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ABSTRACT

Statistical Energy Analysis (SEA) is in the field of energy methods. It aims at describing the energy
transfers between complex subsystems. This method is regularly presented as a solution to bypass
the problems which can arise in the high frequency range when applying deterministic methods
such as FEM (cost of computation due to the high number of degree of freedom or the high number
of modes, unicity of the computation). But SEA has numerous assumptions which are sometimes
forgotten or misunderstood. Indeed, the industrial applications of the method have often been dis-
appointing and the lack of strictly defined rules brings SEA into disrepute. This paper recalls SEA
assumptions distinguishing the modal and the wave approach. The goal is to study the possible
equivalence between the hypotheses and their influence on the quality of the results. Simple exam-
ples are taken (coupled oscillators, couples plates) to illustrate the observations. Some guidelines
are extracted and they are applied on a plate network. The modal energy equipartition assumption
is shown equivalent to the rain-on-the-roof assumption. Moreover, the latter implies diffuse field
assumptions. The importance of the weak coupling assumption is also broached. It is observed
that indirect coupling loss factors come up for strong coupling regimes making the coupling power
proportionality relationship unusable.

1 INTRODUCTION

The statistical energy analysis (SEA) is a method introduced in the 1960s intended to estimate
the vibroacoustic response of complex structures in the high frequency range by a statistical ap-
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proach. Richard Lyon’s book [1] is a benchmark in this field, but many writers have contributed
to the development of this method. Purely theoretical developments of traditional SEA have oc-
curred between the early 60s and the 80s. After, the literature is mainly concerned with reviews,
experiences and some extensions about SEA.

The main results given by SEA is the coupling power proportionality relationship (CPP). It
states that the power transmitted between two subsystems is proportional to the difference of their
modal energies [2]. From a thermodynamic point of view the CPP can be seen as a relaxation
phenomenon of nonequilibrium systems [3]. Indeed, it is a linear relationship between the flow
and the thermodynamic forces, whose definition is a difference of energies.

SEA (or the CPP relationship), to be applied properly, requires a number of assumptions often
misunderstood or unknown. There are many studies using SEA that led to disappointments. It has
motivated studies on the required assumptions and have also divided the opinions of the scientific
community on their status. A study of the equivalence or the effective need of SEA assumptions
could be beneficial and it is precisely the subject of this paper. For that four parts follow this in-
troduction. First a brief review of SEA assumptions is done distinguishing the two approaches of
SEA [4]: the modal and wave approaches. Second, the results of a study on the equivalence be-
tween rain-on-the-roof excitation, diffuse field and modal energy equipartition is presented. Then,
results from another study about the weak coupling hypothesis is shown. The observations of both
studies are finally used on an example of three coupled plates.

2 BRIEF REVIEW OF SEA ASSUMPTIONS

The number of SEA assumptions is linked to the plurality of the demonstrations to prove the
coupling power proportionality. To understand their origin, the two approaches of SEA (modal
and wave) must be recalled. A detailed review with the mathematical demonstrations is given by
Le Bot [5] and a summary version is given in chapter two of [6].

2.1 Modal approach

The modal approach considers a mode as a mechanical oscillator with a mass, an internal damping
and a stiffness. In this way, the energy exchange between two modes is developed on the model of
two coupled oscillators. The more the system evolves, the more the demonstration model becomes
complex (exchange between three modes, between N modes, between several subsystems, between
continuous systems). For each demonstration, the CPP can be recovered through the consideration
of several assumptions. The hypotheses are the following:

1. The coupling between two modes is conservative. With this assumption no power is created
or dissipated in the coupling.

2. Modes are excited by random, stationary and uncorrelated external forces. From a mathe-
matical point of view, assuming this kind of excitation allows to consider the expectations
of each term of the power balance equation instead of their intantaneous expressions. More-
over, the properties for two stationary random processes can then be used. From a physical
point of view, this excitation enables to have the same power injected in each mode.

3. The external forces are white noises. It means that the power spectral densities of the exci-
tations are flat over an infinite frequency band.

