rio de Janeiro, Brazil

The net power exchanged between sub-systems i and j follows the law,

Pij = ω (ηijEi − ηjiEj) (2)

where the coupling loss factors verify the reciprocity relationship ηijNi = ηjiNj . This law of pro-
portionality of power and difference of modal energies constitutes the main result of SEA. It has
been first derived from a modal approach in Refs. [1, 2, 3]. In Refs. [4, 5], its derivation is based on
the geometrical approach with rays. The notion of statistical ensemble is of a great importance [6]
particularly with regard to the question of variability of responses [7, 8]. Finally, in Ref. [9], some
interesting arguments based the H-theorem are given in favour of this law.

The energy balance of sub-system i in steady-state condition reads,

ωηiEi +
∑

j !=i

ω (ηijEi − ηjiEj) = Pi (3)

This is a set of linear equations on unknowns Ei. It can be used for instance to calculate Ei from the
knowledge of Pi.

3. Entropy and SEA
In this section are summarized all equations related to usage of entropy in SEA. The proofs and

comments may be found in Refs. [10, 11, 12].
Entropy of a sub-system with vibrational energy E and number of modes N is,

S = kN
[
1 + log

(
2πE

hωN

)]
(4)

where k = 1.38 10−23 J K−1 is Boltzmann’s constant, h = 6.63 10−34 m2 kg/s is Planck’s constant
and ω the central frequency of bandwidth in rad/s. The physical unit of entropy is J/K.

The vibrational temperature of sub-systems is defined as,

T =
E

kN
(5)

with physical unit K.
In a driven sub-system, excitation forces tend to warm up it by injecting energy. The rate of

entropy being injected in sub-system i is,

dS inj
i

dt
=

Pi

Ti
(6)

where Ti is the vibrational temperature and Pi (W) the power being injected by driven forces.
Dissipation of vibration by natural damping processes tend to cool down the sub-system since

damping is responsible of reduction of energy. The rate of entropy being extracted is,
dSdiss

i

dt
=

ηiωEi

Ti
= kηiωNi (7)

Finally, during exchange of power between sub-systems, a mixing entropy is created. This is a
irreversible process. The rate of entropy created at interfaces is,

dS irr
ij

dt
= kηijωNi

NiNj

EiEj

(
Ei

Ni
− Ej

Nj

)2

(8)

It can readily be checked that a global entropy balance holds,
n∑

i=1

dS inj
i

dt
+

dSdiss
i

dt
+

∑

i>j

dS irr
ij

dt
= 0 (9)

meaning that in steady-state condition, no entropy is supplied to the system.
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Figure 1. System composed of six coupled plates.

Figure 2. Sub-system connection graph.

4. Numerical simulation
The studied system is composed of six plates coupled by their edges as shown in Fig. 1. Each

plate is considered as being one sub-system. The power is injected in plate 1 and the receiver is plate
6. The sub-system connection graph is shown in Fig. 2. It can be seen that from plate 1 to plate 6, a
large variety of transmission paths is allowed.

SEA calculations are performed by using a home built code named CeReS which provides all
usual information, i.e. coupling loss factors, modal energies, modal densities, and modal overlaps for
all plates. The material characteristics of plates need to be provided as input data of the software as
well as their exact geometry. Plates 1, 2, 4 and 5 have area equal to 7.2 m2. Plates 3 and 6 have area
8 m2. All of them have same width of 2 m and same thickness of 1 mm. The material characteristics
are listed in Tab. 1.

When using SEA, the classical coupling loss factors of plate-plate junction issued from the
wave-based approach is adopted i.e. ηij = Lcτ̄/πωSi where L is the coupling length, c the group
speed of flexural waves, τ̄ the mean transmission efficiency and Si the plate area. To determine the
transmission efficiency of the coupling, we consider the continuity of deflection, rotation and the
balance of forces and moments. Other approaches to estimate coupling loss factors are possible [13].

The analysis is performed in the octave band centred on 1000 Hz.

5. Comments
The plates are characterized by four dimensionless parameters: The number N of modes in the

octave band, the modal overlapM and the normalized attenuation factor (attenuation per mean free
path) m̄ [14] are listed in Tab. 2; Coupling strengths between connected plates γij according to the
Gamma criterion are listed in Tab. 3 [15].

It can be observed that the mode count and modal overlap are both high enough to justify the
statistical approach. The normalized attenuation factor is low compared to unity, to ensure the field

Table 1. Plates material characteristics.
Young Modulus E Density ρ Poisson’s ratio ν Damping loss factor η

71 109 Pa 2400 kg/m3 0.3 0.1 %
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Table 2. Plate modal characteristics.
N M m̄

Plates 1,2,4,5 1550 2.191 0.0624

Plates 3,6 1720 2.430 0.0647

Table 3. Plate coupling strenghs.
γij j = 1 2 3 4 5 6

i = 1 - 0.2724 0.1116 0.1219 0 0
2 0.2724 - 0.1091 0 0.1220 0
3 0.1117 0.1092 - 0.1117 0.1090 0
4 0.1219 0 0.1116 - 0.1199 0.1073
5 0 0.1220 0.1091 0.1199 - 0.1141
6 0 0 0 0.1073 0.1141 -

to be diffuse [16]. And eventually, the coupling strength values are low.
Energy and entropy repartition over the sub-systems are presented respectively in Figs. 3 and 4.

For both figures, the thickness of arrows and size of circles standing for each sub-systems are propor-
tional to the related quantity. Comparison of these two figures leads to the following observations:

• The maximum of entropy created by mixing roughly corresponds to the maximum of energy
transfer and both are located close to the driven plate,

• sub-system entropy levels are quite different from sub-system energy levels,

• for all sub-systems, the dissipated power is proportional to the energy level (see Eq. (1)),

• for all sub-systems, the dissipated entropy rate is proportional to the entropy level (this was not
obvious from the above equations).

The energy paths are also investigated [17]. Figure 5 shows the energetic contribution of trans-
mission paths from plate 1 to plate 6 respectively for paths having 3, 4 and 5 nodes. We consider all
the energy paths possible between those two plates and order them according to their energy contri-
bution. The most contributive paths (146 and 1256) are those for which the entropy created by mixing
is maximum.

Figure 3. Energy repartition over the sub-systems. Red arrow, injected power; Black arrow, exchanged power;
Green arrow, dissipated power; Black circle, sub-system energy.
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Figure 4. Entropy repartition over the sub-systems. Red arrow, injected entropy rate; Black arrow, mixing
entropy rate; Green arrow, dissipated entropy rate; Black circle, sub-system entropy

Figure 5. Classification of energy paths by order of importance.
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