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Summary: This paper presents a simplified model for high frequencies
in structures. This model wich does not take into account interferencies be-
tween propagative waves, is asymptotic in sense that it is more accurate as
frequency increases. Based on energetic quantities and energy balance, the
spirit of Statistical Energy Analysis (SEA) is conserved. But the description
is more precise and, in particular, the repartition of energy density inside
each sub-system is predicted. Results of experimentation are presented and
point out that this model well predicts a frequency average of the measure-
ments.

1 INTRODUCTION

Several attempts to generalise the Statistical Energy Analysis beyond its limit of
application has been performed for few years. Nefske and al [1] proposed a model
based on an equation similar to the heat conduction equation. Asin SEA, it involves
energy quantities: energy and power. But, unlike SEA which involves global vari-
ables, this model considers local variables: energy density and energy flow. Many
studies [2] have follows this previous work and have pointed out the numerical advan-
tage over finite element method. Moreover, it is possible to reuse existing thermal
softwares. However, Langley (3] criticized the application of this method for multi-
dimensional structures. He remarked that the direct field predicted by this method
decreases slower than the prediction of classical equation of movement. This para-
dox motivated investigations summarized in [4] where an attempt to explain it is
presented.

The purpose of this paper is to present an alternative of the heat conduction
equation applied to high frequencies in plates or acoustical enclosures. This formu-
lation, taking into account Langley’s remark, is based on an integral formulation
deduced from the Huygens principle. The direct field appears explicitly allowing a
correction of the heat conduction drawback.
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2 THEORITICAL FORMULATION

A vibrating system is fully described with two fields: the scalar field of energy density
W defined as the sum of kinetic energy density and deformation energy density (for
structures) and a vector field of energy flow I which indicates the direction and the
strenght of propagation of energy.

A first set of assumptions required to derive the energy model is summarized as
follows:

(H1) Linear, isotropic, homogeneous two-dimensional system in steady state condi-
tions, excited over the broadband [w — Aw/2,w + Aw/2],

(H2) light hysteretic damping loss factor (n < 1),

(H3) evanescent waves and near-fields are neglected,

(H{) interferencies between propagative waves are not taken into account.

Another assumption will be added later on.

First, let study the direct field. A pure travelling wave issued from the point
source S is caracterized by a proportionality between the energy flow and the energy
density: I(M) = ¢,W(M)ugspy where ugy is the unity vector from S toward M and
¢, is the group velocity. By substituting this relationship into the power balance
and taking into account the isotropy of space, the following expressions are obtained

[4]):
XSV ~12SsM
G(S,M)=¢€ =<7 [SM H(S,M) =cse = "usm/SM (1)

where G(S, M) denotes the energy density in M of the direct field created by a
source S and H(S, M) denotes the energy flow vector of the direct field. These
elementary fields will be oftently used in what follows.

Now, let consider more general fields in a bounded or unbounded domain. Those
fields result from a superposition of many travelling waves. As interferencies between
travelling waves were declared to be irrelevant in high frequencies, this superposition
is considered to be linear. Most general fields are therefore merely constructed by
adding elementary fields. Moreover, Huygens principle claims that a general field is
a superposition of a direct field emerging from actual sources located in the domain
2 and a reflected field emerging from fictives sources located on the boundaries 9
of the domain. Let denote p(.S) the actual sources at S and o(P) the fictive sources
at P, complete fields are then:

W(M) = /ﬂ p(S)G(S, M)dS + /a _(P)f (ump.np) G(P, M)dP 2)
I(M) = /ﬂ p(S)H(S, M)dS + /a _o(P)f (upp-np) H(P, M)dP (3)

The function f appearing in (2,3) is the directivity diagramm of the secondary source
o. It depends on the angle between the considered direction upp and the inward
normal np at the point P. It is subjected to the additional assumption:

(H5) Fictive sources have all the same directivity f which does not depend on the
point P and chosen respect to Lambert law f(u.n) = u.n.
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Obviously, actual sources can be considered to be known. In opposition, fictive
sources are unknown and an additional equation must be derived to determine it.
This equation is obtained by applying local power balance at a point P located on
the boundary. It yields:

ve,o(P) = { /ﬂ Ro(S)H(S,P)dS + [ _Ro(P')f (upprnp) H(P, P)dP'}.np (4)

where v is a constant depending on the choice of f. For Lambert law vy = 2 in two
dimensions. R is the reflection efficiency of the boundary at P. For undamping
boundary R = 1. This equation (4) is a Fredholm integral equation of second kind.

In another hand, an interface between two different media requires two integral
equations to determine fictive sources on each side of this interface. Let caracterize
the energy transfer occuring with two ratios: the reflection efficency R which is the
ratio of reflected power over incident power and the transmission efficency T' which
is the ratio of transmitted power over incident power. Obviously, the sum of these
efficencies equals to one for non dissipative interface. Note that these efficencies may
depend on the incident direction. Two power balances can now be stated at a given
point P on the interface: the power emmited toward medium one is the sum of the
reflected part of the incident power coming from medium one and the transmitted
part of the incident power coming the medium two, and so on. It yields:

7C9161(P) =
{Jafo(S)H\(S, P)dS + fyoRo1(P))f (uppymyp) Hy(P], P)dP} mpt  (5)
{JaT p(S)Ha(S, P)dS + [sa o2(P}) f (uppynzpy) Hao(Pj, P)AP;} myp

709202(P) =
{JaTP(S)H\(S, P)dS + foqTor(P;)f (uppy.nyp) Hi(P,, P)dP} mpt  (6)
{JaRp(S)HL(S, P)dS + [s0Ro2(P})f (upp; napy) Ha(P}, P)AP}} .y p

The set of integral equation (4,5,6) may be solved with an appropriate numer-
ical scheme. For instance, in the following application, a collocation method with
constant elements has been retained.” As a second step, the fields W and I may de
constructed involving equations (2,3).

3 APPLICATION TO ASSEMBLED PLATES

Previous method is implemented as a software to solve integral equations in case
of assembled plates. The reflection and transmission efficiencies depends both on
the angle between the coupled plates and the incident angle. Those efficiencies and
other caracteristics such as group velocities are evaluated on the base of classical
Love plate model. The results of this model has been tested with experimental
measurements realized on a seven plates structure. This structure is shown in Fig.1.
It was excited on the top with a shaker and acceleration was measured on several
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Figure 1: Comparison: x, measurement - o, prediction

points distributed on the top and the sides. The measured energy density was
evaluated as being twice the kinetic energy density proportional to the square of
the FRF. Note that the phase information is not necessary in this calculation. A
comparison between measured and predicted energy densities is shown in Fig.l at
two points. The first one is located in the vicinity of the excitation point and the
second in the side. The prediction well estimates a frequency average of the measured
response. All detail relevant to the modal behavior of the structure disapear in the
energetic model.

4 CONCLUSIONS

In this study, a simplified model well suited for high frequencies has been presented.
This model is based on an approximation related to high frequencies: interferen-
cies between travelling has not been taken into account. In other words, the modal
behavior of the structure is considered to be irrelevant. Comparisons with mea-
surements point out that results of this method have to be interpreted as frequency
average over frequency.
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