4. The coupling is weak. We may note that this assumption comes up when the model consists
in three oscillators or more. Indeed, for two coupled modes assumptions 1, 2 and 3 are
enough to prove the CPP. No consideration on the coupling is needed. In this way the
demonstration model with two oscillator is a particular case.
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5. The power spectral densities of the excitations are identical within each subsystem. This
hypothesis is necessary for the demonstration model of sets of oscillators. Modes within a
subsystem are uncoupled but each mode of a subsystem 7 can be coupled to any other mode
of a subsystem j. It complements the assumptions 2 and 3. In summary, the excitations are
stationary random, uncorrelated white noise and their spectral power densities are the same
in all subsystems. This type of excitation is also called rain-on-the-roof because the forces
are spatially and temporally uncorrelated and of equal intensity in analogy with raindrops
falling on a roof.

6. The number of mode is large in each subsystem. The CPP between two subsystems (i.e sets
of oscillators) is similar to the CPP for N > 2 coupled oscillators with a summation over the
number of modes within each subsystem. The main drawback is that all of the oscillators
parameters must be known. To avoid this issue one can make a probabilistic estimation of
the sums by replacing them with integrals. This additional assumption allows to minimize
the error in this latter operation and makes the transition from a deterministic problem into
a probabilistic problem.

7. The probability density function are unchanging over the frequency band Aw. Previously the
resonators were deterministic and deterministic problem solving required a total knowledge
of all oscillators parameters. In practice the subsystems contain a large number of modes;
the number of oscillators and of parameters is then very high. Conversely, the problem in its
probabilistic form requires knowing only the statistical properties of an oscillator. They are
precisely specified by this assumption.

8. The damping is small. This is the latest hypothesis required for the demonstration of the
CPP for coupled sets of oscillators.

9. Egquipartition of modal energy. Another method is used to prove the CPP without a formal
calculation of energies. In this approach assumption 5 is replaced with this assumption.
It permits to write the vibrational energy of an oscillator as the vibrational energy of the
whole subsystem divided by the total number of oscillators. It is important to note that this
assumption of equipartition of modal energy is a behavioral assumption and consequently
difficult to verify a priori.

2.2 Wave approach

So far the approach used was the modal approach. It helped to identify the source of nine hypothe-
ses of SEA. The wave approach assumes that the vibrational field is decomposed into a superposi-
tion of traveling plane waves sufficiently disordered to address the problem in a statistical manner.
The required assumption to demonstrate the coupling power proportionality are:

10. High frequencies. This hypothesis allows the approximation of geometrical vibroacoustics
and use ray method.

11. Diffuse field. There are several definitions of a diffuse field. From the ray method point
of view a diffuse field is a sum of plane waves of amplitudes and random phases, from all
directions in an equiprobable way. At one point the energy is calculated by integrating the
contributions from the entire space.

12. Weak coupling. The subsystems adjacent border is small relative to other frontier. Giving
these three assumptions one is able to recover the CPP relationship.

To have fast and reliable results using SEA, an operator will have some difficulties to check
all the prescribed assumptions. While he/she may control the excitation, it will not be easy for
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him/her to know the status of subsystems. On the other hand, the two approaches lead to the
same result: the CPP. We may wonder about the possible equivalence between the assumptions
of each approach. In this context, a study of the inclusions, the equivalence and the need of SEA
assumptions could be beneficial. This is precisely the subject of the following parts.

3 EQUIVALENCE BETWEEN RAIN-ON-THE-ROOF, DIFFUSE FIELD AND MODAL
ENERGY EQUIPARTITION ASSUMPTIONS

A study about the equivalence between rain-on-the-roof excitation, diffuse field and modal energy
equipartition was undertaken. First, the example of a simply supported plate excited by a random
point force has been processed to study the conditions of diffuseness. A diffuse field criterion
based on the standard deviation of the local energy at several random point on the plate has been
defined. This criterion was drawn on the wavenumber/damping plan (cf Figure 1).
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Figure 1: Diffuse field criterion on the wavenumber/damping plan for a general rectangular plate
excited by a single point force. The lines represent the diffuse field criterion value while the
damping and the wavenumber vary.

The contour line 0.7 defines the area of quasi-diffuse field. It corresponds to small damping
plus high frequencies conditions. For lower frequencies, where few modes are resonant, the field
has a modal behavior, whereas at high frequencies and for strong damping the field is dominated
by a direct field emanating from the source. Consequently, in a general rectangular plate submitted
to a single point force, diffuse field is possible in the high frequency range and for small damping.

