Centre Lyonnais d'Acoustique

High frequency vibroacoustics: a radiative transfer equation based approach

A. Le Bot
École Centrale de Lyon - LTDS, UMR CNRS 5513, France

InnoWave 2012 - Innovation in wave modelling 3-7 september 2012, Nottingham, UK

LTDS

Statistical Energy Analysis

Assumptions

- Conservative coupling,
- Light coupling,
- Random forces, white noise
- Large number of modes,
- Large modal overlap,
- Diffuse field

Main features

- Statistical description of systems
- Primary variable = energy,
- Linear superposition

But

- no locality

Ray tracing

Assumption

- High frequency,

Two variants:

- rays with phase
- rays without phase (uncorrelated)

Main features

- Local description
- Linear superposition principle
- Primary variable = field OR energy

But
Requires the determination of all ray paths

View factor

Main features

- Local description
- Linear superposition principle
- Primary variable = energy

But
Limited to Lambertian reflection

Objective

High frequency theory of waves in vibroacoustics,
i) Primary variables = power \& energy
ii) Local description
iii) Reflection, diffraction, transmission, radiation...
iv) Statistical energy analysis as a special case

LTDS Helmholtz-Kirchhoff equation

The reflected field in domain Ω may be constructed by superimposing a single layer and a double layer.

Green's function

$$
g(\mathbf{p}, \mathbf{r})=\frac{e^{-i k R}}{4 \pi R}
$$

LTDS

$$
\begin{aligned}
& |\psi|^{2}=\int_{\Gamma \times \Gamma} a a^{\prime} g g^{\prime}+a b^{\prime} g \partial_{n} g^{\prime}+ \\
& \quad a^{\prime} b g^{\prime} \partial_{n} g+b b^{\prime} \partial_{n} g \partial_{n} g^{\prime} d \Gamma d \Gamma^{\prime}
\end{aligned}
$$

Uncorrelation assumption: cross product vanish

$$
\int_{\Gamma \times \Gamma} d \Gamma d \Gamma^{\prime} \sim \int_{\Gamma} d \Gamma
$$

Far-field $\quad|g|^{2} \propto g \partial_{n} g \propto\left|\partial_{n} g\right|^{2} \propto 1 / R^{2}$

$$
|\psi|^{2}=\int_{\Gamma} \sigma \times \frac{d \Gamma}{R^{2}}
$$

Uncoherent energy field

$$
\begin{gathered}
\psi(\mathbf{r})=\int_{\Gamma} a \times \frac{e^{i k R}}{4 \pi R}-b \times \partial_{n} \frac{e^{i k R}}{4 \pi R} d \Gamma \\
\sqrt{\square} \\
|\psi|^{2}=\int_{\Gamma} \sigma(\mathbf{p}, \theta) \times \frac{d \Gamma_{\mathbf{p}}}{R^{2}}
\end{gathered}
$$

The single and double layers of field reduce to a single layer of energy
\sum How to determine the layer σ ?

Directivity

Memoryless law

$$
\sigma(\mathbf{p}, \theta)=\sigma(\mathbf{p}) \times f(\theta)
$$

Lambert's reflection $f(\theta)=\cos \theta$

Memory law

$$
\sigma(\mathbf{p}, \varphi, \theta)
$$

Specular reflection
$\sigma(\mathbf{p}, \theta)=\sigma \delta(\varphi-\theta)$

Sabines reverberation time and ergodic audotorium, Joyce, J. Acoust. Soc. Am. 1975.

Sound radiation

Ribbed panel

Velocity field

SPL on a sphere of radius 3 m - third-octave 2500 Hz

A hybrid method for vibroacoustics based on the radiative transfer method, E. Reboul \& al., J. Sound Vib. 2007.

