

High frequency vibroacoustics: a radiative transfer equation based approach

A. Le Bot

École Centrale de Lyon - LTDS, UMR CNRS 5513, France

Laboratoire de Tribologie et Dynamique des Systèmes LTDS UMR 5513 http://ltds.ec-lyon.fr

InnoWave 2012 – Innovation in wave modelling 3 – 7 september 2012, Nottingham, UK

Statistical Energy Analysis

Assumptions

- Conservative coupling,
- Light coupling,
- Random forces, white noise
- Large number of modes,
- Large modal overlap,
- Diffuse field

Main features

- Statistical description of systems
- Primary variable = energy,
- Linear superposition

But

- no locality

Assumption

- High frequency,

Two variants:

- rays with phase
- rays without phase (uncorrelated)

Main features

- Local description
- Linear superposition principle
- Primary variable = field OR energy

But

Requires the determination of all ray paths

Assumption

- High frequency,

Main features

- Local description
- Linear superposition principle
- Primary variable = energy

But

 Γ_i

Limited to Lambertian reflection

High frequency theory of waves in vibroacoustics,

- i) Primary variables = power & energy
- ii) Local description
- iii) Reflection, diffraction, transmission, radiation...
- iv) Statistical energy analysis as a special case

The reflected field in domain Ω may be constructed by superimposing a single layer and a double layer.

Green's function
$$g(\mathbf{p}, \mathbf{r}) = \frac{e^{-ikR}}{4\pi R}$$

$$\begin{split} |\psi|^2 &= \int_{\Gamma \times \Gamma} aa'gg' + ab'g\partial_n g' + \\ a'bg'\partial_n g + bb'\partial_n g\partial_n g'd\Gamma d\Gamma' \end{split}$$

Uncorrelation assumption: cross product vanish $\int_{\Gamma\times\Gamma} d\Gamma d\Gamma' \sim \int_{\Gamma} d\Gamma$

Far-field $|g|^2 \propto g \partial_n g \propto |\partial_n g|^2 \propto 1/R^2$

$$|\psi|^2 = \int_{\Gamma} \sigma \times \frac{d\Gamma}{R^2}$$

A vibroacoustic model for high frequency analysis, A. Le Bot, J. Sound Vib. 1998.

Uncoherent energy field

The single and double layers of field reduce to a single layer of energy

\rightarrow How to determine the layer σ ?

Sound radiation

Velocity field

SPL on a sphere of radius 3m – third-octave 2500 Hz

A hybrid method for vibroacoustics based on the radiative transfer method, E. Reboul & al., J. Sound Vib. 2007.

Radiosity integral

Assumption

- Lambert's law,
- \mathcal{R} reflection coefficient

 $\mathcal{P}_{\mathrm{ref}} = \mathcal{R}\mathcal{P}_{\mathrm{inc}}$

Well-suited method for the determination of time reverberation beyond Sabine's law, (Kuttruff, Miles, Gilbert, Gerlach...)

Room acoustics, H. Kuttruff, Elsevier Science. 1973.

Comparison of an integral equation and the ray-tracing technique in room acoustics, A. Le Bot, A. Bocquillet J. Acoust. Soc. Am. 2000.

What is the difference between ray-tracing and radiosity?

Ray-tracing / radiative transfer

Computation of a series

What happens in case of specular reflection?

Specular reflection

 \mathcal{R} reflection coefficient θ , θ' emission angles

$$\mathcal{P}_{\mathrm{ref}} = \mathcal{R}\mathcal{P}_{\mathrm{inc}}$$

Functional equation for reflection

A functional equation for the specular reflection of rays, A. Le Bot, J. Acoust. Soc. Am. 2002.

Circular billiard

K elliptic integral of the first kind and $\epsilon = r_0/r$

$$W(r) = \frac{4\tau}{\pi c(1-\tau)} \mathbf{K}\left(\frac{1}{\epsilon}\right) \quad r < r_0$$
$$W(r) = \frac{4\tau}{\pi c(1-\tau)} \epsilon \mathbf{K}(\epsilon) \quad r > r_0$$

Functional equation

Ray-tracing method

Does it possible to account for wave transmission?

Wave transmission

Structural transmission

Energy transfer for high frequencies in built-up structures, A. Le Bot, A. J.Sound Vib. 2002.

And now diffraction...

Generalized Fermat's principle $\mathcal{L} = \int k ds$ $\delta \mathcal{L} = 0$ r p **1** k regular path $\delta k = 0$ -> geodesic line (straight line in flat space)

singular path $(k_- - k_+).\delta p = 0$

-> condition on k₋ and k₊

The geometrical theory of diffraction, J.B. Keller, J. Opt. Soc. Am. 1952.

Simple diffraction

Double diffraction

$$\psi(\mathbf{r}) = \frac{e^{ikS}}{\sqrt{S}} D_1' \frac{e^{ikL}}{\sqrt{L}} \times D_2' \frac{e^{ikR}}{\sqrt{R}}$$

 $+\frac{e^{ikS}}{\sqrt{S}}D_1'\frac{e^{ikL}}{\sqrt{L}}D_1\frac{e^{ikL}}{\sqrt{L}}D_2\frac{e^{ikL}}{\sqrt{L}}D_2'\frac{e^{ikR}}{\sqrt{L}}$ $+\dots$

All ray paths from source to receiver must be determined!

Diffraction source

Simple diffraction

Incident intensity

Simple diffraction

Introduction of acoustical diffraction in the radiative transfer method, E. Reboul, A. Le Bot, J. Perret-Liaudet CRAS 2004.

Double diffraction

Functional equations

$$\sigma_1(\theta_1) = D(\varphi_1, \theta_1) \frac{1}{S} + D(\theta_1, \theta_1) \frac{\sigma_2(\varphi_2)}{L}$$

$$\sigma_2(\theta) = D(\varphi_2, \theta) \frac{\sigma_1(\theta_1)}{L} \qquad (\theta = \varphi_2)$$

Energy at receiver

$$W(\mathbf{r}) = \frac{\sigma_2(\theta_2)}{cR}$$

 $W(\mathbf{r}) = \sum_{i=1}^{n} \frac{\sigma_i}{2\pi c R_i}$

250 Hz

BEM solution

Functional equation

5000 Hz

BEM solution

Functional equation

Conclusion