When the plate is excited by a rain-on-the-roof excitation (i.e a infinite number of uncorre-
lated, white noise, random point forces) we observed that the diffuse field domain becomes larger.
Indeed, we noted that the diffuse field criterion dramatically decreases when the number of excita-
tions increases. It means that, in a subsystem, if a field is not naturally diffuse with a single point
force ( modal field or direct field behavior) it becomes diffuse when a rain-on-the-roof is used.
Regarding the assumptions one can conclude that the hypothesis of a rain-on-the-roof excitation
implies the hypothesis of diffuse field:

Assumptions (2)+(3)+(5) = Assumption (11).

The same example is taken to broach the modal energy equipartition assumption. As for the
diffuse field an equipartition criterion has been defined. It is the standard deviation divided by
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the mean value of modal energy. The results show that equipartition is never reached with a
single point force even for small damping and high frequencies. The modal energies follow a
Weibull distribution which shows that it is not evenly distributed. Nevertheless, equipartition is
possible when a rain-on-the-roof is used and when the damping is structural (also denoted half
power bandwidth). In that case the modal energies are group around a mean value. The modes of
subsystem do not interact but they all receive the same injected power (provided by the rain-on-
the-roof) and dissipate at the same rates (half power bandwidth dissipation). For these reasons, if
one considers implicitly structural damping, the rain-on-the-roof assumptions is strictly equivalent
to modal energy equipartition:

Assumptions (2)+(3)+(5) < Assumption (9).

Finally the study has allowed to decide on the equivalence between rain-on-the-roof, diffuse
field and modal energy equipartition (cf Figure 2).

Diffuse field (11)

Rain-on-the-roof < B Equipartition
(2) (3) (5) (9)

Figure 2: Equivalence and implications between rain-on-the-roof, diffuse field and modal energy
equipartition assumption in SEA.

The reader is encouraged to read the paper [7] for more details on this study.

4 ON THE WEAK COUPLING REQUIREMENT

One focused on the weak coupling assumption as it appears in both approaches of SEA. The aim
here was to verify some results of the literature and to study the effects of a strong coupling regime
of the CPP.

First one took two and three oscillators of stiffness & coupled by springs of stiffness K ! to
verify an important result: the need to check the weak coupling assumption for a energy exchange
between the three modes (or more). To do so, the traditional coupling loss factor 3 given by the
SEA literature has been compared with a reference factor while the coupling strength varies. The
reference coupling loss factor is the ratio between the exact power transmitted and the difference
between the exact energies of each oscillator. The conclusion is final: a perfect agreement between
SEA and reference calculation for two coupled oscillators whatever the coupling strength ratio
K /k is showing that this assumption is not necessary to apply SEA properly (cf Figure 3).

At the opposite, the case of three coupled oscillators shows that a separation line between weak
and strong coupling can be drawn (cf Figure 4 (a) and (b)). For weak coupling the SEA and
reference match. But, there is a large difference between (3;; sp4 and 3;; rpr When the coupling
ratio K'/k is above a threshold value (K /k = 0.1 in both figures). In this way, weak coupling is a
unavoidable to apply SEA.

The case of three coupled plates has also been examined. It has been observed that in the strong
coupling regime the CPP fails giving also rise to indirect coupling loss factors. These results led
to reference [8].

I'The oscillators are coupled linearly : one spring is use for the case of two coupled oscillators and two for the case
of three coupled oscillators.
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Figure 4: Evolution of the coupling power coefficient of SEA f3;; sp4 and the reference 8 rpr
between three oscillators versus the stiffness ratio K /k where (i,j) = (1,2) in (a) and (i,j) = (2,3) in

(b).

S5 APPLICATION ON A PLATE NETWORK

In this section each hypothesis (diffuse field, rain-on-the-roof, equipartition, weak coupling) is
tested on a network of three coupled plates. Several configurations are considered, for each the
SEA calculation is compared to an analytical calculation (reference). Let us firstly present these
two calculations.