Radiosity integral

Assumption

- Lambert's law,
- \mathcal{R} reflection coefficient

$$
\mathcal{P}_{\mathrm{ref}}=\mathcal{R} \mathcal{P}_{\mathrm{inc}}
$$

$$
\underbrace{\sigma(\mathbf{p}, t)}_{\text {eflected power }}=\mathcal{R}(\underbrace{I_{0}+\int_{\Gamma}^{\sigma}\left(\mathbf{p}^{\prime}, t-\frac{R}{c}\right) \frac{\cos \varphi \cos \theta}{\pi R^{2}} d \Gamma}_{\text {Incident power }})
$$

Well-suited method for the determination of time reverberation beyond Sabine's law, (Kuttruff, Miles, Gilbert, Gerlach...)

Room acoustics, H. Kuttruff, Elsevier Science. 1973.

LTDS Comparison CeReS (CNRS) / RAYON (EDF)

Ray-tracing

What is the difference between ray-tracing and radiosity?

Ray-tracing / radiative transfer

Ray-tracing method

$$
W=\sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r}
$$

Radiative transfer method

$$
\left\{\begin{array} { l }
{ \sigma _ { 1 } = r \sigma _ { 2 } } \\
{ \sigma _ { 2 } = r (1 + \sigma _ { 1 }) }
\end{array} \quad \left\{\begin{array}{l}
\sigma_{1}=r^{2} /\left(1-r^{2}\right) \\
\sigma_{2}=r /\left(1-r^{2}\right)
\end{array}\right.\right.
$$

$$
W=1+\sigma_{1}+\sigma_{2}=\frac{1}{1-r}
$$

What happens in case of specular reflection?

Specular reflection

$$
\mathbf{p}^{\prime} \theta^{\theta^{\prime} \quad \mathbf{u}^{\prime}} \begin{aligned}
& \underbrace{\theta}_{\mathbf{p}} \text { reflection coefficient } \\
& \theta, \theta^{\prime} \text { emission angles } \\
& \mathcal{P}_{\text {ref }}=\mathcal{R} \mathcal{P}_{\text {inc }}
\end{aligned}
$$

Functional equation for reflection

$$
\underbrace{\frac{\sigma(\mathbf{p}, \mathbf{u}, t)}{\cos \theta}}_{\text {Reflected power }}=\mathcal{R}[\underbrace{\frac{\sigma\left(\mathbf{p}^{\prime}, \mathbf{u}^{\prime}, t-\frac{R}{c}\right)}{\cos \theta^{\prime}}+\underbrace{}_{\mathbf{p}^{\prime} \mathbf{p}} \rho\left(\mathbf{s}, t-\frac{R}{c}\right) d R]}_{\text {Incident power }}
$$

Image-source method applies

Circular billiard

K elliptic integral of the first kind and $\varepsilon=r_{0} / r$

$$
\begin{array}{ll}
W(r)=\frac{4 \tau}{\pi c(1-\tau)} \mathrm{K}\left(\frac{1}{\epsilon}\right) & r<r_{0} \\
W(r)=\frac{4 \tau}{\pi c(1-\tau)} \epsilon K(\epsilon) & r>r_{0}
\end{array}
$$

Functional equation

Ray-tracing method

\sum Does it possible to account for wave transmission?

LTDS

Wave transmission

$$
\underbrace{\sigma_{1}(\mathbf{p})}_{\text {mitted power }}=\mathcal{R}(\underbrace{I_{1}+\int_{\Gamma_{1}} \sigma_{1} \frac{\cos \varphi \cos \theta}{\pi R^{2}} d \Gamma}_{\text {Power from } \Gamma_{1}})
$$

$$
+\mathcal{T}(\underbrace{I_{2}+\int_{\Gamma_{2}} \sigma_{2} \frac{\cos \varphi \cos \theta}{\pi R^{2}} d \Gamma}_{\text {Power from } \Gamma_{2}})
$$

Structural transmission

Energy transfer for high frequencies in built-up structures, A. Le Bot, A. J.Sound Vib. 2002.

And now diffraction...