5.1 SEA calculation

The plates are referenced A, B and C. Their length and width are denoted L, and L; . The coupling
stiffness between plates 7 and j (where i = A, B and j = B, C) are K;; (cf Figure 5). If P, is the
power injected in plate 7 and E* its mean vibrational energy, then the SEA system when only plate
A is excited is

1 Py Na+ Nap —NBA 0 E,
o 0 = | —Map NMB+NBat+nBc  —Ncs Ep (1)
¢ 0 0 —NBC nc+nee| |Ec

where 7; and 7);; are the damping and the coupling loss factors. Besides, in [9] Mace and Li give
the coupling loss factor between two coupled plates by a spring. With the present notation such an
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Figure 5. Three simply supported plates A, B and C' coupled by elastic couplings K 45 and K.

expression is, for plate A and B,
K2, |
327rw3 \/,OAhADA\/,OBhBDB ’

where w is the frequency band, p;, h; and D; the density, the thickness and the bending stiffness.
The asymptotic expression of modal density n; in plate ¢ is

2)

NANAB = NBTNBA =

- LiLZ pih;

i = 3
The development of the second and third line of (1) leads to two energy ratios:
< % > _ "AB )
Ea)spa (3 +mnBa+nsc) —nes; o]
and
(& ) __Bc__ NAB 5)
Ea)spa  me+nes  [(ns+nsa+nsc) = nesr Hs]

Finally, the energy ratios predicted by SEA can be obtained by the computation of the coupling
loss factors and the modal densities (the damping loss factors are assumed to be known).

5.2 Reference calculation

If plate A is excited by a rain-on-the-roof excitation composed of N random point forces, the force
field f has the following expression

flz,y,t) =) Fr(t)o(x —x1)0(y — yr) (6)

M =

k=1

where [}, are random forces having the same power spectral density S, constant in the fre-
quency band [Wmin, Wmax]. The vibrational energy is taken as twice the kinetic energy E; =
[ pihi(w?)dzdy where w; denotes the deflection of plate ¢ and the integral is performed over the
plate surface. The vibrational energies of each plate can be computed by using the frequency re-
sponse functions of the coupled plates. The deflection w; of plate ¢ at position x, y when plate A
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is excited by a harmonic point force at position xy, yy is noted H; s(x,y, Ty, yr; w) where w is the
circular frequency. The vibrational energy in plate : are admitted

min

S N Li LY pwmax ) )
E; = — E / / / pihiw? | H; a(x,y, Tk, yi; w)|“dwdydz (7
k 1 0 0 w

We may note that the computation of the each vibrational energy is reduced to the computation
of the frequency response functions of the coupled plates H;;. The reader may refer to [7] for a
detailed computation of the energies of two coupled plates and to [8] or [6] chapter 7 for three
coupled plates. The energy ratios (Fc/Ea)rer and (Ep/E4)grpr are consequently obtained by
computing the relevant energies from equation (7). SEA and analytical calculation can then be
compared with the difference

L E
AéE}AB—REF = ‘10105:{ (E—j) — 10log (E—j)
SEA REF

Of course the difference between plate A and C is similar and is denoted A4S ppp

®)

5.3 Numerical tests

With equation (8) one is now able to compare the SEA and the calculation reference. The simu-
lation parameters are given in the Table 1. Six configurations are tested and for all the frequency

Type Symbol Value Unity
Plate A L}x Ly} 144x12 m?
Plate B LY x Ly 139x11 m?
Plate C LEx Ly 142x1.3 m®
Thickness hA:hB:hC 2 mm
Density p 7800 kg/m?
Young modulus E 2.1FE11 N/m?
Poisson coefficient v 0.3 -
Attachment point A 74,y 0.72,0.61 m
Attachment point Bl  z gy, yp; 0.35,0.91 m
Attachment point B2 xp9, ypo 1.09,0.31 m
Attachment point C  z¢, yo 0.35,0.30 m

Table 1. General parameters of the three coupled plates.

band Aw is an octave centred on 2 kHz (corresponding to x = 10.3 in Figure 1). The results are
shown with Table 2. When a hypothesis is actually true, the box is marked ”Yes” (or "weak” for
the hypothesis of coupling). If not it is marked "No” (or ”’strong”).

Clarification of the rules:

e When the diffuse field box of a plate ¢ is marked ”Yes”, this means that the simulation
parameters were set so that the plate is in the area of diffuse field (x > 1 and the criterion is
below 0.7). This means that the plate ¢ has a damping coefficient of n; = 0.02.

e The boxes “equiparition” and “rain-on-the-roof” are linked since the two assumptions are
equivalent. When the checkbox “rain-on-the-roof”” is marked ”Yes” it means that the plate
is subjected to a field of 100 random stationary, uncorrelated white noise excitations. Auto-
matically the equiparition box is marked Yes”. Otherwise the two boxes are filled "No”.
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e Finally, the weak coupling hypothesis is verified when the stiffness of coupling between the
two plates is less than the threshold value. Like the example of the three coupled oscillators
(Figure 3), this value separates the two coupling regimes and depends on the properties of
each plate. In our example it corresponds to K = 10% N/m (cf chapter 7 of [6]). Thus, when
the weak coupling assumption is marked ’Yes” the coupling stiffness K 45 or K ¢ is equal

to 10* N/m. Otherwise it is equal to 107 N/m.

Test Case Hypotheses Plate A Plate B Plate C A Bogy per A Copy per Conclusion
Diffuse field domain (yes/no) No Yes Yes 26dB 29dB SEA is
] Equipartition of modal energies (y/n) Yes No No
Rain-on-the-roof excitation (y/n) Yes No No
Coupling (weak/strong) Weak Weak
Diffuse field domain (yes/no) Yes Yes Yes 15dB 37dB SEAis
2 Equipartition of modal energies (y/n) No No No “
Rain-on-the-roof excitation (y/n) No No No
Coupling (weak/strong) Weak Weak
Diffuse field domain (yes/no) No Yes No 20dB 26dB SEAis
3 Equipartition of modal energies (y/n) Yes No No Al
Rain-on-the-roof excitation (y/n) Yes No No
Coupling (weak/strong) Weak Weak
Diffuse field domain (yes/no) No Yes Yes 26.2dB 28.7dB SEA is not
4 Equipartition of modal energies (y/n) Yes No No practicable
Rain-on-the-roof excitation (y/n) Yes No No
Coupling (weak/strong) Strong Weak
Diffuse field domain (yes/no) No Yes Yes 38dB 251dB SEA is not
5 Equipartition of modal energies (y/n) Yes No No practicable
Rain-on-the-roof excitation (y/n) Yes No No
Coupling (weak/strong) Weak Strong
Diffuse field domain (yes/no) No No No 25dB 124 dB SEA is not
6 Equipartition of modal energies (y/n) Yes No No practicable
Rain-on-the-roof excitation (y/n) Yes No No
Coupling (weak/strong) Weak | Weak

Table 2. Test case on the plate network.

At the sight of these tests, it appears that when the weak coupling assumption is not verified
it automatically provokes the failure of SEA (test case 4 and 5). SEA can work if the indirectly
excited subsystems do not meet the assumption of equipartition of modal energy (or the assumption
of rain-on-the-roof). In that case, the diffuse field hypothesis must be verified in all subsystems
otherwise SEA fails. In order to respect such an assumption, either the subsystem are within the
diffuse field domain; or they must be excited by a rain-on-the-roof to enforce diffuse field (test case
1, 2 and 6). Test case 3 shows that SEA may possibly be applicable if the latter indirectly excited
subsystem is not in diffuse field conditions. Nevertheless, this very particular configuration is not
recommended.

6 CONCLUSION

Statistical energy analysis in a statistical approach of vibroacoutics which describes complex sys-
tems in terms of vibrating and acoustical energies. In the high frequency range, this method consti-
tutes an alternative to bypass the problems which can arise when applying deterministic methods.
But its use requires the knowledge and the fulfillment of strong assumptions which restrict its
domain of application.
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In this paper diffuse field, equipartition of modal energy, weak coupling and the rain-on-the-
roof excitation are the took up hypotheses. Their equivalence and their influence on the results
quality have been discussed to contribute to the clarification of the necessary assumptions to apply
properly SEA. The industrial applications with SEA have often been disappointing because of the
violation of some hypotheses.

An first interesting result is that a diffuse field is possible in a system excited by a single point
force if it has small damping and in the high frequency range. Secondly, equipartition of modal
energy is foreseeable when a rain-on-the-roof excitation (which implies a constant power injected
for all modes) and a half power bandwidth damping (constant dissipation for each mode) are
gathered. In this way, the rain-on-the-roof hypothesis is equivalent to modal energy equipartition
hypothesis. Furthermore, a rain-on-the-roof imposes a diffuse field in the subsystem. Another
conclusion is that the rain-on-the-roof hypothesis implies the diffuse field hypothesis. It has an
interesting practical implication: imposing a rain-on-the-roof strictly implies the fulfillment of
the modal energy equipartition assumption and the diffuse field assumption. This is good news
because the two latter assumptions are not easily verified for industrial applications.
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