Diffraction: The problem

$$
\begin{aligned}
& \Delta \psi+k^{2} \psi=-\delta_{s} \\
& \partial_{n} \psi=0 \text { on } \Gamma
\end{aligned}
$$

The boundary may be singular

Geometrical acoustics

Ray path

Ray field

$$
\psi(\mathbf{r})=\frac{e^{-i k R}}{\sqrt{R}}
$$

$$
R=|\mathbf{r}-\mathbf{s}|
$$

Geometrical acoustics
direct + reflected field

$\psi=0$ in the shadow zone!

LTDS Generalized Fermat's principle

$$
\mathcal{L}=\int k d s \quad \delta \mathcal{L}=0
$$

regular path $\quad \delta k=0$
-> geodesic line (straight line in flat space)
singular path $\quad\left(k_{-}-k_{+}\right) . \delta p=0$
-> condition on k_{-}and k_{+}

Diffracted ray

$$
\left(\mathbf{k}_{-}-\mathbf{k}_{+}\right) \cdot \delta \mathbf{p}=0 \quad \delta \mathbf{p}=\mathbf{u} d s
$$

Keller's law

$\mathbf{k}_{-} . \mathbf{u}=\mathbf{k}_{+} . \mathbf{u}$

$$
\varphi=\theta
$$

LTDS
 Simple diffraction

$$
\psi(\mathbf{r})=\frac{e^{i k S}}{\sqrt{S}} D(\varphi, \theta) \frac{e^{i k R}}{\sqrt{R}}
$$

LTDS

Double diffraction

$$
\begin{aligned}
\psi(\mathbf{r})= & \frac{e^{i k S}}{\sqrt{S}} D_{1}^{\prime} \frac{e^{i k L}}{\sqrt{L}} \times D_{2}^{\prime} \frac{e^{i k R}}{\sqrt{R}} \\
& +\frac{e^{i k S}}{\sqrt{S}} D_{1}^{\prime} \frac{e^{i k L}}{\sqrt{L}} D_{1} \frac{e^{i k L}}{\sqrt{L}} D_{2} \frac{e^{i k L}}{\sqrt{L}} D_{2}^{\prime} \frac{e^{i k R}}{\sqrt{R}} \\
& +\ldots
\end{aligned}
$$

LTDS
 Multiple diffraction

All ray paths from source to receiver must be determined!

Energy of cylindrical wave

Field

$$
\psi(\mathbf{r})=\frac{e^{-i k R}}{\sqrt{R}}
$$

Energy

$$
W(\mathbf{r})=\frac{1}{2 \pi c R}
$$

LTDS
 Diffraction source

$$
W(\mathbf{r})=\frac{1}{2 \pi c S}+\frac{\sigma}{2 \pi c R}
$$

LTDS
 Simple diffraction

$$
\frac{\sigma(\theta)}{2 \pi}=\frac{1}{2 \pi S} \times D(\varphi, \theta) \text { Diffraction }
$$

Incident intensity

LTDS

Simple diffraction

Introduction of acoustical diffraction in the radiative transfer method, E. Reboul, A. Le Bot, J. Perret-Liaudet CRAS 2004.

Double diffraction

Functional equations

$$
\begin{aligned}
& \sigma_{1}\left(\theta_{1}\right)=D\left(\varphi_{1}, \theta_{1}\right) \frac{1}{S}+D\left(\theta_{1}, \theta_{1}\right) \frac{\sigma_{2}\left(\varphi_{2}\right)}{L} \\
& \sigma_{2}(\theta)=D\left(\varphi_{2}, \theta\right) \frac{\sigma_{1}\left(\theta_{1}\right)}{L} \quad\left(\theta=\varphi_{2}\right)
\end{aligned}
$$

Energy at receiver

$$
W(\mathbf{r})=\frac{\sigma_{2}\left(\theta_{2}\right)}{c R}
$$

LTDS

Multiple diffraction

LTDS

Multiple diffraction

BEM solution

Functional equation

Multiple diffraction

BEM solution

Functional equation

Conclusion

